This document discusses various techniques for data mining classification including rule-based classifiers, nearest neighbor classifiers, Bayes classifiers, artificial neural networks, and ensemble methods. Rule-based classifiers use if-then rules to classify records while nearest neighbor classifiers classify new records based on their similarity to training records. Bayes classifiers use Bayes' theorem to calculate conditional probabilities while artificial neural networks are assemblies of interconnected nodes that learn weights to classify data. Ensemble methods construct multiple classifiers and aggregate their predictions to improve accuracy.