This document discusses using machine learning to predict testability based on source code metrics. It begins with an introduction to the presenting organization and definitions of testability and machine learning concepts. It then shows how decision trees and other machine learning approaches could be used to predict testability levels (high, medium, low) based on source code metrics like number of interfaces, abstractness, and coupling. As an example, metrics from 9 Java packages were analyzed to build and test a predictive model in the Weka machine learning software. However, the document notes the initial model is simplistic and could be improved by incorporating more metrics related to factors in the testability fishbone diagram.