SlideShare a Scribd company logo
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 4 Issue 9 || November. 2016 || PP-27-31
www.ijmsi.org 27 | Page
A Common Fixed Point Theorem on Fuzzy Metric Space Using
Weakly Compatible and Semi-Compatible Mappings
V.Srinivas1
*, B.Vijayabasker Reddy2
1
Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad,
Telangana, India.
2
Department of Mathematics, Sreenidhi Institute of Science and Technology, Ghatkesar-501 301, Telangana,
India.
ABSTRACT: The aim of this paper is to prove a fixed point theorem in a complete fuzzy metric space using six
self maps. We prove our theorem with the concept of weakly compatible mappings and semi-compatible
mappings in complete fuzzy metric space.
KEYWORDS: Fixed point, self maps, complete fuzzy metric space, semi-compatible mappings, weakly
compatible mappings.
AMS (2000) Mathematics Classification: 54H25, 47H10
I. INTRODUCTION AND PRELIMINARIES
Introduction: The concept of Fuzzy sets was introduced by Zadeh[14]. Following the concept of fuzzy sets,
fuzzy metric space initiated by Kramosil and Michalek.George and veeramani[5] modified the notion of fuzzy
metric spaces with the help of continuous-t norm. Recently, many others proved fixed points theorems involving
weaker forms of the compatible mappings in fuzzy metric space.Jungck and Rhoads[3] defined the concept of
weakly compatible mappings.Also B.Singh and S.Jain[2] introduced the notion of semi-compatible mappings in
fuzzy metric space.
Definition 1.1[1]: A binary operation * :[0,1][0,1] [0,1] is called continuous t-norm if * satisfies the
following conditions:
(i) * is commutative and associative
(ii) * is continuous
(iii) a*1=a for all a∈[0,1]
(iv) a*b ≤ c*d whenever a ≤c and b≤ d for all a, b,c,d [0,1]
Definition 1.2[1]: A 3-tuple (X, M,*) is said to be fuzzy metric space if X is an arbitrary set,* is continuous t-
norm and M is a fuzzy set on X2
(0,∞) satisfying the following conditions for all x,y,zX, s,t0
(FM-1) M(x,y,0)=0
(FM-2) M(x,y,t)=1 for all t>0 if and only if x=y
(FM-3) M(x,y,t)= M(y,x,t)
(FM-4) M(x,y,t) * M(y,z,s) ≤ M(x,z,t+s)
(FM-5) M(x,y,.) : [0,∞) →[0,1] is left continuous
(FM-6) lim ( , , ) 1
 

t
M x y t
Example 1.3 (Induced fuzzy metric space)[1]: Let (X, d) be a metric space defined a*b=min{a,b} for all x,y∈X
and t>0,
( , , ) ( )
( , )
t
M x y t a
t d x y
    

Then (X, M,*) is a fuzzy metric space. We call this fuzzy metric M induced by metric d is the standard fuzzy
metric. From the above example every metric induces a fuzzy metric but there exist no metric on X satisfying
(a).
Definition 1.4 [1]: Let (X, M,*) be a fuzzy metric space then a sequence <xn> in X is said to be convergent to
int lim ( , , ) 1 0.
 
  n
n
a po x X if M x x t for all t
Definition1.5 [1]: A sequence <xn> in X is called a Cauchy sequence if
lim ( , , ) 1 0 0.n p n
n
M x x t for all t and p
 
  
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and …
www.ijmsi.org 28 | Page
Definition 1.6 [1]: A fuzzy metric space (X, M,*) is said to be complete if every Cauchy sequence is
convergent to a point in X.
Lemma 1.7 [6] : For all x,yX, M(x,y,.) is non decreasing.
Lemma 1.8 [11] : Let (X,M,*)be a fuzzy metric space if there exists k(0,1) such that M(x,y,kt)≥M(x,y,t) then
x=y.
Proposition 1.9 [11] : In the fuzzy metric space (X, M,*) if a*a≥a for all a[0,1] then a*b= min{a,b}
Definition 1.10 [12]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be compatible
mappings if
n
lim M(STxn,TSxn,t )=1, whenever <xn> is a sequence in X such that
n
lim Sxn=
n
lim Txn= z for
some z∈X.
Definition 1.11[2]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be semi-compatible
mappings if
n
lim M(STxn,Tz,t )=1, whenever <xn> is a sequence in X such that
n
lim Sxn=
n
lim Txn= z for
some z∈X.
Definition 1.12 [3]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be weakly compatible if
they commute at their coincidence point. i.e if Su=Tu for some u∈X then STu=TSu.
II. MAIN RESULT
2.1 Theorem: Let A, B, P,Q ,S and T be self maps of a complete fuzzy metric space (X, M , *) satisfying the
conditions,
2.1.1 AP(X)  T(X) and BQ(X)  S(X).
2.1.2 The pairs (AP, S) is semi-compatible and (BQ,T) are weakly compatible.
2.1.3 M APx, BQy, kt 2
∗ M APx, BQy, kt M Ty, Sx, kt
≥
k1 M BQy, Sx, 2kt ∗ M APx, Ty, 2kt
+k2 M APx, Sx, kt ∗ M(BQy, Ty, kt
M(Ty, Sx, t)
for all x, y in X where k1, k2 ≥ 0, k1 + k2 ≥ 1
2.1.4 AP is continuous mapping.
then A,P, B,Q, S and T have a unique common fixed point in X.
Now we prove a Lemma
2.1.5 Lemma: Let A,P,B,Q, S and T be self mappings from a complete fuzzy metric space (X,M,*) into itself
satisfying the conditions 2.1.1 and 2.1.3 then the sequence yn defined by y2n=APx2n=Tx2n+1 and
y2n+1=BQx2n+1=Sx2n+2 for n0 relative to four self maps is a Cauchy sequence in X.
Proof: From the conditions 2.1.1 and 2.1.3 and from the definition of iterative sequence we have let x0 be
arbitrary point of X,AP(X)T(X) and BQ(X)S(X) there exists x1,x2X such that APx0=Tx1 and BQx1=Sx2.
Inductively construct a sequence xn and yn in X such that y2n=APx2n=Tx2n+1 and y2n+1=BQx2n+1=Sx2n+2 for
n0.
By taking x=x2n, y=x2n+1 in the inequality 2.1.3 then we get,
M APx2n, BQx2n+1, kt 2
∗ [M APx2n,BQx2n+1,kt M Tx2n+1, Sx2n, kt ]

k1 M BQx2n+1, Sx2n, 2kt ∗ M(APx2n, Tx2n+1, 2kt +
k2 M APx2n, Sx2n, kt ∗ M BQx2n+1, Tx2n+1, kt
M(Tx2n+1, Sx2n, t)
M y2n, y2n+1, kt 2
∗ [M y2n,y2n+1,kt M y2n, y2n−1, kt ]

k1 M y2n+1, y2n−1, 2kt ∗ M(y2n, y2n, 2kt +
k2 M y2n, y2n−1, kt ∗ M y2n+1, y2n, kt
M(y2n, y2n−1, t)
this implies
M(y2n, y2n+1,, kt) M y2n, y2n+1, kt ∗ M(y2n, y2n−1, kt)
≥
k1 M(y2n+1, y2n−1, 2kt) +
k2 M y2n, y2n−1, kt ∗ M y2n+1, y2n, kt
M(y2n, y2n−1, t) and
M y2n, y2n+1, kt M(y2n+1, y2n−1, 2kt
≥ k1 M(y2n+1, y2n−1, 2kt + k2 M(y2n−1, y2n+1, 2kt) M y2n, y2n−1, t
M y2n, y2n+1, kt M y2n+1, y2n−1, 2kt
≥ k1 + k2 M(y2n+1, y2n−1, 2kt M(y2n, y2n−1, t
This gives
M(y2n, y2n+1, kt) ≥ k1 + k2 M(y2n−1, y2n, t)
Since k1 + k2 ≥ 1
M(y2n, y2n+1, kt) ≥ M(y2n−1, y2n, t)
this implies M(yn, yn+1, kt) ≥ M(yn−1, yn, t)
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and …
www.ijmsi.org 29 | Page
Continuing in this process we get
M yn, yn+1,t ≥ M yn−1, yn,
t
k
≥ M yn−1, yn,
t
k2 ≥ M yn−1, yn,
t
k3 …
… . ≥ M yn−1, yn,
t
kn
And this implies M yn, yn+1, t → 1 as n → ∞.
Now for each >0 and t>0 we can choose n0N such that
M yn, yn+1, t > 1 − ε for m, n N. Suppose m  n
M(yn, ym , t) ≥
M yn, yn+1,
t
m−n
∗ M yn+1, yn+2,
t
m−n
∗ …
∗ M ym−1, ym ,
t
m−n
(1-)*(1-)*…..(1-)
(1-)
this shows that the sequence 𝑦𝑛 is a Cauchy sequence in complete fuzzy metric space X and hence it
converges to a limit, say zX
Proof of theorem 2.1:
From the Lemma APx2n → z , Tx2n+1 → z , BQx2n+1 → z, Sx2n+2 → z as n∞
Since AP is continuous AP(Sx2n+2) → 𝑧 and AP(APSx2n) → APz as n→∞
Also since the pair (AP,S) is semi-compatible implies AP(Sx2n+2) → Sz as n→∞ therefore APz=Sz.
Put x= z, y=x2n+1 in the inequality 2.1.3 then, we get
M APz, BQx2n+1, kt 2
∗ M APz, BQx2n+1, kt M Tx2n+1 , Sz, kt
≥
k1 M BQx2n+1, Sz, 2kt ∗ M APz, Tx2n+1, 2kt
+k2 M APz, Sz, kt ∗ M(BQx2n+1, Tx2n+1, kt)
M(Tx2n+1, Sz, t)
M APz, z, kt 2
∗ M APz, z, kt M z , APz, kt
≥
k1 M z, APz, 2kt ∗ M APz, z, 2kt
+k2 M APz, APz, kt ∗ M(z, z, kt)
M(z, APz, t)
M APz, z, kt 2
≥
k1 M z, APz, 2kt
+k2 1
M(z, APz, t)
M APz, z, kt ≥ k1M APz, z, kt +k2
1 − k1 M APz, z, kt ≥ k2
M APz, z, kt ≥
k2
1 − k1
≥ 1
Implies APz=Sz=z
Also from the condition AP(X)T(X) , there exists wX such that APz=Tw=z.
Now to prove BQw=z
Put x= z , y=w in the inequality 2.1.3 then, we get
M APz, BQw, kt 2
∗ M APz, BQw, kt M Tw , Sz, kt
≥
k1 M BQw, Sz, 2kt ∗ M APz, Tw, 2kt
+k2 M APz, Sz, kt ∗ M(BQw, Tw, kt)
M(Tw, Sz, t)
M z, BQw, kt 2
∗ M z, BQw, kt M z , z, kt
≥
k1 M BQw, z, 2kt ∗ M z, z, 2kt
+k2 M z, z, kt ∗ M(BQw, z, kt)
M(z, z, t)
this implies
M z, BQw, kt 2
≥
k1 M BQw, z, 2kt
+k2 M(BQw, z, kt)
M z, BQw, kt 2
≥
k1 M BQw, z, kt
+k2 M(BQw, z, kt)
M z, BQw, kt ≥ k1 + k1 ≥ 1 implies
BQw=z
Hence BQw=Tw=z.
Now the pair (BQ,T) is weakly compatible implies BQ(Tw)=T(BQ)w and this gives BQz=Tz.
Put x=z,y=z in the inequality 2.1.3 then, we get
M APz, BQz, kt 2
∗ M APz, BQz, kt M Tz , Sz, kt
≥
k1 M BQz, Sz, 2kt ∗ M APz, Tz, 2kt
+k2 M APz, Sz, kt ∗ M(BQz, Tz, kt)
M(Tz, Sz, t)
M z, BQz, kt 2
∗ M z, BQw, kt M BQz , z, kt
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and …
www.ijmsi.org 30 | Page
≥
k1 M BQz, z, 2kt ∗ M z, BQ, 2kt
+k2 M z, z, kt ∗ M(BQz, BQz, kt)
M(BQz, z, t)
this implies
M z, BQz, kt 2
≥
k1 M BQz, z, kt
+k2 1
M(BQz, z, t)
M z, BQz, kt (1 − k1) ≥ k2
M z, BQz, kt ≥
k2
1 − k1
≥ 1
Implies BQz=z.
Put x=Pz and y=z in the inequality 2.1.3 then, we get
M AP(Pz), BQz, kt 2
∗ M AP(Pz), BQz, kt M Tz , S(Pz), kt
≥
k1 M BQz, S Pz , 2kt ∗ M AP Pz , Tz, 2kt
+k2 M AP Pz , S Pz , kt ∗ M BQz, Tz, kt
M(Tz, S(Pz), t)
M Pz, z, kt 2
∗ M Pz, z, kt M z , Pz, kt
≥
k1 M z, Pz, 2kt ∗ M Pz, z, 2kt
+k2 M Pz, Pz, kt ∗ M(z, z, kt)
M(z, Pz, t)
this implies
M Pz, z, kt 2
≥
k1 M Pz, z, kt
+k2 1
M(z, Pz, t)
M Pz, z, kt (1 − k1) ≥ k2
M Pz, z, kt ≥
k2
1−k1
≥ 1 implies Pz=z then
APz=z gives A[P(z)]=z consequently Az=z.
Put x=z and y=Qz in the inequality 2.1.3 then, we get
Put x=z,y=Qz in the inequality 2.1.3 then, we get
M APz, BQ(Qz), kt 2
∗ M APz, BQ(Qz), kt M T(Qz) , Sz, kt
≥
k1 M BQ Qz , Sz, 2kt ∗ M APz, T Qz , 2kt
+k2 M APz, Sz, kt ∗ M BQ Qz , T Qz , kt
M(T(Qz), Sz, t)
M z, Qz, kt 2
∗ M z, Qz, kt M Qz , z, kt
≥
k1 M Qz, z, 2kt ∗ M z, Qz, 2kt
+k2 M z, z, kt ∗ M(Qz, Qz, kt)
M(Qz, z, t)
this implies
M z, Qz, kt 2
≥
k1 M Qz, z, kt
+k2 1
M(Qz, z, t)
M Qz, z, kt (1 − k1) ≥ k2
M Qz, z, kt ≥
k2
1−k1
≥ 1 this implies Qz=z then
BQz=z gives B[Q(z)]=z consequently Bz=z.
Therefore Az=Bz=Qz=Pz=Tz=Sz=z.
Uniqueness:Let z∗
≠ z be the another fixed point of the mappings A,B,P,Q,S and T then
Az*=Bz*=Pz*=Qz*=Sz*=Tz*=z*.
Put x=z and y=z* in the inequality 2.1.3 then, we get
Put x=z,y=z*
M APz, BQz∗
, kt 2
∗ M APz, BQz∗
, kt M Tz∗
, Sz, kt
≥
k1 M BQz∗
, Sz, 2kt ∗ M APz, Tz∗
, 2kt
+k2 M APz, Sz, kt ∗ M(BQz∗
, Tz∗
, kt)
M(Tz∗
, Sz, t)
M z, z∗
, kt 2
∗ M z, z∗
, kt M z∗
, z, kt
≥
k1 M z∗
, z, 2kt ∗ M z, z∗
, 2kt
+k2 M z, z, kt ∗ M(z∗
, z∗
, kt)
M(z∗
, z, t)
this implies
M z, z∗
, kt 2
≥
k1 M z∗
, z, kt
+k2 1
M(z∗
, z, t)
M z, z∗
, kt ≥
k2
1 − k1
≥ 1
Implies z*=z.
Hence the self mappings A,B,S,T,P, and Q has a unique common fixed point.
A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and …
www.ijmsi.org 31 | Page
REFERENCES
[1] A George , P Veeramani , On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 1994, 395-399.
[2] B Singh , S Jain ,Semi –compatible and fixed point theorems in fuzzy metric space , Chungcheong Math. Soc. 18, 2005, 1-22.
[3] G Jungck , and B E Rhoads , Fixed point for set valued function without continuity ,Indian J.Pure and Appl.Math.29(3),1998,227-
238
[4] G Jungck , Compatible mappings and common fixed points , Internet.J.Math & Math. Sci. , 9(4), 1986, 771-779.
[5] Ivan Kramosil and Michalek, ”Fuzzy Metrics and Statistical Metric Spaces” Kybernetika, 11, 1975,336-334
[6] M Grabiec , Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 1988, 385-389.
[7] P.Balasubramaniam ,S. Murali Sankar S & R.P Pant , Common fixed points of four mappings in fuzzy metric space, J.Fuzzy Math.
10(2), 2002, 379-384
[8] R.P.Pant & K. Jha , A remark on, Common fixed points of four mappings in a fuzzy metric space, J.Fuzzy Math.12 (2),2004,433-
437.
[9] S Kutukcu , S Sharma & H A Tokgoz ,A fixed point theorem in fuzzy metric spaces, Int. J. Math. Analysis, 1(18), 2007 , 861-872.
[10] S N Mishra ,N Sharma &S L Singh , Common fixed points of mappings on fuzzy metric spaces, Internet .J.Math &Math
.Sci,17,1994, 253-258.
[11] S.Sharma , Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125,2001, 1-8.
[12] Y J Cho, H K Pathak , S M Kang &J S Jung , Common fixed point of compatible maps of type β on fuzzy metric spaces, Fuzzy sets
and Systems, 93,1998, 99-111.
[13] V Srinivas,B.V.B.Reddy,R.Umamaheswarrao,A Common fixed point Theorem on Fuzzy metric Spaces,Kathmandu University
journal of Science , Engineering and Technology,8 (II),2012,77-82.
[14] L .A Zadeh L, Fuzzy Sets, Information and Control,8,1965,338-353
Ad

More Related Content

What's hot (20)

On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spacesOn fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
Alexander Decker
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
The Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal FunctionThe Gaussian Hardy-Littlewood Maximal Function
The Gaussian Hardy-Littlewood Maximal Function
Radboud University Medical Center
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
JamesMa54
 
TMYM - ASU seminar 03:27:2015
TMYM - ASU seminar 03:27:2015TMYM - ASU seminar 03:27:2015
TMYM - ASU seminar 03:27:2015
Tuna Yildirim
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
JamesMa54
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
Rene Kotze
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Rene Kotze
 
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
IRJET Journal
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
JamesMa54
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
Alexander Decker
 
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
iosrjce
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
paperpublications3
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
Rene Kotze
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
mathsjournal
 
Proof of Beal's conjecture
Proof of Beal's conjecture Proof of Beal's conjecture
Proof of Beal's conjecture
nikos mantzakouras
 
S. Duplij. Polyadic algebraic structures and their applications
S. Duplij. Polyadic algebraic structures and their applicationsS. Duplij. Polyadic algebraic structures and their applications
S. Duplij. Polyadic algebraic structures and their applications
Steven Duplij (Stepan Douplii)
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
foxtrot jp R
 
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spacesOn fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
Alexander Decker
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
JamesMa54
 
TMYM - ASU seminar 03:27:2015
TMYM - ASU seminar 03:27:2015TMYM - ASU seminar 03:27:2015
TMYM - ASU seminar 03:27:2015
Tuna Yildirim
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
JamesMa54
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
Rene Kotze
 
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Dr. Arpan Bhattacharyya (Indian Institute Of Science, Bangalore)
Rene Kotze
 
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
IRJET Journal
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
JamesMa54
 
Problem for the gravitational field
 Problem for the gravitational field Problem for the gravitational field
Problem for the gravitational field
Alexander Decker
 
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...Connected Total Dominating Sets and Connected Total Domination Polynomials of...
Connected Total Dominating Sets and Connected Total Domination Polynomials of...
iosrjce
 
On the Zeros of Polar Derivatives
On the Zeros of Polar DerivativesOn the Zeros of Polar Derivatives
On the Zeros of Polar Derivatives
paperpublications3
 
Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)Prof. Rob Leigh (University of Illinois)
Prof. Rob Leigh (University of Illinois)
Rene Kotze
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
mathsjournal
 
S. Duplij. Polyadic algebraic structures and their applications
S. Duplij. Polyadic algebraic structures and their applicationsS. Duplij. Polyadic algebraic structures and their applications
S. Duplij. Polyadic algebraic structures and their applications
Steven Duplij (Stepan Douplii)
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
Shane Nicklas
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
foxtrot jp R
 

Viewers also liked (13)

Bakhtine le marxisme et la philosophie du langage
Bakhtine   le marxisme et la philosophie du langageBakhtine   le marxisme et la philosophie du langage
Bakhtine le marxisme et la philosophie du langage
kamal kamal
 
บทที่ 1 แมวจรจัด
บทที่ 1 แมวจรจัดบทที่ 1 แมวจรจัด
บทที่ 1 แมวจรจัด
View Nudchanad
 
Social networking brings power
Social networking brings powerSocial networking brings power
Social networking brings power
Gregg Barrett
 
SERVICIOS EXPORTAR
SERVICIOS EXPORTARSERVICIOS EXPORTAR
SERVICIOS EXPORTAR
WSys Servicios
 
Css
CssCss
Css
Boris Salleg
 
Anteceden..
Anteceden..Anteceden..
Anteceden..
Alberto Monroy
 
Presentación1 fede rametta
Presentación1  fede ramettaPresentación1  fede rametta
Presentación1 fede rametta
marcelasuarez16
 
Robotica y Domotica.
Robotica y Domotica.Robotica y Domotica.
Robotica y Domotica.
maariiluu
 
ÁFrica
ÁFricaÁFrica
ÁFrica
harlissoncarvalho
 
Agricultural Applications - Marketing Overview November16
Agricultural Applications - Marketing Overview November16Agricultural Applications - Marketing Overview November16
Agricultural Applications - Marketing Overview November16
Pedro Paulo Gonçalves, MBA
 
1º reinado
1º reinado1º reinado
1º reinado
harlissoncarvalho
 
Uniandes riesgos de auditoria
Uniandes riesgos de auditoriaUniandes riesgos de auditoria
Uniandes riesgos de auditoria
Kelly Ramirez
 
Software libre en educación.
Software libre en educación.Software libre en educación.
Software libre en educación.
Fernando Sanjuan
 
Bakhtine le marxisme et la philosophie du langage
Bakhtine   le marxisme et la philosophie du langageBakhtine   le marxisme et la philosophie du langage
Bakhtine le marxisme et la philosophie du langage
kamal kamal
 
บทที่ 1 แมวจรจัด
บทที่ 1 แมวจรจัดบทที่ 1 แมวจรจัด
บทที่ 1 แมวจรจัด
View Nudchanad
 
Social networking brings power
Social networking brings powerSocial networking brings power
Social networking brings power
Gregg Barrett
 
Presentación1 fede rametta
Presentación1  fede ramettaPresentación1  fede rametta
Presentación1 fede rametta
marcelasuarez16
 
Robotica y Domotica.
Robotica y Domotica.Robotica y Domotica.
Robotica y Domotica.
maariiluu
 
Agricultural Applications - Marketing Overview November16
Agricultural Applications - Marketing Overview November16Agricultural Applications - Marketing Overview November16
Agricultural Applications - Marketing Overview November16
Pedro Paulo Gonçalves, MBA
 
Uniandes riesgos de auditoria
Uniandes riesgos de auditoriaUniandes riesgos de auditoria
Uniandes riesgos de auditoria
Kelly Ramirez
 
Software libre en educación.
Software libre en educación.Software libre en educación.
Software libre en educación.
Fernando Sanjuan
 
Ad

Similar to A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and Semi-Compatible Mappings (20)

Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
iosrjce
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
inventionjournals
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Alexander Decker
 
On fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spacesOn fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spaces
Alexander Decker
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Alexander Decker
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
IJERA Editor
 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
mathsjournal
 
A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...
Alexander Decker
 
A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...
Alexander Decker
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
Andy Hone
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systems
Springer
 
Complete l fuzzy metric spaces and common fixed point theorems
Complete l fuzzy metric spaces and  common fixed point theoremsComplete l fuzzy metric spaces and  common fixed point theorems
Complete l fuzzy metric spaces and common fixed point theorems
Alexander Decker
 
research paper publication
research paper publicationresearch paper publication
research paper publication
samuu45sam
 
Maths05
Maths05Maths05
Maths05
sansharmajs
 
Fixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space throughFixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space through
Alexander Decker
 
02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf
BRNSS Publication Hub
 
02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf02_AJMS_186_19_RA.pdf
02_AJMS_186_19_RA.pdf
BRNSS Publication Hub
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
Alexander Decker
 
41-50
41-5041-50
41-50
Anita Gupta
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
iosrjce
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
inventionjournals
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Alexander Decker
 
On fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spacesOn fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spaces
Alexander Decker
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Alexander Decker
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
IJERA Editor
 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
mathsjournal
 
A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...
Alexander Decker
 
A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...A common fixed point theorems in menger space using occationally weakly compa...
A common fixed point theorems in menger space using occationally weakly compa...
Alexander Decker
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
Andy Hone
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systems
Springer
 
Complete l fuzzy metric spaces and common fixed point theorems
Complete l fuzzy metric spaces and  common fixed point theoremsComplete l fuzzy metric spaces and  common fixed point theorems
Complete l fuzzy metric spaces and common fixed point theorems
Alexander Decker
 
research paper publication
research paper publicationresearch paper publication
research paper publication
samuu45sam
 
Fixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space throughFixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space through
Alexander Decker
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
Alexander Decker
 
Ad

Recently uploaded (20)

Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation RateModeling the Influence of Environmental Factors on Concrete Evaporation Rate
Modeling the Influence of Environmental Factors on Concrete Evaporation Rate
Journal of Soft Computing in Civil Engineering
 
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdfML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
rameshwarchintamani
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
Using the Artificial Neural Network to Predict the Axial Strength and Strain ...
Using the Artificial Neural Network to Predict the Axial Strength and Strain ...Using the Artificial Neural Network to Predict the Axial Strength and Strain ...
Using the Artificial Neural Network to Predict the Axial Strength and Strain ...
Journal of Soft Computing in Civil Engineering
 
Lecture - 7 Canals of the topic of the civil engineering
Lecture - 7  Canals of the topic of the civil engineeringLecture - 7  Canals of the topic of the civil engineering
Lecture - 7 Canals of the topic of the civil engineering
MJawadkhan1
 
2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt
rakshaiya16
 
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjjseninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
AjijahamadKhaji
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 
Agents chapter of Artificial intelligence
Agents chapter of Artificial intelligenceAgents chapter of Artificial intelligence
Agents chapter of Artificial intelligence
DebdeepMukherjee9
 
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdfATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ssuserda39791
 
Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
Working with USDOT UTCs: From Conception to Implementation
Working with USDOT UTCs: From Conception to ImplementationWorking with USDOT UTCs: From Conception to Implementation
Working with USDOT UTCs: From Conception to Implementation
Alabama Transportation Assistance Program
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
Design of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdfDesign of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdf
Kamel Farid
 
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
22PCOAM16 ML Unit 3 Full notes PDF & QB.pdf
Guru Nanak Technical Institutions
 
Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning ModelsMode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Journal of Soft Computing in Civil Engineering
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdfML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
ML_Unit_V_RDC_ASSOCIATION AND DIMENSIONALITY REDUCTION.pdf
rameshwarchintamani
 
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software ApplicationsJacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia - Excels In Optimizing Software Applications
Jacob Murphy Australia
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
Lecture - 7 Canals of the topic of the civil engineering
Lecture - 7  Canals of the topic of the civil engineeringLecture - 7  Canals of the topic of the civil engineering
Lecture - 7 Canals of the topic of the civil engineering
MJawadkhan1
 
2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt
rakshaiya16
 
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjjseninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
seninarppt.pptx1bhjiikjhggghjykoirgjuyhhhjj
AjijahamadKhaji
 
Uses of drones in civil construction.pdf
Uses of drones in civil construction.pdfUses of drones in civil construction.pdf
Uses of drones in civil construction.pdf
surajsen1729
 
Agents chapter of Artificial intelligence
Agents chapter of Artificial intelligenceAgents chapter of Artificial intelligence
Agents chapter of Artificial intelligence
DebdeepMukherjee9
 
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdfATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ATAL 6 Days Online FDP Scheme Document 2025-26.pdf
ssuserda39791
 
Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
Design of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdfDesign of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdf
Kamel Farid
 
Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025Transport modelling at SBB, presentation at EPFL in 2025
Transport modelling at SBB, presentation at EPFL in 2025
Antonin Danalet
 
Evonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdfEvonik Overview Visiomer Specialty Methacrylates.pdf
Evonik Overview Visiomer Specialty Methacrylates.pdf
szhang13
 

A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and Semi-Compatible Mappings

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 4 Issue 9 || November. 2016 || PP-27-31 www.ijmsi.org 27 | Page A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and Semi-Compatible Mappings V.Srinivas1 *, B.Vijayabasker Reddy2 1 Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India. 2 Department of Mathematics, Sreenidhi Institute of Science and Technology, Ghatkesar-501 301, Telangana, India. ABSTRACT: The aim of this paper is to prove a fixed point theorem in a complete fuzzy metric space using six self maps. We prove our theorem with the concept of weakly compatible mappings and semi-compatible mappings in complete fuzzy metric space. KEYWORDS: Fixed point, self maps, complete fuzzy metric space, semi-compatible mappings, weakly compatible mappings. AMS (2000) Mathematics Classification: 54H25, 47H10 I. INTRODUCTION AND PRELIMINARIES Introduction: The concept of Fuzzy sets was introduced by Zadeh[14]. Following the concept of fuzzy sets, fuzzy metric space initiated by Kramosil and Michalek.George and veeramani[5] modified the notion of fuzzy metric spaces with the help of continuous-t norm. Recently, many others proved fixed points theorems involving weaker forms of the compatible mappings in fuzzy metric space.Jungck and Rhoads[3] defined the concept of weakly compatible mappings.Also B.Singh and S.Jain[2] introduced the notion of semi-compatible mappings in fuzzy metric space. Definition 1.1[1]: A binary operation * :[0,1][0,1] [0,1] is called continuous t-norm if * satisfies the following conditions: (i) * is commutative and associative (ii) * is continuous (iii) a*1=a for all a∈[0,1] (iv) a*b ≤ c*d whenever a ≤c and b≤ d for all a, b,c,d [0,1] Definition 1.2[1]: A 3-tuple (X, M,*) is said to be fuzzy metric space if X is an arbitrary set,* is continuous t- norm and M is a fuzzy set on X2 (0,∞) satisfying the following conditions for all x,y,zX, s,t0 (FM-1) M(x,y,0)=0 (FM-2) M(x,y,t)=1 for all t>0 if and only if x=y (FM-3) M(x,y,t)= M(y,x,t) (FM-4) M(x,y,t) * M(y,z,s) ≤ M(x,z,t+s) (FM-5) M(x,y,.) : [0,∞) →[0,1] is left continuous (FM-6) lim ( , , ) 1    t M x y t Example 1.3 (Induced fuzzy metric space)[1]: Let (X, d) be a metric space defined a*b=min{a,b} for all x,y∈X and t>0, ( , , ) ( ) ( , ) t M x y t a t d x y       Then (X, M,*) is a fuzzy metric space. We call this fuzzy metric M induced by metric d is the standard fuzzy metric. From the above example every metric induces a fuzzy metric but there exist no metric on X satisfying (a). Definition 1.4 [1]: Let (X, M,*) be a fuzzy metric space then a sequence <xn> in X is said to be convergent to int lim ( , , ) 1 0.     n n a po x X if M x x t for all t Definition1.5 [1]: A sequence <xn> in X is called a Cauchy sequence if lim ( , , ) 1 0 0.n p n n M x x t for all t and p     
  • 2. A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and … www.ijmsi.org 28 | Page Definition 1.6 [1]: A fuzzy metric space (X, M,*) is said to be complete if every Cauchy sequence is convergent to a point in X. Lemma 1.7 [6] : For all x,yX, M(x,y,.) is non decreasing. Lemma 1.8 [11] : Let (X,M,*)be a fuzzy metric space if there exists k(0,1) such that M(x,y,kt)≥M(x,y,t) then x=y. Proposition 1.9 [11] : In the fuzzy metric space (X, M,*) if a*a≥a for all a[0,1] then a*b= min{a,b} Definition 1.10 [12]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be compatible mappings if n lim M(STxn,TSxn,t )=1, whenever <xn> is a sequence in X such that n lim Sxn= n lim Txn= z for some z∈X. Definition 1.11[2]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be semi-compatible mappings if n lim M(STxn,Tz,t )=1, whenever <xn> is a sequence in X such that n lim Sxn= n lim Txn= z for some z∈X. Definition 1.12 [3]: Two self maps S and T of a fuzzy metric space (X,M,*) are said to be weakly compatible if they commute at their coincidence point. i.e if Su=Tu for some u∈X then STu=TSu. II. MAIN RESULT 2.1 Theorem: Let A, B, P,Q ,S and T be self maps of a complete fuzzy metric space (X, M , *) satisfying the conditions, 2.1.1 AP(X)  T(X) and BQ(X)  S(X). 2.1.2 The pairs (AP, S) is semi-compatible and (BQ,T) are weakly compatible. 2.1.3 M APx, BQy, kt 2 ∗ M APx, BQy, kt M Ty, Sx, kt ≥ k1 M BQy, Sx, 2kt ∗ M APx, Ty, 2kt +k2 M APx, Sx, kt ∗ M(BQy, Ty, kt M(Ty, Sx, t) for all x, y in X where k1, k2 ≥ 0, k1 + k2 ≥ 1 2.1.4 AP is continuous mapping. then A,P, B,Q, S and T have a unique common fixed point in X. Now we prove a Lemma 2.1.5 Lemma: Let A,P,B,Q, S and T be self mappings from a complete fuzzy metric space (X,M,*) into itself satisfying the conditions 2.1.1 and 2.1.3 then the sequence yn defined by y2n=APx2n=Tx2n+1 and y2n+1=BQx2n+1=Sx2n+2 for n0 relative to four self maps is a Cauchy sequence in X. Proof: From the conditions 2.1.1 and 2.1.3 and from the definition of iterative sequence we have let x0 be arbitrary point of X,AP(X)T(X) and BQ(X)S(X) there exists x1,x2X such that APx0=Tx1 and BQx1=Sx2. Inductively construct a sequence xn and yn in X such that y2n=APx2n=Tx2n+1 and y2n+1=BQx2n+1=Sx2n+2 for n0. By taking x=x2n, y=x2n+1 in the inequality 2.1.3 then we get, M APx2n, BQx2n+1, kt 2 ∗ [M APx2n,BQx2n+1,kt M Tx2n+1, Sx2n, kt ]  k1 M BQx2n+1, Sx2n, 2kt ∗ M(APx2n, Tx2n+1, 2kt + k2 M APx2n, Sx2n, kt ∗ M BQx2n+1, Tx2n+1, kt M(Tx2n+1, Sx2n, t) M y2n, y2n+1, kt 2 ∗ [M y2n,y2n+1,kt M y2n, y2n−1, kt ]  k1 M y2n+1, y2n−1, 2kt ∗ M(y2n, y2n, 2kt + k2 M y2n, y2n−1, kt ∗ M y2n+1, y2n, kt M(y2n, y2n−1, t) this implies M(y2n, y2n+1,, kt) M y2n, y2n+1, kt ∗ M(y2n, y2n−1, kt) ≥ k1 M(y2n+1, y2n−1, 2kt) + k2 M y2n, y2n−1, kt ∗ M y2n+1, y2n, kt M(y2n, y2n−1, t) and M y2n, y2n+1, kt M(y2n+1, y2n−1, 2kt ≥ k1 M(y2n+1, y2n−1, 2kt + k2 M(y2n−1, y2n+1, 2kt) M y2n, y2n−1, t M y2n, y2n+1, kt M y2n+1, y2n−1, 2kt ≥ k1 + k2 M(y2n+1, y2n−1, 2kt M(y2n, y2n−1, t This gives M(y2n, y2n+1, kt) ≥ k1 + k2 M(y2n−1, y2n, t) Since k1 + k2 ≥ 1 M(y2n, y2n+1, kt) ≥ M(y2n−1, y2n, t) this implies M(yn, yn+1, kt) ≥ M(yn−1, yn, t)
  • 3. A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and … www.ijmsi.org 29 | Page Continuing in this process we get M yn, yn+1,t ≥ M yn−1, yn, t k ≥ M yn−1, yn, t k2 ≥ M yn−1, yn, t k3 … … . ≥ M yn−1, yn, t kn And this implies M yn, yn+1, t → 1 as n → ∞. Now for each >0 and t>0 we can choose n0N such that M yn, yn+1, t > 1 − ε for m, n N. Suppose m  n M(yn, ym , t) ≥ M yn, yn+1, t m−n ∗ M yn+1, yn+2, t m−n ∗ … ∗ M ym−1, ym , t m−n (1-)*(1-)*…..(1-) (1-) this shows that the sequence 𝑦𝑛 is a Cauchy sequence in complete fuzzy metric space X and hence it converges to a limit, say zX Proof of theorem 2.1: From the Lemma APx2n → z , Tx2n+1 → z , BQx2n+1 → z, Sx2n+2 → z as n∞ Since AP is continuous AP(Sx2n+2) → 𝑧 and AP(APSx2n) → APz as n→∞ Also since the pair (AP,S) is semi-compatible implies AP(Sx2n+2) → Sz as n→∞ therefore APz=Sz. Put x= z, y=x2n+1 in the inequality 2.1.3 then, we get M APz, BQx2n+1, kt 2 ∗ M APz, BQx2n+1, kt M Tx2n+1 , Sz, kt ≥ k1 M BQx2n+1, Sz, 2kt ∗ M APz, Tx2n+1, 2kt +k2 M APz, Sz, kt ∗ M(BQx2n+1, Tx2n+1, kt) M(Tx2n+1, Sz, t) M APz, z, kt 2 ∗ M APz, z, kt M z , APz, kt ≥ k1 M z, APz, 2kt ∗ M APz, z, 2kt +k2 M APz, APz, kt ∗ M(z, z, kt) M(z, APz, t) M APz, z, kt 2 ≥ k1 M z, APz, 2kt +k2 1 M(z, APz, t) M APz, z, kt ≥ k1M APz, z, kt +k2 1 − k1 M APz, z, kt ≥ k2 M APz, z, kt ≥ k2 1 − k1 ≥ 1 Implies APz=Sz=z Also from the condition AP(X)T(X) , there exists wX such that APz=Tw=z. Now to prove BQw=z Put x= z , y=w in the inequality 2.1.3 then, we get M APz, BQw, kt 2 ∗ M APz, BQw, kt M Tw , Sz, kt ≥ k1 M BQw, Sz, 2kt ∗ M APz, Tw, 2kt +k2 M APz, Sz, kt ∗ M(BQw, Tw, kt) M(Tw, Sz, t) M z, BQw, kt 2 ∗ M z, BQw, kt M z , z, kt ≥ k1 M BQw, z, 2kt ∗ M z, z, 2kt +k2 M z, z, kt ∗ M(BQw, z, kt) M(z, z, t) this implies M z, BQw, kt 2 ≥ k1 M BQw, z, 2kt +k2 M(BQw, z, kt) M z, BQw, kt 2 ≥ k1 M BQw, z, kt +k2 M(BQw, z, kt) M z, BQw, kt ≥ k1 + k1 ≥ 1 implies BQw=z Hence BQw=Tw=z. Now the pair (BQ,T) is weakly compatible implies BQ(Tw)=T(BQ)w and this gives BQz=Tz. Put x=z,y=z in the inequality 2.1.3 then, we get M APz, BQz, kt 2 ∗ M APz, BQz, kt M Tz , Sz, kt ≥ k1 M BQz, Sz, 2kt ∗ M APz, Tz, 2kt +k2 M APz, Sz, kt ∗ M(BQz, Tz, kt) M(Tz, Sz, t) M z, BQz, kt 2 ∗ M z, BQw, kt M BQz , z, kt
  • 4. A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and … www.ijmsi.org 30 | Page ≥ k1 M BQz, z, 2kt ∗ M z, BQ, 2kt +k2 M z, z, kt ∗ M(BQz, BQz, kt) M(BQz, z, t) this implies M z, BQz, kt 2 ≥ k1 M BQz, z, kt +k2 1 M(BQz, z, t) M z, BQz, kt (1 − k1) ≥ k2 M z, BQz, kt ≥ k2 1 − k1 ≥ 1 Implies BQz=z. Put x=Pz and y=z in the inequality 2.1.3 then, we get M AP(Pz), BQz, kt 2 ∗ M AP(Pz), BQz, kt M Tz , S(Pz), kt ≥ k1 M BQz, S Pz , 2kt ∗ M AP Pz , Tz, 2kt +k2 M AP Pz , S Pz , kt ∗ M BQz, Tz, kt M(Tz, S(Pz), t) M Pz, z, kt 2 ∗ M Pz, z, kt M z , Pz, kt ≥ k1 M z, Pz, 2kt ∗ M Pz, z, 2kt +k2 M Pz, Pz, kt ∗ M(z, z, kt) M(z, Pz, t) this implies M Pz, z, kt 2 ≥ k1 M Pz, z, kt +k2 1 M(z, Pz, t) M Pz, z, kt (1 − k1) ≥ k2 M Pz, z, kt ≥ k2 1−k1 ≥ 1 implies Pz=z then APz=z gives A[P(z)]=z consequently Az=z. Put x=z and y=Qz in the inequality 2.1.3 then, we get Put x=z,y=Qz in the inequality 2.1.3 then, we get M APz, BQ(Qz), kt 2 ∗ M APz, BQ(Qz), kt M T(Qz) , Sz, kt ≥ k1 M BQ Qz , Sz, 2kt ∗ M APz, T Qz , 2kt +k2 M APz, Sz, kt ∗ M BQ Qz , T Qz , kt M(T(Qz), Sz, t) M z, Qz, kt 2 ∗ M z, Qz, kt M Qz , z, kt ≥ k1 M Qz, z, 2kt ∗ M z, Qz, 2kt +k2 M z, z, kt ∗ M(Qz, Qz, kt) M(Qz, z, t) this implies M z, Qz, kt 2 ≥ k1 M Qz, z, kt +k2 1 M(Qz, z, t) M Qz, z, kt (1 − k1) ≥ k2 M Qz, z, kt ≥ k2 1−k1 ≥ 1 this implies Qz=z then BQz=z gives B[Q(z)]=z consequently Bz=z. Therefore Az=Bz=Qz=Pz=Tz=Sz=z. Uniqueness:Let z∗ ≠ z be the another fixed point of the mappings A,B,P,Q,S and T then Az*=Bz*=Pz*=Qz*=Sz*=Tz*=z*. Put x=z and y=z* in the inequality 2.1.3 then, we get Put x=z,y=z* M APz, BQz∗ , kt 2 ∗ M APz, BQz∗ , kt M Tz∗ , Sz, kt ≥ k1 M BQz∗ , Sz, 2kt ∗ M APz, Tz∗ , 2kt +k2 M APz, Sz, kt ∗ M(BQz∗ , Tz∗ , kt) M(Tz∗ , Sz, t) M z, z∗ , kt 2 ∗ M z, z∗ , kt M z∗ , z, kt ≥ k1 M z∗ , z, 2kt ∗ M z, z∗ , 2kt +k2 M z, z, kt ∗ M(z∗ , z∗ , kt) M(z∗ , z, t) this implies M z, z∗ , kt 2 ≥ k1 M z∗ , z, kt +k2 1 M(z∗ , z, t) M z, z∗ , kt ≥ k2 1 − k1 ≥ 1 Implies z*=z. Hence the self mappings A,B,S,T,P, and Q has a unique common fixed point.
  • 5. A Common Fixed Point Theorem on Fuzzy Metric Space Using Weakly Compatible and … www.ijmsi.org 31 | Page REFERENCES [1] A George , P Veeramani , On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 1994, 395-399. [2] B Singh , S Jain ,Semi –compatible and fixed point theorems in fuzzy metric space , Chungcheong Math. Soc. 18, 2005, 1-22. [3] G Jungck , and B E Rhoads , Fixed point for set valued function without continuity ,Indian J.Pure and Appl.Math.29(3),1998,227- 238 [4] G Jungck , Compatible mappings and common fixed points , Internet.J.Math & Math. Sci. , 9(4), 1986, 771-779. [5] Ivan Kramosil and Michalek, ”Fuzzy Metrics and Statistical Metric Spaces” Kybernetika, 11, 1975,336-334 [6] M Grabiec , Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 1988, 385-389. [7] P.Balasubramaniam ,S. Murali Sankar S & R.P Pant , Common fixed points of four mappings in fuzzy metric space, J.Fuzzy Math. 10(2), 2002, 379-384 [8] R.P.Pant & K. Jha , A remark on, Common fixed points of four mappings in a fuzzy metric space, J.Fuzzy Math.12 (2),2004,433- 437. [9] S Kutukcu , S Sharma & H A Tokgoz ,A fixed point theorem in fuzzy metric spaces, Int. J. Math. Analysis, 1(18), 2007 , 861-872. [10] S N Mishra ,N Sharma &S L Singh , Common fixed points of mappings on fuzzy metric spaces, Internet .J.Math &Math .Sci,17,1994, 253-258. [11] S.Sharma , Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125,2001, 1-8. [12] Y J Cho, H K Pathak , S M Kang &J S Jung , Common fixed point of compatible maps of type β on fuzzy metric spaces, Fuzzy sets and Systems, 93,1998, 99-111. [13] V Srinivas,B.V.B.Reddy,R.Umamaheswarrao,A Common fixed point Theorem on Fuzzy metric Spaces,Kathmandu University journal of Science , Engineering and Technology,8 (II),2012,77-82. [14] L .A Zadeh L, Fuzzy Sets, Information and Control,8,1965,338-353
  翻译: