Though numerous algorithms exist to perform image segmentation there are several issues
related to execution time of these algorithm. Image Segmentation is nothing but label relabeling
problem under probability framework. To estimate the label configuration, an iterative
optimization scheme is implemented to alternately carry out the maximum a posteriori (MAP)
estimation and the maximum likelihood (ML) estimations. In this paper this technique is
modified in such a way so that it performs segmentation within stipulated time period. The
extensive experiments shows that the results obtained are comparable with existing algorithms.
This algorithm performs faster execution than the existing algorithm to give automatic
segmentation without any human intervention. Its result match image edges very closer to
human perception.