SlideShare a Scribd company logo
Real Time
Fraud Detection
Patterns and reference architectures
Ted Malaska // PSA Gwen Shapira // Software
Engineer
2
• Intro
• Review Problem
• Quick overview of key technology
• High level architecture
• Deep Dive into NRT Processing
• Completing the Puzzle – Micro-batch, Ingest and Batch
Overview
©2014 Cloudera, Inc. All rights reserved.
3©2014 Cloudera, Inc. All rights reserved.
• 15 years of moving data
• Formerly consultant
• Now Cloudera Engineer:
– Sqoop Committer
– Kafka
– Flume
• @gwenshap
Gwen Shapira
4
• Ted Malaska (PSA at Cloudera)
• Hadoop for ~5 years
• Contributed to
– HDFS, MapReduce, Yarn, HBase, Spark, Avro,
– Kite, Pig, Navigator, Cloudera Manager, Flume, Kafke, Sqoop, Accumulo
– And working on a Sentry Patch
• Co-Author to O’Reilly Hadoop Application Architectures
• Worked with about 70 companies in 8 countries
• Marvel Fan Boy
• Runner
Hello
©2014 Cloudera, Inc. All rights reserved.
5
The Problem
©2014 Cloudera, Inc. All rights reserved.
6
Credit Card Transaction Fraud
©2014 Cloudera, Inc. All rights reserved.
7
Ikea Meat Balls
©2014 Cloudera, Inc. All rights reserved.
8
Coupon Fraud
©2014 Cloudera, Inc. All rights reserved.
9
Video Game Strategy
©2014 Cloudera, Inc. All rights reserved.
10
Health Insurance Fraud
©2014 Cloudera, Inc. All rights reserved.
11
• Typical Atomic Card Fraud Detection
• Ikea Meat Ball
• Multi Coupons Combinations
• OP or Negative Video Games Strategies
• Ad Serving
• Health Insurance Fraud
• Kid Coming Home From School
Review of the Problem
©2014 Cloudera, Inc. All rights reserved.
12
How do we React
• Human Brain at Tennis
– Muscle Memory
– Reaction Thought
– Reflective Meditation
©2014 Cloudera, Inc. All rights reserved.
13
Overview of
Key Technologies
©2014 Cloudera, Inc. All rights reserved.
14
Kafka
©2014 Cloudera, Inc. All Rights Reserved.
15©2014 Cloudera, Inc. All rights reserved.
• Messages are organized into topics
• Producers push messages
• Consumers pull messages
• Kafka runs in a cluster. Nodes are called
brokers
The Basics
16©2014 Cloudera, Inc. All rights reserved.
Topics, Partitions and Logs
17©2014 Cloudera, Inc. All rights reserved.
Each partition is a log
18©2014 Cloudera, Inc. All rights reserved.
Each Broker has many partitions
Partition 0 Partition 0
Partition 1 Partition 1
Partition 2
Partition 1
Partition 0
Partition 2 Partion 2
19©2014 Cloudera, Inc. All rights reserved.
Producers load balance between partitions
Partition 0
Partition 1
Partition 2
Partition 1
Partition 0
Partition 2
Partition 0
Partition 1
Partion 2
Client
20©2014 Cloudera, Inc. All rights reserved.
Producers load balance between partitions
Partition 0
Partition 1
Partition 2
Partition 1
Partition 0
Partition 2
Partition 0
Partition 1
Partion 2
Client
21©2014 Cloudera, Inc. All rights reserved.
Consumers
Consumer Group Y
Consumer Group X
Consumer
Kafka Cluster
Topic
Partition A (File)
Partition B (File)
Partition C (File)
Consumer
Consumer
Consumer
Order retained with in
partition
Order retained with in
partition but not over
partitionsOffSetX
OffSetX
OffSetX
OffSetYOffSetYOffSetY
Off sets are kept per
consumer group
22
Flume
23
Sources Interceptors Selectors Channels Sinks
Flume Agent
Short Intro to Flume
Twitter, logs, JMS,
webserver, Kafka
Mask, re-format,
validate…
DR, critical
Memory, file,
Kafka
HDFS, HBase,
Solr
24
Flume and/or Kafka
©2014 Cloudera, Inc. All rights reserved.
Flume
UpStream
Flume Source
Interceptor
Flume Channel
Flume Sink
Down Stream
Selector
Can Be KafkaCan Be KafkaCan Be Kafka
25
Interceptors
• Mask fields
• Validate information
against external source
• Extract fields
• Modify data format
• Filter or split events
©2014 Cloudera, Inc. All rights reserved.
26
SparkStreaming
27
Spark Streaming Example
©2014 Cloudera, Inc. All rights reserved.
1. val conf = new SparkConf().setMaster("local[2]”)
2. val ssc = new StreamingContext(conf, Seconds(1))
3. val lines = ssc.socketTextStream("localhost", 9999)
4. val words = lines.flatMap(_.split(" "))
5. val pairs = words.map(word => (word, 1))
6. val wordCounts = pairs.reduceByKey(_ + _)
7. wordCounts.print()
8. SSC.start()
28
Spark Streaming Example
©2014 Cloudera, Inc. All rights reserved.
1. val conf = new SparkConf().setMaster("local[2]”)
2. val sc = new SparkContext(conf)
3. val lines = sc.textFile(path, 2)
4. val words = lines.flatMap(_.split(" "))
5. val pairs = words.map(word => (word, 1))
6. val wordCounts = pairs.reduceByKey(_ + _)
7. wordCounts.print()
29
DStream
DStream
DStream
Spark Streaming
Confidentiality Information Goes Here
Single Pass
Source Receiver RDD
Source Receiver RDD
RDD
Filter Count Print
Source Receiver RDD
RDD
RDD
Single Pass
Filter Count Print
Pre-first
Batch
First
Batch
Second
Batch
30
DStream
DStream
DStreamSpark Streaming
Confidentiality Information Goes Here
Single Pass
Source Receiver RDD
Source Receiver RDD
RDD
Filter Count
Print
Source Receiver RDD
RDD
RDD
Single Pass
Filter Count
Pre-first
Batch
First
Batch
Second
Batch
Stateful RDD 1
Print
Stateful RDD 2
Stateful RDD 1
31
Spark Streaming and HBase
©2014 Cloudera, Inc. All rights reserved.
Driver
Walker Node
Configs
Executor
Static Space
Configs
HConnection
Tasks Tasks
Walker Node
Executor
Static Space
Configs
HConnection
Tasks Tasks
32
High Level
Architecture
©2014 Cloudera, Inc. All rights reserved.
33
Real-Time Event Processing Approach
©2014 Cloudera, Inc. All rights reserved.
Hadoop Cluster II
Storage Processing
SolR
Hadoop Cluster I
ClientClient
Flume Agents
Hbase /
Memory
Spark
Streaming
HDFS
Hive/Im
pala
Map/Re
duce
Spark
Search
Automated &
Manual
Analytical
Adjustments
and Pattern
detection
Fetching &
Updating Profiles
Adjusting NRT Stats
HDFSEventSink
SolR Sink
Batch Time Adjustments
Automated &
Manual
Review of
NRT Changes
and Counters
Local Cache
Kafka
Clients:
(Swipe
here!)
Web App
34
NRT Processing
©2014 Cloudera, Inc. All rights reserved.
35
Focus on NRT First
©2014 Cloudera, Inc. All rights reserved.
Hadoop Cluster II
Storage Processing
SolR
Hadoop Cluster I
ClientClient
Flume Agents
Hbase /
Memory
Spark
Streaming
HDFS
Hive/Im
pala
Map/Re
duce
Spark
Search
Automated &
Manual
Analytical
Adjustments
and Pattern
detection
Fetching &
Updating Profiles
Adjusting NRT Stats
HDFSEventSink
SolR Sink
Batch Time Adjustments
Automated &
Manual
Review of
NRT Changes
and Counters
Local Cache
Kafka
Clients:
(Swipe
here!)
Web App
NRT Event Processing with Context
36
Streaming Architecture – NRT Event Processing
©2014 Cloudera, Inc. All rights reserved.
Flume Source
Flume Source
Kafka
Initial Events Topic
Flume Source
Flume Interceptor
Event Processing Logic
Local
Memory
HBase
Client
Kafka
Answer Topic
HBase
KafkaConsumer
KafkaProducer
Able to respond with
in 10s of
milliseconds
37
Partitioned NRT Event Processing
©2014 Cloudera, Inc. All rights reserved.
Flume Source
Flume Source
Kafka
Initial Events Topic
Flume Source
Flume Interceptor
Event Processing Logic
Local
Memory
HBase
Client
Kafka
Answer Topic
HBase
KafkaConsumer
KafkaProducer
Topic
Partition A
Partition B
Partition C
Producer
Partitione
r
Producer
Partitione
r
Producer
Partitione
r
Custom Partitioner
Better use of local
memory
38
Completing the
Puzzle
©2014 Cloudera, Inc. All rights reserved.
39
Micro Batching
©2014 Cloudera, Inc. All rights reserved.
Hadoop Cluster II
Storage Processing
SolR
Hadoop Cluster I
ClientClient
Flume Agents
Hbase /
Memory
Spark
Streaming
HDFS
Hive/Im
pala
Map/Re
duce
Spark
Search
Automated &
Manual
Analytical
Adjustments
and Pattern
detection
Fetching &
Updating Profiles
Adjusting NRT Stats
HDFSEventSink
SolR Sink
Batch Time Adjustments
Automated &
Manual
Review of
NRT Changes
and Counters
Local Cache
Kafka
Clients:
(Swipe
here!)
Web App
Micro Batching
Micro Batching
Micro Batching
40
Complex Topologies
©2014 Cloudera, Inc. All rights reserved.
Kafka
Initial Events Topic
Spark Streaming
KafkaDirect
Connection
Dag Topologies
Kafka
Initial Events Topic
Spark Streaming
Kafka Receivers Dag Topologies
Kafka Receivers
Kafka Receivers
• Manages Offset
• Stores Offset is RDD
• No longer needs HDFS for initial RDD check
pointing
• Lets Kafka Manage Offsets
• Uses HDFS for initial RDD recovery
1.3
1.2
41
MicroBatch Bad-Input Handling
©2014 Cloudera, Inc. All rights reserved.
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Kafka – incoming events topic
Dag Topologies
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Kafka – bad events topic
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Kafka – resolved events topic
0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
Kafka – results topic
42
Ingestion
©2014 Cloudera, Inc. All rights reserved.
Hadoop Cluster II
Storage Processing
SolR
Hadoop Cluster I
ClientClient
Flume Agents
Hbase /
Memory
Spark
Streaming
HDFS
Hive/Im
pala
Map/Re
duce
Spark
Search
Automated &
Manual
Analytical
Adjustments
and Pattern
detection
Fetching &
Updating Profiles
Adjusting NRT Stats
HDFSEventSink
SolR Sink
Batch Time Adjustments
Automated &
Manual
Review of
NRT Changes
and Counters
Local Cache
Kafka
Clients:
(Swipe
here!)
Web App
Ingestion
Ingestion
43
Ingestion
©2014 Cloudera, Inc. All rights reserved.
Flume HDFS Sink
Kafka Cluster
Topic
Partition A
Partition B
Partition C
Sink
Sink
Sink
HDFS
Flume SolR Sink
Sink
Sink
Sink
SolR
Flume Hbase Sink
Sink
Sink
Sink
HBase
44
Reflective Thoughts
©2014 Cloudera, Inc. All rights reserved.
Hadoop Cluster II
Storage Processing
SolR
Hadoop Cluster I
ClientClient
Flume Agents
Hbase /
Memory
Spark
Streaming
HDFS
Hive/Im
pala
Map/Re
duce
Spark
Search
Automated &
Manual
Analytical
Adjustments
and Pattern
detection
Fetching &
Updating Profiles
Adjusting NRT Stats
HDFSEventSink
SolR Sink
Batch Time Adjustments
Automated &
Manual
Review of
NRT Changes
and Counters
Local Cache
Kafka
Clients:
(Swipe
here!)
Web App
Research and Searching
©2014 Cloudera, Inc. All rights reserved.
Ad

More Related Content

What's hot (20)

Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
Ji-Woong Choi
 
New Approaches for Fraud Detection on Apache Kafka and KSQL
New Approaches for Fraud Detection on Apache Kafka and KSQLNew Approaches for Fraud Detection on Apache Kafka and KSQL
New Approaches for Fraud Detection on Apache Kafka and KSQL
confluent
 
Stream Processing with Apache Kafka and .NET
Stream Processing with Apache Kafka and .NETStream Processing with Apache Kafka and .NET
Stream Processing with Apache Kafka and .NET
confluent
 
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
HostedbyConfluent
 
Kubernetes
KubernetesKubernetes
Kubernetes
erialc_w
 
Kibana overview
Kibana overviewKibana overview
Kibana overview
Rinat Tainov
 
Hadoop security
Hadoop securityHadoop security
Hadoop security
Shivaji Dutta
 
Ceph Performance and Sizing Guide
Ceph Performance and Sizing GuideCeph Performance and Sizing Guide
Ceph Performance and Sizing Guide
Jose De La Rosa
 
Big Data Business Wins: Real-time Inventory Tracking with Hadoop
Big Data Business Wins: Real-time Inventory Tracking with HadoopBig Data Business Wins: Real-time Inventory Tracking with Hadoop
Big Data Business Wins: Real-time Inventory Tracking with Hadoop
DataWorks Summit
 
Running Vue Storefront in production (PWA Magento webshop)
Running Vue Storefront in production (PWA Magento webshop)Running Vue Storefront in production (PWA Magento webshop)
Running Vue Storefront in production (PWA Magento webshop)
Vendic Magento, PWA & Marketing
 
Real-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Real-Life Use Cases & Architectures for Event Streaming with Apache KafkaReal-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Real-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Kai Wähner
 
Fundamentals of Apache Kafka
Fundamentals of Apache KafkaFundamentals of Apache Kafka
Fundamentals of Apache Kafka
Chhavi Parasher
 
Spring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise PlatformSpring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise Platform
VMware Tanzu
 
Get Hands-On with NGINX and QUIC+HTTP/3
Get Hands-On with NGINX and QUIC+HTTP/3Get Hands-On with NGINX and QUIC+HTTP/3
Get Hands-On with NGINX and QUIC+HTTP/3
NGINX, Inc.
 
Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013
Julien Le Dem
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
Kafka Connect
Kafka ConnectKafka Connect
Kafka Connect
Oleg Kuznetsov
 
Row/Column- Level Security in SQL for Apache Spark
Row/Column- Level Security in SQL for Apache SparkRow/Column- Level Security in SQL for Apache Spark
Row/Column- Level Security in SQL for Apache Spark
DataWorks Summit/Hadoop Summit
 
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
StreamNative
 
Introduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processingIntroduction to Apache Flink - Fast and reliable big data processing
Introduction to Apache Flink - Fast and reliable big data processing
Till Rohrmann
 
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
[오픈소스컨설팅]쿠버네티스를 활용한 개발환경 구축
Ji-Woong Choi
 
New Approaches for Fraud Detection on Apache Kafka and KSQL
New Approaches for Fraud Detection on Apache Kafka and KSQLNew Approaches for Fraud Detection on Apache Kafka and KSQL
New Approaches for Fraud Detection on Apache Kafka and KSQL
confluent
 
Stream Processing with Apache Kafka and .NET
Stream Processing with Apache Kafka and .NETStream Processing with Apache Kafka and .NET
Stream Processing with Apache Kafka and .NET
confluent
 
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
Real-time Adaptation of Financial Market Events with Kafka | Cliff Cheng and ...
HostedbyConfluent
 
Kubernetes
KubernetesKubernetes
Kubernetes
erialc_w
 
Ceph Performance and Sizing Guide
Ceph Performance and Sizing GuideCeph Performance and Sizing Guide
Ceph Performance and Sizing Guide
Jose De La Rosa
 
Big Data Business Wins: Real-time Inventory Tracking with Hadoop
Big Data Business Wins: Real-time Inventory Tracking with HadoopBig Data Business Wins: Real-time Inventory Tracking with Hadoop
Big Data Business Wins: Real-time Inventory Tracking with Hadoop
DataWorks Summit
 
Running Vue Storefront in production (PWA Magento webshop)
Running Vue Storefront in production (PWA Magento webshop)Running Vue Storefront in production (PWA Magento webshop)
Running Vue Storefront in production (PWA Magento webshop)
Vendic Magento, PWA & Marketing
 
Real-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Real-Life Use Cases & Architectures for Event Streaming with Apache KafkaReal-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Real-Life Use Cases & Architectures for Event Streaming with Apache Kafka
Kai Wähner
 
Fundamentals of Apache Kafka
Fundamentals of Apache KafkaFundamentals of Apache Kafka
Fundamentals of Apache Kafka
Chhavi Parasher
 
Spring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise PlatformSpring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise Platform
VMware Tanzu
 
Get Hands-On with NGINX and QUIC+HTTP/3
Get Hands-On with NGINX and QUIC+HTTP/3Get Hands-On with NGINX and QUIC+HTTP/3
Get Hands-On with NGINX and QUIC+HTTP/3
NGINX, Inc.
 
Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013Parquet Hadoop Summit 2013
Parquet Hadoop Summit 2013
Julien Le Dem
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
Change Data Capture to Data Lakes Using Apache Pulsar and Apache Hudi - Pulsa...
StreamNative
 

Viewers also liked (20)

Hadoop BIG Data - Fraud Detection with Real-Time Analytics
Hadoop BIG Data - Fraud Detection with Real-Time AnalyticsHadoop BIG Data - Fraud Detection with Real-Time Analytics
Hadoop BIG Data - Fraud Detection with Real-Time Analytics
hkbhadraa
 
Big Data Application Architectures - Fraud Detection
Big Data Application Architectures - Fraud DetectionBig Data Application Architectures - Fraud Detection
Big Data Application Architectures - Fraud Detection
DataWorks Summit/Hadoop Summit
 
Architecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud DetectionArchitecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud Detection
hadooparchbook
 
Real time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stackReal time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stack
DataWorks Summit/Hadoop Summit
 
Bigdata based fraud detection
Bigdata based fraud detectionBigdata based fraud detection
Bigdata based fraud detection
Mk Kim
 
Fraud Detection Architecture
Fraud Detection ArchitectureFraud Detection Architecture
Fraud Detection Architecture
Gwen (Chen) Shapira
 
Fight Fraud with Big Data Analytics
Fight Fraud with Big Data AnalyticsFight Fraud with Big Data Analytics
Fight Fraud with Big Data Analytics
Datameer
 
PayPal's Fraud Detection with Deep Learning in H2O World 2014
PayPal's Fraud Detection with Deep Learning in H2O World 2014PayPal's Fraud Detection with Deep Learning in H2O World 2014
PayPal's Fraud Detection with Deep Learning in H2O World 2014
Sri Ambati
 
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Sabri Skhiri
 
Hadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorialHadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorial
hadooparchbook
 
Real-Time Fraud Detection in Payment Transactions
Real-Time Fraud Detection in Payment TransactionsReal-Time Fraud Detection in Payment Transactions
Real-Time Fraud Detection in Payment Transactions
Christian Gügi
 
Fraud Detection presentation
Fraud Detection presentationFraud Detection presentation
Fraud Detection presentation
Hernan Huwyler
 
Deep Learning for Fraud Detection
Deep Learning for Fraud DetectionDeep Learning for Fraud Detection
Deep Learning for Fraud Detection
DataWorks Summit/Hadoop Summit
 
Presentation on fraud prevention, detection & control
Presentation on fraud prevention, detection & controlPresentation on fraud prevention, detection & control
Presentation on fraud prevention, detection & control
Dominic Sroda Korkoryi
 
Jaws - Data Warehouse with Spark SQL by Ema Orhian
Jaws - Data Warehouse with Spark SQL by Ema OrhianJaws - Data Warehouse with Spark SQL by Ema Orhian
Jaws - Data Warehouse with Spark SQL by Ema Orhian
Spark Summit
 
Predictive Analytics [UTC]
Predictive Analytics [UTC]Predictive Analytics [UTC]
Predictive Analytics [UTC]
Matouš Havlena
 
Big data analytics in banking sector
Big data analytics in banking sectorBig data analytics in banking sector
Big data analytics in banking sector
Anil Rana
 
Big Search with Big Data Principles
Big Search with Big Data PrinciplesBig Search with Big Data Principles
Big Search with Big Data Principles
OpenSource Connections
 
Operations Management Suite, the Penguins and the others
Operations Management Suite, the Penguins and the othersOperations Management Suite, the Penguins and the others
Operations Management Suite, the Penguins and the others
Christian Heitkamp
 
VMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
VMware vSphere Vs. Microsoft Hyper-V: A Technical AnalysisVMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
VMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
Corporate Technologies
 
Hadoop BIG Data - Fraud Detection with Real-Time Analytics
Hadoop BIG Data - Fraud Detection with Real-Time AnalyticsHadoop BIG Data - Fraud Detection with Real-Time Analytics
Hadoop BIG Data - Fraud Detection with Real-Time Analytics
hkbhadraa
 
Architecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud DetectionArchitecting applications with Hadoop - Fraud Detection
Architecting applications with Hadoop - Fraud Detection
hadooparchbook
 
Real time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stackReal time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stack
DataWorks Summit/Hadoop Summit
 
Bigdata based fraud detection
Bigdata based fraud detectionBigdata based fraud detection
Bigdata based fraud detection
Mk Kim
 
Fight Fraud with Big Data Analytics
Fight Fraud with Big Data AnalyticsFight Fraud with Big Data Analytics
Fight Fraud with Big Data Analytics
Datameer
 
PayPal's Fraud Detection with Deep Learning in H2O World 2014
PayPal's Fraud Detection with Deep Learning in H2O World 2014PayPal's Fraud Detection with Deep Learning in H2O World 2014
PayPal's Fraud Detection with Deep Learning in H2O World 2014
Sri Ambati
 
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Lambda Architecture 2.0 Convergence between Real-Time Analytics, Context-awar...
Sabri Skhiri
 
Hadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorialHadoop application architectures - Fraud detection tutorial
Hadoop application architectures - Fraud detection tutorial
hadooparchbook
 
Real-Time Fraud Detection in Payment Transactions
Real-Time Fraud Detection in Payment TransactionsReal-Time Fraud Detection in Payment Transactions
Real-Time Fraud Detection in Payment Transactions
Christian Gügi
 
Fraud Detection presentation
Fraud Detection presentationFraud Detection presentation
Fraud Detection presentation
Hernan Huwyler
 
Presentation on fraud prevention, detection & control
Presentation on fraud prevention, detection & controlPresentation on fraud prevention, detection & control
Presentation on fraud prevention, detection & control
Dominic Sroda Korkoryi
 
Jaws - Data Warehouse with Spark SQL by Ema Orhian
Jaws - Data Warehouse with Spark SQL by Ema OrhianJaws - Data Warehouse with Spark SQL by Ema Orhian
Jaws - Data Warehouse with Spark SQL by Ema Orhian
Spark Summit
 
Predictive Analytics [UTC]
Predictive Analytics [UTC]Predictive Analytics [UTC]
Predictive Analytics [UTC]
Matouš Havlena
 
Big data analytics in banking sector
Big data analytics in banking sectorBig data analytics in banking sector
Big data analytics in banking sector
Anil Rana
 
Operations Management Suite, the Penguins and the others
Operations Management Suite, the Penguins and the othersOperations Management Suite, the Penguins and the others
Operations Management Suite, the Penguins and the others
Christian Heitkamp
 
VMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
VMware vSphere Vs. Microsoft Hyper-V: A Technical AnalysisVMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
VMware vSphere Vs. Microsoft Hyper-V: A Technical Analysis
Corporate Technologies
 
Ad

Similar to Architecting a Fraud Detection Application with Hadoop (20)

Fraud Detection for Israel BigThings Meetup
Fraud Detection  for Israel BigThings MeetupFraud Detection  for Israel BigThings Meetup
Fraud Detection for Israel BigThings Meetup
Gwen (Chen) Shapira
 
Real Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark StreamingReal Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark Streaming
Hari Shreedharan
 
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Data Con LA
 
Spark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream ProcessingSpark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream Processing
Jack Gudenkauf
 
Hive on spark berlin buzzwords
Hive on spark berlin buzzwordsHive on spark berlin buzzwords
Hive on spark berlin buzzwords
Szehon Ho
 
Event Detection Pipelines with Apache Kafka
Event Detection Pipelines with Apache KafkaEvent Detection Pipelines with Apache Kafka
Event Detection Pipelines with Apache Kafka
DataWorks Summit
 
Avoiding Common Pitfalls: Spark Structured Streaming with Kafka
Avoiding Common Pitfalls: Spark Structured Streaming with KafkaAvoiding Common Pitfalls: Spark Structured Streaming with Kafka
Avoiding Common Pitfalls: Spark Structured Streaming with Kafka
HostedbyConfluent
 
Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Real Time Data Processing using Spark Streaming | Data Day Texas 2015Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Cloudera, Inc.
 
Real Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark StreamingReal Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark Streaming
Hari Shreedharan
 
PCAP Graphs for Cybersecurity and System Tuning
PCAP Graphs for Cybersecurity and System TuningPCAP Graphs for Cybersecurity and System Tuning
PCAP Graphs for Cybersecurity and System Tuning
Dr. Mirko Kämpf
 
Kafka for DBAs
Kafka for DBAsKafka for DBAs
Kafka for DBAs
Gwen (Chen) Shapira
 
Spark One Platform Webinar
Spark One Platform WebinarSpark One Platform Webinar
Spark One Platform Webinar
Cloudera, Inc.
 
Kafka & Hadoop - for NYC Kafka Meetup
Kafka & Hadoop - for NYC Kafka MeetupKafka & Hadoop - for NYC Kafka Meetup
Kafka & Hadoop - for NYC Kafka Meetup
Gwen (Chen) Shapira
 
Empower Hive with Spark
Empower Hive with SparkEmpower Hive with Spark
Empower Hive with Spark
DataWorks Summit
 
Spark+flume seattle
Spark+flume seattleSpark+flume seattle
Spark+flume seattle
Hari Shreedharan
 
Yarns About Yarn
Yarns About YarnYarns About Yarn
Yarns About Yarn
Cloudera, Inc.
 
Decoupling Decisions with Apache Kafka
Decoupling Decisions with Apache KafkaDecoupling Decisions with Apache Kafka
Decoupling Decisions with Apache Kafka
Grant Henke
 
GSJUG: Mastering Data Streaming Pipelines 09May2023
GSJUG: Mastering Data Streaming Pipelines 09May2023GSJUG: Mastering Data Streaming Pipelines 09May2023
GSJUG: Mastering Data Streaming Pipelines 09May2023
Timothy Spann
 
ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016
Jayesh Thakrar
 
Kafka talk
Kafka talkKafka talk
Kafka talk
Maheedhar Gunturu
 
Fraud Detection for Israel BigThings Meetup
Fraud Detection  for Israel BigThings MeetupFraud Detection  for Israel BigThings Meetup
Fraud Detection for Israel BigThings Meetup
Gwen (Chen) Shapira
 
Real Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark StreamingReal Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark Streaming
Hari Shreedharan
 
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Spark Streaming& Kafka-The Future of Stream Processing by Hari Shreedharan of...
Data Con LA
 
Spark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream ProcessingSpark Streaming & Kafka-The Future of Stream Processing
Spark Streaming & Kafka-The Future of Stream Processing
Jack Gudenkauf
 
Hive on spark berlin buzzwords
Hive on spark berlin buzzwordsHive on spark berlin buzzwords
Hive on spark berlin buzzwords
Szehon Ho
 
Event Detection Pipelines with Apache Kafka
Event Detection Pipelines with Apache KafkaEvent Detection Pipelines with Apache Kafka
Event Detection Pipelines with Apache Kafka
DataWorks Summit
 
Avoiding Common Pitfalls: Spark Structured Streaming with Kafka
Avoiding Common Pitfalls: Spark Structured Streaming with KafkaAvoiding Common Pitfalls: Spark Structured Streaming with Kafka
Avoiding Common Pitfalls: Spark Structured Streaming with Kafka
HostedbyConfluent
 
Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Real Time Data Processing using Spark Streaming | Data Day Texas 2015Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Real Time Data Processing using Spark Streaming | Data Day Texas 2015
Cloudera, Inc.
 
Real Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark StreamingReal Time Data Processing Using Spark Streaming
Real Time Data Processing Using Spark Streaming
Hari Shreedharan
 
PCAP Graphs for Cybersecurity and System Tuning
PCAP Graphs for Cybersecurity and System TuningPCAP Graphs for Cybersecurity and System Tuning
PCAP Graphs for Cybersecurity and System Tuning
Dr. Mirko Kämpf
 
Spark One Platform Webinar
Spark One Platform WebinarSpark One Platform Webinar
Spark One Platform Webinar
Cloudera, Inc.
 
Kafka & Hadoop - for NYC Kafka Meetup
Kafka & Hadoop - for NYC Kafka MeetupKafka & Hadoop - for NYC Kafka Meetup
Kafka & Hadoop - for NYC Kafka Meetup
Gwen (Chen) Shapira
 
Decoupling Decisions with Apache Kafka
Decoupling Decisions with Apache KafkaDecoupling Decisions with Apache Kafka
Decoupling Decisions with Apache Kafka
Grant Henke
 
GSJUG: Mastering Data Streaming Pipelines 09May2023
GSJUG: Mastering Data Streaming Pipelines 09May2023GSJUG: Mastering Data Streaming Pipelines 09May2023
GSJUG: Mastering Data Streaming Pipelines 09May2023
Timothy Spann
 
ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016
Jayesh Thakrar
 
Ad

More from DataWorks Summit (20)

Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 

Recently uploaded (20)

The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of ExchangesJignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah Innovator
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
The Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI IntegrationThe Future of Cisco Cloud Security: Innovations and AI Integration
The Future of Cisco Cloud Security: Innovations and AI Integration
Re-solution Data Ltd
 
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
The No-Code Way to Build a Marketing Team with One AI Agent (Download the n8n...
SOFTTECHHUB
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
Bepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firmBepents tech services - a premier cybersecurity consulting firm
Bepents tech services - a premier cybersecurity consulting firm
Benard76
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of ExchangesJignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah - The Innovator and Czar of Exchanges
Jignesh Shah Innovator
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
How to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabberHow to Install & Activate ListGrabber - eGrabber
How to Install & Activate ListGrabber - eGrabber
eGrabber
 
Viam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdfViam product demo_ Deploying and scaling AI with hardware.pdf
Viam product demo_ Deploying and scaling AI with hardware.pdf
camilalamoratta
 
UiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer OpportunitiesUiPath Agentic Automation: Community Developer Opportunities
UiPath Agentic Automation: Community Developer Opportunities
DianaGray10
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptxWebinar - Top 5 Backup Mistakes MSPs and Businesses Make   .pptx
Webinar - Top 5 Backup Mistakes MSPs and Businesses Make .pptx
MSP360
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)Design pattern talk by Kaya Weers - 2025 (v2)
Design pattern talk by Kaya Weers - 2025 (v2)
Kaya Weers
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à GenèveUiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPath Automation Suite – Cas d'usage d'une NGO internationale basée à Genève
UiPathCommunity
 

Architecting a Fraud Detection Application with Hadoop

  • 1. Real Time Fraud Detection Patterns and reference architectures Ted Malaska // PSA Gwen Shapira // Software Engineer
  • 2. 2 • Intro • Review Problem • Quick overview of key technology • High level architecture • Deep Dive into NRT Processing • Completing the Puzzle – Micro-batch, Ingest and Batch Overview ©2014 Cloudera, Inc. All rights reserved.
  • 3. 3©2014 Cloudera, Inc. All rights reserved. • 15 years of moving data • Formerly consultant • Now Cloudera Engineer: – Sqoop Committer – Kafka – Flume • @gwenshap Gwen Shapira
  • 4. 4 • Ted Malaska (PSA at Cloudera) • Hadoop for ~5 years • Contributed to – HDFS, MapReduce, Yarn, HBase, Spark, Avro, – Kite, Pig, Navigator, Cloudera Manager, Flume, Kafke, Sqoop, Accumulo – And working on a Sentry Patch • Co-Author to O’Reilly Hadoop Application Architectures • Worked with about 70 companies in 8 countries • Marvel Fan Boy • Runner Hello ©2014 Cloudera, Inc. All rights reserved.
  • 5. 5 The Problem ©2014 Cloudera, Inc. All rights reserved.
  • 6. 6 Credit Card Transaction Fraud ©2014 Cloudera, Inc. All rights reserved.
  • 7. 7 Ikea Meat Balls ©2014 Cloudera, Inc. All rights reserved.
  • 8. 8 Coupon Fraud ©2014 Cloudera, Inc. All rights reserved.
  • 9. 9 Video Game Strategy ©2014 Cloudera, Inc. All rights reserved.
  • 10. 10 Health Insurance Fraud ©2014 Cloudera, Inc. All rights reserved.
  • 11. 11 • Typical Atomic Card Fraud Detection • Ikea Meat Ball • Multi Coupons Combinations • OP or Negative Video Games Strategies • Ad Serving • Health Insurance Fraud • Kid Coming Home From School Review of the Problem ©2014 Cloudera, Inc. All rights reserved.
  • 12. 12 How do we React • Human Brain at Tennis – Muscle Memory – Reaction Thought – Reflective Meditation ©2014 Cloudera, Inc. All rights reserved.
  • 13. 13 Overview of Key Technologies ©2014 Cloudera, Inc. All rights reserved.
  • 14. 14 Kafka ©2014 Cloudera, Inc. All Rights Reserved.
  • 15. 15©2014 Cloudera, Inc. All rights reserved. • Messages are organized into topics • Producers push messages • Consumers pull messages • Kafka runs in a cluster. Nodes are called brokers The Basics
  • 16. 16©2014 Cloudera, Inc. All rights reserved. Topics, Partitions and Logs
  • 17. 17©2014 Cloudera, Inc. All rights reserved. Each partition is a log
  • 18. 18©2014 Cloudera, Inc. All rights reserved. Each Broker has many partitions Partition 0 Partition 0 Partition 1 Partition 1 Partition 2 Partition 1 Partition 0 Partition 2 Partion 2
  • 19. 19©2014 Cloudera, Inc. All rights reserved. Producers load balance between partitions Partition 0 Partition 1 Partition 2 Partition 1 Partition 0 Partition 2 Partition 0 Partition 1 Partion 2 Client
  • 20. 20©2014 Cloudera, Inc. All rights reserved. Producers load balance between partitions Partition 0 Partition 1 Partition 2 Partition 1 Partition 0 Partition 2 Partition 0 Partition 1 Partion 2 Client
  • 21. 21©2014 Cloudera, Inc. All rights reserved. Consumers Consumer Group Y Consumer Group X Consumer Kafka Cluster Topic Partition A (File) Partition B (File) Partition C (File) Consumer Consumer Consumer Order retained with in partition Order retained with in partition but not over partitionsOffSetX OffSetX OffSetX OffSetYOffSetYOffSetY Off sets are kept per consumer group
  • 23. 23 Sources Interceptors Selectors Channels Sinks Flume Agent Short Intro to Flume Twitter, logs, JMS, webserver, Kafka Mask, re-format, validate… DR, critical Memory, file, Kafka HDFS, HBase, Solr
  • 24. 24 Flume and/or Kafka ©2014 Cloudera, Inc. All rights reserved. Flume UpStream Flume Source Interceptor Flume Channel Flume Sink Down Stream Selector Can Be KafkaCan Be KafkaCan Be Kafka
  • 25. 25 Interceptors • Mask fields • Validate information against external source • Extract fields • Modify data format • Filter or split events ©2014 Cloudera, Inc. All rights reserved.
  • 27. 27 Spark Streaming Example ©2014 Cloudera, Inc. All rights reserved. 1. val conf = new SparkConf().setMaster("local[2]”) 2. val ssc = new StreamingContext(conf, Seconds(1)) 3. val lines = ssc.socketTextStream("localhost", 9999) 4. val words = lines.flatMap(_.split(" ")) 5. val pairs = words.map(word => (word, 1)) 6. val wordCounts = pairs.reduceByKey(_ + _) 7. wordCounts.print() 8. SSC.start()
  • 28. 28 Spark Streaming Example ©2014 Cloudera, Inc. All rights reserved. 1. val conf = new SparkConf().setMaster("local[2]”) 2. val sc = new SparkContext(conf) 3. val lines = sc.textFile(path, 2) 4. val words = lines.flatMap(_.split(" ")) 5. val pairs = words.map(word => (word, 1)) 6. val wordCounts = pairs.reduceByKey(_ + _) 7. wordCounts.print()
  • 29. 29 DStream DStream DStream Spark Streaming Confidentiality Information Goes Here Single Pass Source Receiver RDD Source Receiver RDD RDD Filter Count Print Source Receiver RDD RDD RDD Single Pass Filter Count Print Pre-first Batch First Batch Second Batch
  • 30. 30 DStream DStream DStreamSpark Streaming Confidentiality Information Goes Here Single Pass Source Receiver RDD Source Receiver RDD RDD Filter Count Print Source Receiver RDD RDD RDD Single Pass Filter Count Pre-first Batch First Batch Second Batch Stateful RDD 1 Print Stateful RDD 2 Stateful RDD 1
  • 31. 31 Spark Streaming and HBase ©2014 Cloudera, Inc. All rights reserved. Driver Walker Node Configs Executor Static Space Configs HConnection Tasks Tasks Walker Node Executor Static Space Configs HConnection Tasks Tasks
  • 32. 32 High Level Architecture ©2014 Cloudera, Inc. All rights reserved.
  • 33. 33 Real-Time Event Processing Approach ©2014 Cloudera, Inc. All rights reserved. Hadoop Cluster II Storage Processing SolR Hadoop Cluster I ClientClient Flume Agents Hbase / Memory Spark Streaming HDFS Hive/Im pala Map/Re duce Spark Search Automated & Manual Analytical Adjustments and Pattern detection Fetching & Updating Profiles Adjusting NRT Stats HDFSEventSink SolR Sink Batch Time Adjustments Automated & Manual Review of NRT Changes and Counters Local Cache Kafka Clients: (Swipe here!) Web App
  • 34. 34 NRT Processing ©2014 Cloudera, Inc. All rights reserved.
  • 35. 35 Focus on NRT First ©2014 Cloudera, Inc. All rights reserved. Hadoop Cluster II Storage Processing SolR Hadoop Cluster I ClientClient Flume Agents Hbase / Memory Spark Streaming HDFS Hive/Im pala Map/Re duce Spark Search Automated & Manual Analytical Adjustments and Pattern detection Fetching & Updating Profiles Adjusting NRT Stats HDFSEventSink SolR Sink Batch Time Adjustments Automated & Manual Review of NRT Changes and Counters Local Cache Kafka Clients: (Swipe here!) Web App NRT Event Processing with Context
  • 36. 36 Streaming Architecture – NRT Event Processing ©2014 Cloudera, Inc. All rights reserved. Flume Source Flume Source Kafka Initial Events Topic Flume Source Flume Interceptor Event Processing Logic Local Memory HBase Client Kafka Answer Topic HBase KafkaConsumer KafkaProducer Able to respond with in 10s of milliseconds
  • 37. 37 Partitioned NRT Event Processing ©2014 Cloudera, Inc. All rights reserved. Flume Source Flume Source Kafka Initial Events Topic Flume Source Flume Interceptor Event Processing Logic Local Memory HBase Client Kafka Answer Topic HBase KafkaConsumer KafkaProducer Topic Partition A Partition B Partition C Producer Partitione r Producer Partitione r Producer Partitione r Custom Partitioner Better use of local memory
  • 38. 38 Completing the Puzzle ©2014 Cloudera, Inc. All rights reserved.
  • 39. 39 Micro Batching ©2014 Cloudera, Inc. All rights reserved. Hadoop Cluster II Storage Processing SolR Hadoop Cluster I ClientClient Flume Agents Hbase / Memory Spark Streaming HDFS Hive/Im pala Map/Re duce Spark Search Automated & Manual Analytical Adjustments and Pattern detection Fetching & Updating Profiles Adjusting NRT Stats HDFSEventSink SolR Sink Batch Time Adjustments Automated & Manual Review of NRT Changes and Counters Local Cache Kafka Clients: (Swipe here!) Web App Micro Batching Micro Batching Micro Batching
  • 40. 40 Complex Topologies ©2014 Cloudera, Inc. All rights reserved. Kafka Initial Events Topic Spark Streaming KafkaDirect Connection Dag Topologies Kafka Initial Events Topic Spark Streaming Kafka Receivers Dag Topologies Kafka Receivers Kafka Receivers • Manages Offset • Stores Offset is RDD • No longer needs HDFS for initial RDD check pointing • Lets Kafka Manage Offsets • Uses HDFS for initial RDD recovery 1.3 1.2
  • 41. 41 MicroBatch Bad-Input Handling ©2014 Cloudera, Inc. All rights reserved. 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Kafka – incoming events topic Dag Topologies 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Kafka – bad events topic 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Kafka – resolved events topic 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 Kafka – results topic
  • 42. 42 Ingestion ©2014 Cloudera, Inc. All rights reserved. Hadoop Cluster II Storage Processing SolR Hadoop Cluster I ClientClient Flume Agents Hbase / Memory Spark Streaming HDFS Hive/Im pala Map/Re duce Spark Search Automated & Manual Analytical Adjustments and Pattern detection Fetching & Updating Profiles Adjusting NRT Stats HDFSEventSink SolR Sink Batch Time Adjustments Automated & Manual Review of NRT Changes and Counters Local Cache Kafka Clients: (Swipe here!) Web App Ingestion Ingestion
  • 43. 43 Ingestion ©2014 Cloudera, Inc. All rights reserved. Flume HDFS Sink Kafka Cluster Topic Partition A Partition B Partition C Sink Sink Sink HDFS Flume SolR Sink Sink Sink Sink SolR Flume Hbase Sink Sink Sink Sink HBase
  • 44. 44 Reflective Thoughts ©2014 Cloudera, Inc. All rights reserved. Hadoop Cluster II Storage Processing SolR Hadoop Cluster I ClientClient Flume Agents Hbase / Memory Spark Streaming HDFS Hive/Im pala Map/Re duce Spark Search Automated & Manual Analytical Adjustments and Pattern detection Fetching & Updating Profiles Adjusting NRT Stats HDFSEventSink SolR Sink Batch Time Adjustments Automated & Manual Review of NRT Changes and Counters Local Cache Kafka Clients: (Swipe here!) Web App Research and Searching
  • 45. ©2014 Cloudera, Inc. All rights reserved.

Editor's Notes

  • #4: This gives me a lot of perspective regarding the use of Hadoop
  • #17: Topics are partitioned, each partition ordered and immutable. Messages in a partition have an ID, called Offset. Offset uniquely identifies a message within a partition
  • #18: Kafka retains all messages for fixed amount of time. Not waiting for acks from consumers. The only metadata retained per consumer is the position in the log – the offset So adding many consumers is cheap On the other hand, consumers have more responsibility and are more challenging to implement correctly And “batching” consumers is not a problem
  • #19: 3 partitions, each replicated 3 times.
  • #20: The choose how many replicas must ACK a message before its considered committed. This is the tradeoff between speed and reliability
  • #21: The choose how many replicas must ACK a message before its considered committed. This is the tradeoff between speed and reliability
  • #22: can read from one or more partition leader. You can’t have two consumers in same group reading the same partition. Leaders obviously do more work – but they are balanced between nodes We reviewed the basic components on the system, and it may seem complex. In the next section we’ll see how simple it actually is to get started with Kafka.
  • #24: Does not require programming.
  翻译: