SlideShare a Scribd company logo
MongoDB 
Scalability and Agility 
Chris.Biow@MongoDB.com
Data Challenge 
“I want my data...” 
• Now 
• Secure 
• All varieties 
• Fast and interactive 
• Scalable to “Big” 
• Agile to develop and deploy operationally 
• Cloud and edge 
2 
iStock licensed (pixelfit)
Scalability with MongoDB 
Metric Meaning Examples 
Operations per 
Second 
3 
Concurrent reads and writes per 
second 
> 1 Million per second 
Nodes per 
Cluster 
Horizontal scale-out, distributed to 
multiple data centers worldwide, with 
high availability, using inexpensive 
cloud resources 
> 1000 nodes 
Records / 
Documents 
Data objects in any number of 
schemas or structures 
> 10 billion 
Data Volume Total amount of data: documents X 
size 
> 1 Petabyte 
= 10^15 
= 1,000,000,000,000,000 
≈ 2^50
Key Differentiation
Operational Database Landscape 
5
Document Data Model 
Relational MongoDB 
6 
{ 
first_name: ‘Paul’, 
surname: ‘Miller’, 
city: ‘London’, 
location: 
[45.123,47.232], 
cars: [ 
{ model: ‘Bentley’, 
year: 1973, 
value: 100000, … }, 
{ model: ‘Rolls Royce’, 
year: 1965, 
value: 330000, … } 
} 
}
Documents are Rich Data Structures 
7 
{ 
first_name: ‘Paul’, 
surname: ‘Miller’, 
cell: ‘+447557505611’ 
city: ‘London’, 
location: [45.123,47.232], 
Profession: [banking, finance, trader], 
cars: [ 
{ model: ‘Bentley’, 
year: 1973, 
value: 100000, … }, 
{ model: ‘Rolls Royce’, 
year: 1965, 
value: 330000, … } 
} 
} 
Fields can contain an array of 
sub-documents 
Fields 
Typed field values 
Fields can 
contain arrays
Document Model Benefits 
• Agility and flexibility 
8 
– Data model supports business change 
– Rapidly iterate to meet new requirements 
• Intuitive, natural data representation 
– Eliminates ORM layer 
– Developers are more productive 
• Reduces the need for joins, disk seeks 
– Programming is more simple 
– Performance delivered at scale
Big Data Tech Interest Comparison 
11 
j.mp/Ssvpev
Enterprise Adoption Comparison 
12 
bit.ly/1vAI7rF
Architecture for 
Availability & Scalability
Replica Sets 
14 
• Replica Set – two or more copies 
• Availability solution 
– High Availability 
– Disaster Recovery 
– Maintenance 
• Deployment Flexibility 
– Data locality to users 
– Workload isolation: operational & 
analytics 
• Self-healing shard 
Application 
Driver 
Primary 
Secondary 
Secondary 
Repl ication
Global Data Distribution 
16 
Real-time 
Real-time Real-time 
Real-time 
Real-time 
Real-time 
Real-time 
Primary 
Secondary 
Secondary 
Secondary 
Secondary 
Secondary 
Secondary 
Secondary
Automatic Sharding 
• Sharding types 
17 
• Range 
• Hash 
• Tag-aware 
• Elastic increase or decrease in capacity 
• Automatic balancing
Query Routing 
• Multiple query optimization models 
• Each sharding option appropriate for different apps 
18
Performance
Drag Strip: 
straight ahead, quarter-mile, stop 
20
Road Race: 
stay fast, stay agile, continuous 
21 
Nürburgring, Germany
MongoDB at Scale
CarFax 
• Large data set 
24
25 
Baseline MongoDB Comparison Initial Production 
• Vehicle History 
Database 
• 11 billion records 
(growing at 1 billion per 
year) 
• 30-year-old VMS-based 
RDBMS 
• Cumbersome 
• Costly 
• Performance: 4x faster 
than baseline, 10x key-value 
• Scale out using 
inexpensive commodity 
servers 
• Built-in redundancy 
• Flexible dynamic schema 
data model 
• Strong consistency 
• Analytics/aggregation 
• MongoDB is primary data 
store 
• 50 servers 
• 10 shards 
• 5 node replica sets per 
shard 
In-depth NoSQL evaluation
CARFAX Sharding and Replication 
• 13 billion+ documents 
26 
– 1.5 billion documents added every year 
• 1 vehicle history report is > 200 documents 
• 12 Shards 
• 9-node replica sets 
• Replicas distributed across 3 data centers
CARFAX Replication 
27
28
Foursquare 
• 50M users. 
• 6B check-ins to date (6M per day growth). 
• 55M points of interest / venues. 
• 1.7M merchants using the platform for marketing 
• Operations Per Second: 300,000 
• Documents: 5.5B (~16.5B with replication).* 
29
Foursquare clusters 
• 11 MongoDB clusters 
30 
– 8 are sharded 
• Largest cluster for check-ins 
• 15 shards (check ins) 
• Shard key user_id
Facebook / parse.com mobile apps 
• Persistent database for 270,000 mobile applications 
• 200 M end-user mobile devices 
• 250% annual growth in client apps 
• 500% growth in requests 
• 1.5 M collections 
• Key differentiators: 
31 
– Document data model 
– High perf. & avail. 
– Geospatial query and index 
• Charity Majors operations: j.mp/X3jVRC 
– Understand your database and your data, and build for them.
Agility and Scalability with MongoDB
Scalability Exercises in the Cloud 
with Amazon Web Services
Petascale Database 
• 27x hs1.8xlarge instances 
35 
– 16x VCPU 
– 24x 2TB SATA drives, RAID0 
– 8x mongod microshards 
• Modified Yahoo Cloud Serving 
Benchmark (YCSB) 
– Long Integer IDs (>2B) 
– Zipfian-distributed integer fields 
– Aggregation queries 
• Load direct to 216 shards, 10 days, $4K 
"objects" : 7,170,648,489, 
"avgObjSize" : 147,438.99952658816, 
"dataSize" : NumberLong("1,057,240,224,818,640") 
(commas added)
CGroup Memory Segregation 
for DB in `seq 0 3`; do 
sudo cgcreate  
-a mongodb:mongodb  
-t mongodb:mongodb  
-g memory:mongodb$D 
sudo echo 48G >  
/sys/fs/cgroup/memory/mongodb$D/memory.limit_in_bytes 
cgexec  
-g memory:mongodb$DB  
numactl –interleave=all  
mongod –-config ~/mongod$DB.conf 
done
Megawrite Ingest 
• Ingest 250-byte stock quotes at 2M/s 
• Concurrently run 5 QPS, subsecond/indexed response on 
37 
timeStamp, accountId, instrumentId, systemKey 
• 5x r3.4xlarge 
– 16x VCPU, 1x 320GB SSD, 122GB RAM, 16x mongod 
– 2.1M insert/second direct to shards 
• 16x c3.8xlarge 
– 32x VCPU, 2x 320GB SSD, 60GB RAM, 16x mongod, 4x mongos 
– 2.1M insert/second via mongos
Java API comparison 
• 2 threads on c3.8xl 
• 264 bsonsize object, _id index only 
• coll.insert() 
38 
15,600 ins / sec 
• coll.insert(List<DBObject>) 
listsize = 64: 118,000 ins / sec 
• Bulk ops API 
size = 64: 120,000 ins / sec
BulkWriteOperation bo = null; 
for(a = 0; a < this.items && stayAlive; a++) { 
if(bo == null) { 
bo = collection.initializeUnorderedBulkOperation(); 
} 
fillMap(this.m); 
BasicDBObject dbObject = new BasicDBObject(this.m); 
bo.insert(dbObject); 
if(0 == a % listsize) { 
BulkWriteResult rc = bo.execute(); 
bo = null; 
} 
} 
7x Load with BulkOp
How do I Pick A Shard Key?
Shard Key characteristics 
41 
• A good shard key has: 
– sufficient cardinality 
– distributed writes 
– targeted reads ("query isolation") 
• Shard key should be in every query if possible 
– scatter gather otherwise 
• Choosing a good shard key is important! 
– affects performance and scalability 
– changing it later is expensive
Hashed shard key 
42 
• Pros: 
– Evenly distributed writes 
• Cons: 
– Random data (and index) updates can be IO intensive 
– Range-based queries turn into scatter gather 
Shard 1 
mongos 
Shard 2 Shard 3 Shard N
Low cardinality shard key 
43 
• Induces "jumbo chunks" 
• Examples: boolean field 
Shard 1 
mongos 
Shard 2 Shard 3 Shard N 
[ a, 
b )
Ascending shard key 
44 
• Monotonically increasing shard key values 
cause "hot spots" on inserts 
• Examples: timestamps, _id 
Shard 1 
mongos 
[ ISODate(…), 
$maxKey ) 
Shard 2 Shard 3 Shard N
Ensuring Success with 
High Scalability
Success Factors 
• Storage: random seeks (IOPS) 
• RAM: working set based on query patterns 
• Query: indexing 
• Delete: most expensive operation 
• Real-time vs. bulk operations 
• Continuity: HA, DR, backup, restore 
• Agile process: iterate by powers of 4 
• Sharding: shard key and strategy 
• Resources: don’t go it alone! 
46
Ad

More Related Content

What's hot (20)

MySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docxMySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docx
NeoClova
 
The Apache Spark File Format Ecosystem
The Apache Spark File Format EcosystemThe Apache Spark File Format Ecosystem
The Apache Spark File Format Ecosystem
Databricks
 
Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0
Cloudera, Inc.
 
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
オラクルエンジニア通信
 
The columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache ArrowThe columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache Arrow
Julien Le Dem
 
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBaseHBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon
 
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
PgDay.Seoul
 
Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
Monitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Monitor Apache Spark 3 on Kubernetes using Metrics and PluginsMonitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Monitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Databricks
 
Azure CosmosDb
Azure CosmosDbAzure CosmosDb
Azure CosmosDb
Marco Parenzan
 
In-Memory Evolution in Apache Spark
In-Memory Evolution in Apache SparkIn-Memory Evolution in Apache Spark
In-Memory Evolution in Apache Spark
Kazuaki Ishizaki
 
Introduction to Apache Calcite
Introduction to Apache CalciteIntroduction to Apache Calcite
Introduction to Apache Calcite
Jordan Halterman
 
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Databricks
 
Dongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of FlinkDongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
Logstash-Elasticsearch-Kibana
Logstash-Elasticsearch-KibanaLogstash-Elasticsearch-Kibana
Logstash-Elasticsearch-Kibana
dknx01
 
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEOTricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
MySQL Index Cookbook
MySQL Index CookbookMySQL Index Cookbook
MySQL Index Cookbook
MYXPLAIN
 
Adaptive Query Execution: Speeding Up Spark SQL at Runtime
Adaptive Query Execution: Speeding Up Spark SQL at RuntimeAdaptive Query Execution: Speeding Up Spark SQL at Runtime
Adaptive Query Execution: Speeding Up Spark SQL at Runtime
Databricks
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache Calcite
Julian Hyde
 
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Chris Fregly
 
MySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docxMySQL_SQL_Tunning_v0.1.3.docx
MySQL_SQL_Tunning_v0.1.3.docx
NeoClova
 
The Apache Spark File Format Ecosystem
The Apache Spark File Format EcosystemThe Apache Spark File Format Ecosystem
The Apache Spark File Format Ecosystem
Databricks
 
Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0
Cloudera, Inc.
 
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
Oracle Essbase for Oracle Cloud Infrastructure Marketplace のご紹介[2021年2月版]
オラクルエンジニア通信
 
The columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache ArrowThe columnar roadmap: Apache Parquet and Apache Arrow
The columnar roadmap: Apache Parquet and Apache Arrow
Julien Le Dem
 
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBaseHBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon 2015: Taming GC Pauses for Large Java Heap in HBase
HBaseCon
 
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
[Pgday.Seoul 2017] 7. PostgreSQL DB Tuning 기업사례 - 송춘자
PgDay.Seoul
 
Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
Monitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Monitor Apache Spark 3 on Kubernetes using Metrics and PluginsMonitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Monitor Apache Spark 3 on Kubernetes using Metrics and Plugins
Databricks
 
In-Memory Evolution in Apache Spark
In-Memory Evolution in Apache SparkIn-Memory Evolution in Apache Spark
In-Memory Evolution in Apache Spark
Kazuaki Ishizaki
 
Introduction to Apache Calcite
Introduction to Apache CalciteIntroduction to Apache Calcite
Introduction to Apache Calcite
Jordan Halterman
 
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Spark SQL Catalyst Code Optimization using Function Outlining with Kavana Bha...
Databricks
 
Dongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of FlinkDongwon Kim – A Comparative Performance Evaluation of Flink
Dongwon Kim – A Comparative Performance Evaluation of Flink
Flink Forward
 
Logstash-Elasticsearch-Kibana
Logstash-Elasticsearch-KibanaLogstash-Elasticsearch-Kibana
Logstash-Elasticsearch-Kibana
dknx01
 
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEOTricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Tricks every ClickHouse designer should know, by Robert Hodges, Altinity CEO
Altinity Ltd
 
MySQL Index Cookbook
MySQL Index CookbookMySQL Index Cookbook
MySQL Index Cookbook
MYXPLAIN
 
Adaptive Query Execution: Speeding Up Spark SQL at Runtime
Adaptive Query Execution: Speeding Up Spark SQL at RuntimeAdaptive Query Execution: Speeding Up Spark SQL at Runtime
Adaptive Query Execution: Speeding Up Spark SQL at Runtime
Databricks
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache Calcite
Julian Hyde
 
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Advanced Apache Spark Meetup Project Tungsten Nov 12 2015
Chris Fregly
 

Viewers also liked (9)

Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDBTrading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
MongoDB
 
Indexing
IndexingIndexing
Indexing
Mike Dirolf
 
MongoDB Basic Concepts
MongoDB Basic ConceptsMongoDB Basic Concepts
MongoDB Basic Concepts
MongoDB
 
Availability and scalability in mongo
Availability and scalability in mongoAvailability and scalability in mongo
Availability and scalability in mongo
Md. Khairul Anam
 
Performance Tuning and Optimization
Performance Tuning and OptimizationPerformance Tuning and Optimization
Performance Tuning and Optimization
MongoDB
 
MongoDB: How it Works
MongoDB: How it WorksMongoDB: How it Works
MongoDB: How it Works
Mike Dirolf
 
Inside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source DatabaseInside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source Database
Mike Dirolf
 
Scaling and Transaction Futures
Scaling and Transaction FuturesScaling and Transaction Futures
Scaling and Transaction Futures
MongoDB
 
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
MongoDB
 
Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDBTrading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
Trading up: Adding Flexibility and Scalability to Bouygues Telecom with MongoDB
MongoDB
 
MongoDB Basic Concepts
MongoDB Basic ConceptsMongoDB Basic Concepts
MongoDB Basic Concepts
MongoDB
 
Availability and scalability in mongo
Availability and scalability in mongoAvailability and scalability in mongo
Availability and scalability in mongo
Md. Khairul Anam
 
Performance Tuning and Optimization
Performance Tuning and OptimizationPerformance Tuning and Optimization
Performance Tuning and Optimization
MongoDB
 
MongoDB: How it Works
MongoDB: How it WorksMongoDB: How it Works
MongoDB: How it Works
Mike Dirolf
 
Inside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source DatabaseInside MongoDB: the Internals of an Open-Source Database
Inside MongoDB: the Internals of an Open-Source Database
Mike Dirolf
 
Scaling and Transaction Futures
Scaling and Transaction FuturesScaling and Transaction Futures
Scaling and Transaction Futures
MongoDB
 
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
Developing with the Modern App Stack: MEAN and MERN (with Angular2 and ReactJS)
MongoDB
 
Ad

Similar to Agility and Scalability with MongoDB (20)

Sharding Methods for MongoDB
Sharding Methods for MongoDBSharding Methods for MongoDB
Sharding Methods for MongoDB
MongoDB
 
Scaling MongoDB
Scaling MongoDBScaling MongoDB
Scaling MongoDB
MongoDB
 
Azure DocumentDB Overview
Azure DocumentDB OverviewAzure DocumentDB Overview
Azure DocumentDB Overview
Andrew Liu
 
Python Ireland Conference 2016 - Python and MongoDB Workshop
Python Ireland Conference 2016 - Python and MongoDB WorkshopPython Ireland Conference 2016 - Python and MongoDB Workshop
Python Ireland Conference 2016 - Python and MongoDB Workshop
Joe Drumgoole
 
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag JambhekarC* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
DataStax Academy
 
High Performance, Scalable MongoDB in a Bare Metal Cloud
High Performance, Scalable MongoDB in a Bare Metal CloudHigh Performance, Scalable MongoDB in a Bare Metal Cloud
High Performance, Scalable MongoDB in a Bare Metal Cloud
MongoDB
 
MongoDB Sharding Webinar 2014
MongoDB Sharding Webinar 2014MongoDB Sharding Webinar 2014
MongoDB Sharding Webinar 2014
Dylan Tong
 
Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8
MongoDB
 
MongoDB at Scale
MongoDB at ScaleMongoDB at Scale
MongoDB at Scale
MongoDB
 
Wmware NoSQL
Wmware NoSQLWmware NoSQL
Wmware NoSQL
Murat Çakal
 
Aerospike Hybrid Memory Architecture
Aerospike Hybrid Memory ArchitectureAerospike Hybrid Memory Architecture
Aerospike Hybrid Memory Architecture
Aerospike, Inc.
 
MySQL NDB Cluster 8.0 SQL faster than NoSQL
MySQL NDB Cluster 8.0 SQL faster than NoSQL MySQL NDB Cluster 8.0 SQL faster than NoSQL
MySQL NDB Cluster 8.0 SQL faster than NoSQL
Bernd Ocklin
 
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
Malin Weiss
 
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
Speedment, Inc.
 
Using Spring with NoSQL databases (SpringOne China 2012)
Using Spring with NoSQL databases (SpringOne China 2012)Using Spring with NoSQL databases (SpringOne China 2012)
Using Spring with NoSQL databases (SpringOne China 2012)
Chris Richardson
 
NYJavaSIG - Big Data Microservices w/ Speedment
NYJavaSIG - Big Data Microservices w/ SpeedmentNYJavaSIG - Big Data Microservices w/ Speedment
NYJavaSIG - Big Data Microservices w/ Speedment
Speedment, Inc.
 
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce PlatformMongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB
 
MongoDB: What, why, when
MongoDB: What, why, whenMongoDB: What, why, when
MongoDB: What, why, when
Eugenio Minardi
 
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
Webinar: Enterprise Data Management in the Era of MongoDB and Data LakesWebinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
MongoDB
 
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360
 
Sharding Methods for MongoDB
Sharding Methods for MongoDBSharding Methods for MongoDB
Sharding Methods for MongoDB
MongoDB
 
Scaling MongoDB
Scaling MongoDBScaling MongoDB
Scaling MongoDB
MongoDB
 
Azure DocumentDB Overview
Azure DocumentDB OverviewAzure DocumentDB Overview
Azure DocumentDB Overview
Andrew Liu
 
Python Ireland Conference 2016 - Python and MongoDB Workshop
Python Ireland Conference 2016 - Python and MongoDB WorkshopPython Ireland Conference 2016 - Python and MongoDB Workshop
Python Ireland Conference 2016 - Python and MongoDB Workshop
Joe Drumgoole
 
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag JambhekarC* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
C* Summit 2013: Cassandra at eBay Scale by Feng Qu and Anurag Jambhekar
DataStax Academy
 
High Performance, Scalable MongoDB in a Bare Metal Cloud
High Performance, Scalable MongoDB in a Bare Metal CloudHigh Performance, Scalable MongoDB in a Bare Metal Cloud
High Performance, Scalable MongoDB in a Bare Metal Cloud
MongoDB
 
MongoDB Sharding Webinar 2014
MongoDB Sharding Webinar 2014MongoDB Sharding Webinar 2014
MongoDB Sharding Webinar 2014
Dylan Tong
 
Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8Webinar: High Performance MongoDB Applications with IBM POWER8
Webinar: High Performance MongoDB Applications with IBM POWER8
MongoDB
 
MongoDB at Scale
MongoDB at ScaleMongoDB at Scale
MongoDB at Scale
MongoDB
 
Aerospike Hybrid Memory Architecture
Aerospike Hybrid Memory ArchitectureAerospike Hybrid Memory Architecture
Aerospike Hybrid Memory Architecture
Aerospike, Inc.
 
MySQL NDB Cluster 8.0 SQL faster than NoSQL
MySQL NDB Cluster 8.0 SQL faster than NoSQL MySQL NDB Cluster 8.0 SQL faster than NoSQL
MySQL NDB Cluster 8.0 SQL faster than NoSQL
Bernd Ocklin
 
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
Malin Weiss
 
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
JavaOne2016 - Microservices: Terabytes in Microseconds [CON4516]
Speedment, Inc.
 
Using Spring with NoSQL databases (SpringOne China 2012)
Using Spring with NoSQL databases (SpringOne China 2012)Using Spring with NoSQL databases (SpringOne China 2012)
Using Spring with NoSQL databases (SpringOne China 2012)
Chris Richardson
 
NYJavaSIG - Big Data Microservices w/ Speedment
NYJavaSIG - Big Data Microservices w/ SpeedmentNYJavaSIG - Big Data Microservices w/ Speedment
NYJavaSIG - Big Data Microservices w/ Speedment
Speedment, Inc.
 
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce PlatformMongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB World 2018: Breaking the Mold - Redesigning Dell's E-Commerce Platform
MongoDB
 
MongoDB: What, why, when
MongoDB: What, why, whenMongoDB: What, why, when
MongoDB: What, why, when
Eugenio Minardi
 
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
Webinar: Enterprise Data Management in the Era of MongoDB and Data LakesWebinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
MongoDB
 
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud DatabaseAzure Cosmos DB - The Swiss Army NoSQL Cloud Database
Azure Cosmos DB - The Swiss Army NoSQL Cloud Database
BizTalk360
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 

Recently uploaded (20)

Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Hybridize Functions: A Tool for Automatically Refactoring Imperative Deep Lea...
Raffi Khatchadourian
 
Does Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should KnowDoes Pornify Allow NSFW? Everything You Should Know
Does Pornify Allow NSFW? Everything You Should Know
Pornify CC
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Optima Cyber - Maritime Cyber Security - MSSP Services - Manolis Sfakianakis ...
Mike Mingos
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 

Agility and Scalability with MongoDB

  • 1. MongoDB Scalability and Agility Chris.Biow@MongoDB.com
  • 2. Data Challenge “I want my data...” • Now • Secure • All varieties • Fast and interactive • Scalable to “Big” • Agile to develop and deploy operationally • Cloud and edge 2 iStock licensed (pixelfit)
  • 3. Scalability with MongoDB Metric Meaning Examples Operations per Second 3 Concurrent reads and writes per second > 1 Million per second Nodes per Cluster Horizontal scale-out, distributed to multiple data centers worldwide, with high availability, using inexpensive cloud resources > 1000 nodes Records / Documents Data objects in any number of schemas or structures > 10 billion Data Volume Total amount of data: documents X size > 1 Petabyte = 10^15 = 1,000,000,000,000,000 ≈ 2^50
  • 6. Document Data Model Relational MongoDB 6 { first_name: ‘Paul’, surname: ‘Miller’, city: ‘London’, location: [45.123,47.232], cars: [ { model: ‘Bentley’, year: 1973, value: 100000, … }, { model: ‘Rolls Royce’, year: 1965, value: 330000, … } } }
  • 7. Documents are Rich Data Structures 7 { first_name: ‘Paul’, surname: ‘Miller’, cell: ‘+447557505611’ city: ‘London’, location: [45.123,47.232], Profession: [banking, finance, trader], cars: [ { model: ‘Bentley’, year: 1973, value: 100000, … }, { model: ‘Rolls Royce’, year: 1965, value: 330000, … } } } Fields can contain an array of sub-documents Fields Typed field values Fields can contain arrays
  • 8. Document Model Benefits • Agility and flexibility 8 – Data model supports business change – Rapidly iterate to meet new requirements • Intuitive, natural data representation – Eliminates ORM layer – Developers are more productive • Reduces the need for joins, disk seeks – Programming is more simple – Performance delivered at scale
  • 9. Big Data Tech Interest Comparison 11 j.mp/Ssvpev
  • 10. Enterprise Adoption Comparison 12 bit.ly/1vAI7rF
  • 12. Replica Sets 14 • Replica Set – two or more copies • Availability solution – High Availability – Disaster Recovery – Maintenance • Deployment Flexibility – Data locality to users – Workload isolation: operational & analytics • Self-healing shard Application Driver Primary Secondary Secondary Repl ication
  • 13. Global Data Distribution 16 Real-time Real-time Real-time Real-time Real-time Real-time Real-time Primary Secondary Secondary Secondary Secondary Secondary Secondary Secondary
  • 14. Automatic Sharding • Sharding types 17 • Range • Hash • Tag-aware • Elastic increase or decrease in capacity • Automatic balancing
  • 15. Query Routing • Multiple query optimization models • Each sharding option appropriate for different apps 18
  • 17. Drag Strip: straight ahead, quarter-mile, stop 20
  • 18. Road Race: stay fast, stay agile, continuous 21 Nürburgring, Germany
  • 20. CarFax • Large data set 24
  • 21. 25 Baseline MongoDB Comparison Initial Production • Vehicle History Database • 11 billion records (growing at 1 billion per year) • 30-year-old VMS-based RDBMS • Cumbersome • Costly • Performance: 4x faster than baseline, 10x key-value • Scale out using inexpensive commodity servers • Built-in redundancy • Flexible dynamic schema data model • Strong consistency • Analytics/aggregation • MongoDB is primary data store • 50 servers • 10 shards • 5 node replica sets per shard In-depth NoSQL evaluation
  • 22. CARFAX Sharding and Replication • 13 billion+ documents 26 – 1.5 billion documents added every year • 1 vehicle history report is > 200 documents • 12 Shards • 9-node replica sets • Replicas distributed across 3 data centers
  • 24. 28
  • 25. Foursquare • 50M users. • 6B check-ins to date (6M per day growth). • 55M points of interest / venues. • 1.7M merchants using the platform for marketing • Operations Per Second: 300,000 • Documents: 5.5B (~16.5B with replication).* 29
  • 26. Foursquare clusters • 11 MongoDB clusters 30 – 8 are sharded • Largest cluster for check-ins • 15 shards (check ins) • Shard key user_id
  • 27. Facebook / parse.com mobile apps • Persistent database for 270,000 mobile applications • 200 M end-user mobile devices • 250% annual growth in client apps • 500% growth in requests • 1.5 M collections • Key differentiators: 31 – Document data model – High perf. & avail. – Geospatial query and index • Charity Majors operations: j.mp/X3jVRC – Understand your database and your data, and build for them.
  • 29. Scalability Exercises in the Cloud with Amazon Web Services
  • 30. Petascale Database • 27x hs1.8xlarge instances 35 – 16x VCPU – 24x 2TB SATA drives, RAID0 – 8x mongod microshards • Modified Yahoo Cloud Serving Benchmark (YCSB) – Long Integer IDs (>2B) – Zipfian-distributed integer fields – Aggregation queries • Load direct to 216 shards, 10 days, $4K "objects" : 7,170,648,489, "avgObjSize" : 147,438.99952658816, "dataSize" : NumberLong("1,057,240,224,818,640") (commas added)
  • 31. CGroup Memory Segregation for DB in `seq 0 3`; do sudo cgcreate -a mongodb:mongodb -t mongodb:mongodb -g memory:mongodb$D sudo echo 48G > /sys/fs/cgroup/memory/mongodb$D/memory.limit_in_bytes cgexec -g memory:mongodb$DB numactl –interleave=all mongod –-config ~/mongod$DB.conf done
  • 32. Megawrite Ingest • Ingest 250-byte stock quotes at 2M/s • Concurrently run 5 QPS, subsecond/indexed response on 37 timeStamp, accountId, instrumentId, systemKey • 5x r3.4xlarge – 16x VCPU, 1x 320GB SSD, 122GB RAM, 16x mongod – 2.1M insert/second direct to shards • 16x c3.8xlarge – 32x VCPU, 2x 320GB SSD, 60GB RAM, 16x mongod, 4x mongos – 2.1M insert/second via mongos
  • 33. Java API comparison • 2 threads on c3.8xl • 264 bsonsize object, _id index only • coll.insert() 38 15,600 ins / sec • coll.insert(List<DBObject>) listsize = 64: 118,000 ins / sec • Bulk ops API size = 64: 120,000 ins / sec
  • 34. BulkWriteOperation bo = null; for(a = 0; a < this.items && stayAlive; a++) { if(bo == null) { bo = collection.initializeUnorderedBulkOperation(); } fillMap(this.m); BasicDBObject dbObject = new BasicDBObject(this.m); bo.insert(dbObject); if(0 == a % listsize) { BulkWriteResult rc = bo.execute(); bo = null; } } 7x Load with BulkOp
  • 35. How do I Pick A Shard Key?
  • 36. Shard Key characteristics 41 • A good shard key has: – sufficient cardinality – distributed writes – targeted reads ("query isolation") • Shard key should be in every query if possible – scatter gather otherwise • Choosing a good shard key is important! – affects performance and scalability – changing it later is expensive
  • 37. Hashed shard key 42 • Pros: – Evenly distributed writes • Cons: – Random data (and index) updates can be IO intensive – Range-based queries turn into scatter gather Shard 1 mongos Shard 2 Shard 3 Shard N
  • 38. Low cardinality shard key 43 • Induces "jumbo chunks" • Examples: boolean field Shard 1 mongos Shard 2 Shard 3 Shard N [ a, b )
  • 39. Ascending shard key 44 • Monotonically increasing shard key values cause "hot spots" on inserts • Examples: timestamps, _id Shard 1 mongos [ ISODate(…), $maxKey ) Shard 2 Shard 3 Shard N
  • 40. Ensuring Success with High Scalability
  • 41. Success Factors • Storage: random seeks (IOPS) • RAM: working set based on query patterns • Query: indexing • Delete: most expensive operation • Real-time vs. bulk operations • Continuity: HA, DR, backup, restore • Agile process: iterate by powers of 4 • Sharding: shard key and strategy • Resources: don’t go it alone! 46
  翻译: