Prediction of student performance has become an essential issue for improving the educational system. However, this has turned to be a challenging task due to the huge quantity of data in the educational environment. Educational data mining is an emerging field that aims to develop techniques to manipulate and explore the sizable educational data. Classification is one of the primary approaches of the educational data mining methods that is the most widely used for predicting student performance and characteristics. In this work, three linear classification techniques; logistic regression, support vector machines (SVM), and stochastic gradient descent (SGD), and three nonlinear classification methods; decision tree, random forest and adaptive boosting (AdaBoost) are explored and evaluated on a dataset of ASSISTment system. A k-fold cross validation method is used to evaluate the implemented techniques. The results demonstrate that decision tree algorithm outperforms the other techniques, with an average accuracy of 0.7254, an average sensitivity of 0.8036 and an average specificity of 0.901. Furthermore, the importance of the utilized features is obtained and the system performance is computed using the most significant features. The results reveal that the best performance is reached using the first 80 important features with accuracy, sensitivity and specificity of 0.7252, 0.8042 and 0.9016, respectively.