Lane detection systems play a critical role in ensuring safe and secure driving by alerting the driver of lane departures. Lane detection may also save passengers' lives if they go off the road owing to driver distraction. The article presents a three-step approach for detecting lanes on high-speed video pictures in real-time and invariant lighting. The first phase involves doing appropriate prepossessing, such as noise reduction, RGB to grey-scale conversion, and binarizing the input picture. Then, a polygon area in front of the vehicle is picked as the zone of interest to accelerate processing. Finally, the edge detection technique is used to acquire the image's edges in the area of interest, and the Hough transform is used to identify lanes on both sides of the vehicle. The suggested approach was implemented using the IROADS database as a data source. The recommended method is effective in various daylight circumstances, including sunny, snowy, and rainy days, as well as inside tunnels. The proposed approach processes frame on average in 28 milliseconds and have a detection accuracy of 96.78 per cent, as shown by implementation results. This article aims to provide a simple technique for identifying road lines on high-speed video pictures utilizing the edge feature.