There are subsets of genes that have similar behavior under subsets of conditions, so we say that they
coexpress, but behave independently under other subsets of conditions. Discovering such coexpressions can
be helpful to uncover genomic knowledge such as gene networks or gene interactions. That is why, it is of
utmost importance to make a simultaneous clustering of genes and conditions to identify clusters of genes
that are coexpressed under clusters of conditions. This type of clustering is called biclustering.
Biclustering is an NP-hard problem. Consequently, heuristic algorithms are typically used to approximate
this problem by finding suboptimal solutions. In this paper, we make a new survey on clustering and
biclustering of gene expression data, also called microarray data.