기계 학습을 기반한 서비스를 개발하기 위해서는, 데이터 준비, 모델 훈련과 배포의 다양한 과정을 반복적으로 진행해야 합니다. AWS에서는 각 과정별로 사용자가 각자 워크로드에 맞춘 가장 비용 효율적인 ML 프레임워크인 Amazon SageMaker 관리형 서비스를 제공하고 있습니다. 본 세션에서는 SageMaker를 활용하는 방법과 함께 어떻게 하면 모델 생성, 학습 및 배포를 위한 자원을 가장 효율적이고 경제적으로 사용할 수 있는 방법을 소개합니다.