SlideShare a Scribd company logo
• Select Statement
• Select command is used to fetch the data in a set of records from a
table, view or a group of tables, views by making use of SQL joins.
• Retrieval of data using SQL statements can be done by using
different predicates like −
• Where
• Group By
• Having
• Order By
Basic select :
Select * from student;
Name Regno Branch Age
Hari 100 CSE 15
Pinky 101 CSE 17
Bob 102 CSE 14
Bhanu 103 CSE 18
Where clause
• Where clause is used with the data manipulation language (DML)
statement to check for a condition being met in row.
• Example 1
• The query given below displays the students’ records whose age is
in between 15 and 20.
SELECT * FROM student where age>15 and age<20;
(OR)
SELECT * FROM student where age between 15 and 20;
Name Regno Branch Age
Pinky 101 CSE 17
Bhanu 103 CSE 18
Example 2
• Consider another example to know more about where clause −
• Like operator is used to search for a specified pattern in a column.
The percent sign (%) represents zero, one, or multiple characters
The underscore sign (_) represents one, single character
The following SQL statement selects all students with a student Name that have
"or" in any position:
SELECT *FROM student where name LIKE '%or%’;
The following SQL statement selects all students with a student name that have "r"
in the second position
SELECT *FROM student where name LIKE '_r%’;
The following SQL statement selects all customers with a ContactName that starts
with "a" and ends with "o":
SELECT * FROM Customers
WHERE ContactName LIKE 'a%o';
The following SQL statement selects all customers with a CustomerName that does
NOT start with "a":
SELECT * FROM Customers
WHERE CustomerName NOT LIKE 'a%’;
Example: SELECT *FROM student where name like B%;
Name Regno Branch Age
Bob 102 CSE 14
Bhanu 103 CSE 18
SQL group by
In SQL, The Group By statement is used for organizing similar data into groups. The data is further
organized with the help of equivalent function. It means, if different rows in a precise column have the
same values, it will arrange those rows in a group.
•The SELECT statement is used with the GROUP BY clause in the SQL query.
•WHERE clause is placed before the GROUP BY clause in SQL.
•ORDER BY clause is placed after the GROUP BY clause in SQL.
S.no Name AGE Salary
1 John 24 25000
2 Nick 22 22000
3 Amara 25 15000
4 Nick 22 22000
5 John 24 25000
SUBJECT YEAR NAME
C language 2 John
C language 2 Ginny
C language 2 Jasmeen
C language 3 Nick
C language 3 Amara
Java 1 Sifa
Java 1 dolly
1.SELECT NAME, SUM (SALARY) FROM Employee
2.GROUP BY NAME;
S.no Name AGE Salary
1 John 24 25000
2 Nick 22 22000
3 Amara 25 15000
4 Nick 22 22000
5 John 24 25000
NAME SALARY
John 50000
Nick 44000
Amara 15000
SUBJECT YEAR NAME
C language 2 John
C language 2 Ginny
C language 2 Jasmeen
C language 3 Nick
C language 3 Amara
Java 1 Sifa
Java 1 dolly
1.SELECT SUBJECT, YEAR, Count (*)
2.FROM Student
3.Group BY SUBJECT, YEAR;
SUBJECT YEAR Count
C language 2 3
C language 3 2
Java 1 2
HAVING Clause
WHERE clause is used for deciding purpose. It is used to place conditions on the
columns to determine the part of the last result-set of the group. Here, we are not
required to use the combined functions like COUNT (), SUM (), etc. with the WHERE
clause. After that, we need to use a HAVING clause.
Syntax:
SELECT column1, function_name(column2)
FROM table_name
WHERE condition
GROUP BY column1, column2
HAVING condition
ORDER BY column1, column2;
function_name: Mainly used for name of the function, SUM(), AVG().
table_name: Used for name of the table.
condition: Condition used.
HAVING Clause
SELECT NAME, SUM(SALARY) FROM Employee
GROUP BY NAME
HAVING SUM(SALARY)>=50000;
Name SUM(SALARY)
John 50000
Aggregate Functions in SQL
• SQL Aggregate Functions
• SQL aggregation function is used to perform the calculations on
multiple rows of a single column of a table. It returns a single
value.
• It is also used to summarize the data.
Types of SQL Aggregation Function
COUNT FUNCTION
• COUNT function is used to Count the number of rows in a
database table. It can work on both numeric and non-numeric
data types.
• COUNT function uses the COUNT(*) that returns the count of
all the rows in a specified table. COUNT(*) considers duplicate
and Null.
Syntax:
COUNT(*)
or
COUNT( [ALL|DISTINCT] expression )
• Sample table:
• PRODUCT_MAST
Output: 10
PRODUCT COMPANY QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
Example: COUNT()
SELECT COUNT(*) FROM PRODUCT_MAST
Example: COUNT with WHERE
SELECT COUNT(*)
FROM PRODUCT_MAST;
WHERE RATE>=20;
Output:
7
• Sample table:
• PRODUCT_MAST
PRODUC
T
COMPAN
Y
QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
Example: COUNT() with DISTINCT
SELECT COUNT(DISTINCT COMPAN
Y)
FROM PRODUCT_MAST;
Output: 3
Example: COUNT() with GROUP BY
SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY;
Output:
Com1 5
Com2 3
• Sample table:
• PRODUCT_MAST
PRODUC
T
COMPAN
Y
QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
Example: COUNT() with HAVING
SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY
HAVING COUNT(*)>2;
Output:
Com1 5
Com2 3
2. SUM Function
• Sum function is used to calculate the sum of all selected
columns. It works on numeric fields only.
Syntax
SUM()
or
SUM( [ALL|DISTINCT] expression )
Example: SUM()
SELECT SUM(COST)
FROM PRODUCT_MAST;
Output: 670
PROD
UCT
COM
PANY
QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
Example: SUM() with WHERE
SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3;
Output:320
Example: SUM() with GROUP BY
SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3
GROUP BY COMPANY;
Output:
Com1 150
Com2 170
PROD
UCT
COM
PANY
QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
• Example: SUM() with HAVING
SELECT COMPANY, SUM(COST)
FROM PRODUCT_MAST
GROUP BY COMPANY
HAVING SUM(COST)>=170;
Output:
Com1 335
Com3 170
PROD
UCT
COM
PANY
QTY RATE COST
Item1 Com1 2 10 20
Item2 Com2 3 25 75
Item3 Com1 2 30 60
Item4 Com3 5 10 50
Item5 Com2 2 20 40
Item6 Cpm1 3 25 75
Item7 Com1 5 30 150
Item8 Com1 3 10 30
Item9 Com2 2 25 50
Item10 Com3 4 30 120
• 3. AVG function
• The AVG function is used to calculate the average value of the
numeric type. AVG function returns the average of all non-Null
values.
• Syntax
AVG()
or
AVG( [ALL|DISTINCT] expression )
Example:
SELECT AVG(COST)
FROM PRODUCT_MAST;
Output: 67.00
4. MAX Function
• The MAX function is used to find the maximum value of a certain
column. This function determines the largest value of all selected
values of a column.
• Syntax
MAX()
or
MAX( [ALL|DISTINCT] expression )
Example:
SELECT MAX(RATE)
FROM PRODUCT_MAST;
Output:30
5. MIN Function
• MIN function is used to find the minimum value of a certain column.
This function determines the smallest value of all selected values of
a column.
• Syntax
MIN()
or
MIN( [ALL|DISTINCT] expression )
• Example:
SELECT MIN(RATE)
FROM PRODUCT_MAST;
Output: 10
Ad

More Related Content

Similar to Unit 3-Select Options and Aggregate Functions in SQL (1).pptx (20)

FOUNDATION OF DATA SCIENCE SQL QUESTIONS
FOUNDATION OF DATA SCIENCE SQL QUESTIONSFOUNDATION OF DATA SCIENCE SQL QUESTIONS
FOUNDATION OF DATA SCIENCE SQL QUESTIONS
HITIKAJAIN4
 
Introduction to SQL
Introduction to SQLIntroduction to SQL
Introduction to SQL
Mahir Haque
 
ORACLE NOTES
ORACLE NOTESORACLE NOTES
ORACLE NOTES
Sachin Shukla
 
Database Query Using SQL_ip.docx
Database Query Using SQL_ip.docxDatabase Query Using SQL_ip.docx
Database Query Using SQL_ip.docx
VandanaGoyal21
 
Structure Query Language Advance Training
Structure Query Language Advance TrainingStructure Query Language Advance Training
Structure Query Language Advance Training
parisaxena1418
 
SQL.pptx
SQL.pptxSQL.pptx
SQL.pptx
MrHello6
 
Sql wksht-3
Sql wksht-3Sql wksht-3
Sql wksht-3
Mukesh Tekwani
 
Sql query [select, sub] 4
Sql query [select, sub] 4Sql query [select, sub] 4
Sql query [select, sub] 4
Dr. C.V. Suresh Babu
 
Sql (Introduction to Structured Query language)
Sql (Introduction to Structured Query language)Sql (Introduction to Structured Query language)
Sql (Introduction to Structured Query language)
Mohd Tousif
 
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhhSQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
NaveeN547338
 
Updat Dir
Updat DirUpdat Dir
Updat Dir
guest319770
 
Sql functions
Sql functionsSql functions
Sql functions
ilias ahmed
 
12. Basic SQL Queries (2).pptx
12. Basic SQL Queries  (2).pptx12. Basic SQL Queries  (2).pptx
12. Basic SQL Queries (2).pptx
SabrinaShanta2
 
SQL Data Manipulation language and DQL commands
SQL Data Manipulation language and DQL commandsSQL Data Manipulation language and DQL commands
SQL Data Manipulation language and DQL commands
sonali sonavane
 
SQL Presentation-1 (structured query language)
SQL Presentation-1 (structured query language)SQL Presentation-1 (structured query language)
SQL Presentation-1 (structured query language)
renodet116
 
Sql
SqlSql
Sql
Aman Lalpuria
 
SQL Presentation-1 yehjebjj yeuu helo the worls.ppt
SQL Presentation-1 yehjebjj yeuu helo the worls.pptSQL Presentation-1 yehjebjj yeuu helo the worls.ppt
SQL Presentation-1 yehjebjj yeuu helo the worls.ppt
nanisaketh
 
06.02 sql alias
06.02 sql alias06.02 sql alias
06.02 sql alias
Bishal Ghimire
 
Aggregate Functions,Final
Aggregate Functions,FinalAggregate Functions,Final
Aggregate Functions,Final
mukesh24pandey
 
SQL Tutorial - Basic Commands
SQL Tutorial - Basic CommandsSQL Tutorial - Basic Commands
SQL Tutorial - Basic Commands
1keydata
 
FOUNDATION OF DATA SCIENCE SQL QUESTIONS
FOUNDATION OF DATA SCIENCE SQL QUESTIONSFOUNDATION OF DATA SCIENCE SQL QUESTIONS
FOUNDATION OF DATA SCIENCE SQL QUESTIONS
HITIKAJAIN4
 
Introduction to SQL
Introduction to SQLIntroduction to SQL
Introduction to SQL
Mahir Haque
 
Database Query Using SQL_ip.docx
Database Query Using SQL_ip.docxDatabase Query Using SQL_ip.docx
Database Query Using SQL_ip.docx
VandanaGoyal21
 
Structure Query Language Advance Training
Structure Query Language Advance TrainingStructure Query Language Advance Training
Structure Query Language Advance Training
parisaxena1418
 
Sql (Introduction to Structured Query language)
Sql (Introduction to Structured Query language)Sql (Introduction to Structured Query language)
Sql (Introduction to Structured Query language)
Mohd Tousif
 
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhhSQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
SQL-AGG-FUN.pdfiiiijuyyttfffgyyuyyyyyhhh
NaveeN547338
 
12. Basic SQL Queries (2).pptx
12. Basic SQL Queries  (2).pptx12. Basic SQL Queries  (2).pptx
12. Basic SQL Queries (2).pptx
SabrinaShanta2
 
SQL Data Manipulation language and DQL commands
SQL Data Manipulation language and DQL commandsSQL Data Manipulation language and DQL commands
SQL Data Manipulation language and DQL commands
sonali sonavane
 
SQL Presentation-1 (structured query language)
SQL Presentation-1 (structured query language)SQL Presentation-1 (structured query language)
SQL Presentation-1 (structured query language)
renodet116
 
SQL Presentation-1 yehjebjj yeuu helo the worls.ppt
SQL Presentation-1 yehjebjj yeuu helo the worls.pptSQL Presentation-1 yehjebjj yeuu helo the worls.ppt
SQL Presentation-1 yehjebjj yeuu helo the worls.ppt
nanisaketh
 
Aggregate Functions,Final
Aggregate Functions,FinalAggregate Functions,Final
Aggregate Functions,Final
mukesh24pandey
 
SQL Tutorial - Basic Commands
SQL Tutorial - Basic CommandsSQL Tutorial - Basic Commands
SQL Tutorial - Basic Commands
1keydata
 

Recently uploaded (20)

15 Data Quality Issues Identify & Resolve Errors.pdf
15 Data Quality Issues Identify & Resolve Errors.pdf15 Data Quality Issues Identify & Resolve Errors.pdf
15 Data Quality Issues Identify & Resolve Errors.pdf
AffinityCore
 
MLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglésMLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglés
FabianPierrePeaJacob
 
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxjch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
MikkoPlanas
 
Kilowatt's Impact Report _ 2024 x
Kilowatt's Impact Report _ 2024                xKilowatt's Impact Report _ 2024                x
Kilowatt's Impact Report _ 2024 x
Kilowatt
 
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
 
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptxConcrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
ssuserd1f4a3
 
PN_Junction_Diode_Typdbhghfned_Notes.pdf
PN_Junction_Diode_Typdbhghfned_Notes.pdfPN_Junction_Diode_Typdbhghfned_Notes.pdf
PN_Junction_Diode_Typdbhghfned_Notes.pdf
AryanGohil1
 
Nature and Characteristics of Research.pptx
Nature and Characteristics of Research.pptxNature and Characteristics of Research.pptx
Nature and Characteristics of Research.pptx
KyleEmperado
 
L7-SL_en_Slides - LLMsIntroduction .pptx
L7-SL_en_Slides - LLMsIntroduction .pptxL7-SL_en_Slides - LLMsIntroduction .pptx
L7-SL_en_Slides - LLMsIntroduction .pptx
kenryostanikegbo
 
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays
 
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdfFaces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
jzyphoenix
 
03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf
LucaMariaPesando1
 
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays
 
Time series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptxTime series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptx
AsmaaMahmoud89
 
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
 
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays
 
Splunk_ITSI_Interview_Prep_Deck.pptx interview
Splunk_ITSI_Interview_Prep_Deck.pptx interviewSplunk_ITSI_Interview_Prep_Deck.pptx interview
Splunk_ITSI_Interview_Prep_Deck.pptx interview
willmorekanan
 
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays
 
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptxDEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
f8jyv28tjr
 
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
T207TrnVnt
 
15 Data Quality Issues Identify & Resolve Errors.pdf
15 Data Quality Issues Identify & Resolve Errors.pdf15 Data Quality Issues Identify & Resolve Errors.pdf
15 Data Quality Issues Identify & Resolve Errors.pdf
AffinityCore
 
MLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglésMLOps_with_SageMaker_Template_EN idioma inglés
MLOps_with_SageMaker_Template_EN idioma inglés
FabianPierrePeaJacob
 
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxjch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
MikkoPlanas
 
Kilowatt's Impact Report _ 2024 x
Kilowatt's Impact Report _ 2024                xKilowatt's Impact Report _ 2024                x
Kilowatt's Impact Report _ 2024 x
Kilowatt
 
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
 
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptxConcrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
Concrete_Presenbmlkvvbvvvfvbbbfcfftation.pptx
ssuserd1f4a3
 
PN_Junction_Diode_Typdbhghfned_Notes.pdf
PN_Junction_Diode_Typdbhghfned_Notes.pdfPN_Junction_Diode_Typdbhghfned_Notes.pdf
PN_Junction_Diode_Typdbhghfned_Notes.pdf
AryanGohil1
 
Nature and Characteristics of Research.pptx
Nature and Characteristics of Research.pptxNature and Characteristics of Research.pptx
Nature and Characteristics of Research.pptx
KyleEmperado
 
L7-SL_en_Slides - LLMsIntroduction .pptx
L7-SL_en_Slides - LLMsIntroduction .pptxL7-SL_en_Slides - LLMsIntroduction .pptx
L7-SL_en_Slides - LLMsIntroduction .pptx
kenryostanikegbo
 
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays New York 2025 - Agentic AI Future by Seena Ganesh (Staples)
apidays
 
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdfFaces of the Future The Impact of a Data Science Course in Kerala.pdf
Faces of the Future The Impact of a Data Science Course in Kerala.pdf
jzyphoenix
 
03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf03_10_gender_men_masculinity_reforms_policy.pdf
03_10_gender_men_masculinity_reforms_policy.pdf
LucaMariaPesando1
 
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays New York 2025 - The Evolution of Travel APIs by Eric White (Eviivo)
apidays
 
Time series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptxTime series analysis & forecasting-Day1.pptx
Time series analysis & forecasting-Day1.pptx
AsmaaMahmoud89
 
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays New York 2025 - From UX to AX by Karin Hendrikse (Netlify)
apidays
 
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays New York 2025 - AI for All by Ananya Upadhyay (United Rentals, Inc.)
apidays
 
Splunk_ITSI_Interview_Prep_Deck.pptx interview
Splunk_ITSI_Interview_Prep_Deck.pptx interviewSplunk_ITSI_Interview_Prep_Deck.pptx interview
Splunk_ITSI_Interview_Prep_Deck.pptx interview
willmorekanan
 
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays New York 2025 - How AI is Transforming Product Management by Shereen ...
apidays
 
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptxDEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
DEWDHDIEFHIFHIHGIERHFIHIM SC ID (2).pptx
f8jyv28tjr
 
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
hahehwhwhhwhwhwywtwtwywuwjwjwwnnwnensnsnsnsnsnsnsnnsnsndndndndndndndjdndndCou...
T207TrnVnt
 
Ad

Unit 3-Select Options and Aggregate Functions in SQL (1).pptx

  • 1. • Select Statement • Select command is used to fetch the data in a set of records from a table, view or a group of tables, views by making use of SQL joins. • Retrieval of data using SQL statements can be done by using different predicates like − • Where • Group By • Having • Order By Basic select : Select * from student; Name Regno Branch Age Hari 100 CSE 15 Pinky 101 CSE 17 Bob 102 CSE 14 Bhanu 103 CSE 18
  • 2. Where clause • Where clause is used with the data manipulation language (DML) statement to check for a condition being met in row. • Example 1 • The query given below displays the students’ records whose age is in between 15 and 20. SELECT * FROM student where age>15 and age<20; (OR) SELECT * FROM student where age between 15 and 20; Name Regno Branch Age Pinky 101 CSE 17 Bhanu 103 CSE 18
  • 3. Example 2 • Consider another example to know more about where clause − • Like operator is used to search for a specified pattern in a column. The percent sign (%) represents zero, one, or multiple characters The underscore sign (_) represents one, single character The following SQL statement selects all students with a student Name that have "or" in any position: SELECT *FROM student where name LIKE '%or%’; The following SQL statement selects all students with a student name that have "r" in the second position SELECT *FROM student where name LIKE '_r%’;
  • 4. The following SQL statement selects all customers with a ContactName that starts with "a" and ends with "o": SELECT * FROM Customers WHERE ContactName LIKE 'a%o'; The following SQL statement selects all customers with a CustomerName that does NOT start with "a": SELECT * FROM Customers WHERE CustomerName NOT LIKE 'a%’; Example: SELECT *FROM student where name like B%; Name Regno Branch Age Bob 102 CSE 14 Bhanu 103 CSE 18
  • 5. SQL group by In SQL, The Group By statement is used for organizing similar data into groups. The data is further organized with the help of equivalent function. It means, if different rows in a precise column have the same values, it will arrange those rows in a group. •The SELECT statement is used with the GROUP BY clause in the SQL query. •WHERE clause is placed before the GROUP BY clause in SQL. •ORDER BY clause is placed after the GROUP BY clause in SQL. S.no Name AGE Salary 1 John 24 25000 2 Nick 22 22000 3 Amara 25 15000 4 Nick 22 22000 5 John 24 25000 SUBJECT YEAR NAME C language 2 John C language 2 Ginny C language 2 Jasmeen C language 3 Nick C language 3 Amara Java 1 Sifa Java 1 dolly
  • 6. 1.SELECT NAME, SUM (SALARY) FROM Employee 2.GROUP BY NAME; S.no Name AGE Salary 1 John 24 25000 2 Nick 22 22000 3 Amara 25 15000 4 Nick 22 22000 5 John 24 25000 NAME SALARY John 50000 Nick 44000 Amara 15000 SUBJECT YEAR NAME C language 2 John C language 2 Ginny C language 2 Jasmeen C language 3 Nick C language 3 Amara Java 1 Sifa Java 1 dolly 1.SELECT SUBJECT, YEAR, Count (*) 2.FROM Student 3.Group BY SUBJECT, YEAR; SUBJECT YEAR Count C language 2 3 C language 3 2 Java 1 2
  • 7. HAVING Clause WHERE clause is used for deciding purpose. It is used to place conditions on the columns to determine the part of the last result-set of the group. Here, we are not required to use the combined functions like COUNT (), SUM (), etc. with the WHERE clause. After that, we need to use a HAVING clause. Syntax: SELECT column1, function_name(column2) FROM table_name WHERE condition GROUP BY column1, column2 HAVING condition ORDER BY column1, column2; function_name: Mainly used for name of the function, SUM(), AVG(). table_name: Used for name of the table. condition: Condition used.
  • 8. HAVING Clause SELECT NAME, SUM(SALARY) FROM Employee GROUP BY NAME HAVING SUM(SALARY)>=50000; Name SUM(SALARY) John 50000
  • 10. • SQL Aggregate Functions • SQL aggregation function is used to perform the calculations on multiple rows of a single column of a table. It returns a single value. • It is also used to summarize the data. Types of SQL Aggregation Function
  • 11. COUNT FUNCTION • COUNT function is used to Count the number of rows in a database table. It can work on both numeric and non-numeric data types. • COUNT function uses the COUNT(*) that returns the count of all the rows in a specified table. COUNT(*) considers duplicate and Null. Syntax: COUNT(*) or COUNT( [ALL|DISTINCT] expression )
  • 12. • Sample table: • PRODUCT_MAST Output: 10 PRODUCT COMPANY QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120 Example: COUNT() SELECT COUNT(*) FROM PRODUCT_MAST Example: COUNT with WHERE SELECT COUNT(*) FROM PRODUCT_MAST; WHERE RATE>=20; Output: 7
  • 13. • Sample table: • PRODUCT_MAST PRODUC T COMPAN Y QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120 Example: COUNT() with DISTINCT SELECT COUNT(DISTINCT COMPAN Y) FROM PRODUCT_MAST; Output: 3 Example: COUNT() with GROUP BY SELECT COMPANY, COUNT(*) FROM PRODUCT_MAST GROUP BY COMPANY; Output: Com1 5 Com2 3
  • 14. • Sample table: • PRODUCT_MAST PRODUC T COMPAN Y QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120 Example: COUNT() with HAVING SELECT COMPANY, COUNT(*) FROM PRODUCT_MAST GROUP BY COMPANY HAVING COUNT(*)>2; Output: Com1 5 Com2 3
  • 15. 2. SUM Function • Sum function is used to calculate the sum of all selected columns. It works on numeric fields only. Syntax SUM() or SUM( [ALL|DISTINCT] expression ) Example: SUM() SELECT SUM(COST) FROM PRODUCT_MAST; Output: 670 PROD UCT COM PANY QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120
  • 16. Example: SUM() with WHERE SELECT SUM(COST) FROM PRODUCT_MAST WHERE QTY>3; Output:320 Example: SUM() with GROUP BY SELECT SUM(COST) FROM PRODUCT_MAST WHERE QTY>3 GROUP BY COMPANY; Output: Com1 150 Com2 170 PROD UCT COM PANY QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120
  • 17. • Example: SUM() with HAVING SELECT COMPANY, SUM(COST) FROM PRODUCT_MAST GROUP BY COMPANY HAVING SUM(COST)>=170; Output: Com1 335 Com3 170 PROD UCT COM PANY QTY RATE COST Item1 Com1 2 10 20 Item2 Com2 3 25 75 Item3 Com1 2 30 60 Item4 Com3 5 10 50 Item5 Com2 2 20 40 Item6 Cpm1 3 25 75 Item7 Com1 5 30 150 Item8 Com1 3 10 30 Item9 Com2 2 25 50 Item10 Com3 4 30 120
  • 18. • 3. AVG function • The AVG function is used to calculate the average value of the numeric type. AVG function returns the average of all non-Null values. • Syntax AVG() or AVG( [ALL|DISTINCT] expression ) Example: SELECT AVG(COST) FROM PRODUCT_MAST; Output: 67.00
  • 19. 4. MAX Function • The MAX function is used to find the maximum value of a certain column. This function determines the largest value of all selected values of a column. • Syntax MAX() or MAX( [ALL|DISTINCT] expression ) Example: SELECT MAX(RATE) FROM PRODUCT_MAST; Output:30
  • 20. 5. MIN Function • MIN function is used to find the minimum value of a certain column. This function determines the smallest value of all selected values of a column. • Syntax MIN() or MIN( [ALL|DISTINCT] expression ) • Example: SELECT MIN(RATE) FROM PRODUCT_MAST; Output: 10
  翻译: