Most DBAs are aware something interesting is going on with big data and the Hadoop product ecosystem that underpins it, but aren't so clear about what each component in the stack does, what problem each part solves and why those problems couldn't be solved using the old approach. We'll look at where it's all going with the advent of Spark and machine learning, what's happening with ETL, metadata and analytics on this platform ... why IaaS and datawarehousing-as-a-service will have such a big impact, sooner than you think