SlideShare a Scribd company logo
2D Transformations
x
y
x
y
x
y
Prof.M Kumbhkar
Christian Eminiant college
college Indore (mp)
2D Transformation
 Given a 2D object, transformation is to
change the object’s
 Position (translation)
 Size (scaling)
 Orientation (rotation)
 Shapes (shear)
 Apply a sequence of matrix multiplication to
the object vertices
Point representation
 We can use a column vector (a 2x1 matrix) to
represent a 2D point x
y
 A general form of linear transformation can
be written as:
x’ = ax + by + c
OR
y’ = dx + ey + f
X’ a b c x
Y’ = d e f * y
1 0 0 1 1
Translation
 Re-position a point along a straight line
 Given a point (x,y), and the translation
distance (tx,ty)
The new point: (x’, y’)
x’ = x + tx
y’ = y + ty (x,y)
(x’,y’)
OR P’ = P + T where P’ = x’ p = x T = tx
y’ y ty
tx
ty
3x3 2D Translation Matrix
x’ = x + tx
y’ y ty
Use 3 x 1 vector
x’ 1 0 tx x
y’ = 0 1 ty * y
1 0 0 1 1
 Note that now it becomes a matrix-vector multiplication
Translation
 How to translate an object with multiple
vertices?
Translate individual
vertices
2D Rotation
 Default rotation center: Origin (0,0)
q
q> 0 : Rotate counter clockwise
q< 0 : Rotate clockwise
q
Rotation
(x,y)
(x’,y’)
q
(x,y) -> Rotate about the origin by q
(x’, y’)
How to compute (x’, y’) ?
f
x = r cos (f) y = r sin (f)
r
x’ = r cos (f + q) y = r sin (f + q)
Rotation
(x,y)
(x’,y’)
q
f
r
x = r cos (f) y = r sin (f)
x’ = r cos (f + q) y = r sin (f + q)
x’ = r cos (f + q)
= r cos(f) cos(q) – r sin(f) sin(q)
= x cos(q) – y sin(q)
y’ = r sin (f + q)
= r sin(f) cos(q) + r cos(f)sin(q)
= y cos(q) + x sin(q)
Rotation
(x,y)
(x’,y’)
q
f
r
x’ = x cos(q) – y sin(q)
y’ = y cos(q) + x sin(q)
Matrix form?
x’ cos(q) -sin(q) x
y’ sin(q) cos(q) y
=
3 x 3?
3x3 2D Rotation Matrix
x’ cos(q) -sin(q) x
y’ sin(q) cos(q) y
=
(x,y)
(x’,y’)
q
f
r
x’ cos(q) -sin(q) 0 x
y’ sin(q) cos(q) 0 y
1 0 0 1 1
=
Rotation
 How to rotate an object with multiple
vertices?
Rotate individual
Vertices
q
2D Scaling
Scale: Alter the size of an object by a scaling factor
(Sx, Sy), i.e.
x’ = x . Sx
y’ = y . Sy
x’ Sx 0 x
y’ 0 Sy y
=
(1,1)
(2,2) Sx = 2, Sy = 2
(2,2)
(4,4)
2D Scaling
(1,1)
(2,2) Sx = 2, Sy = 2
(2,2)
(4,4)
 Not only the object size is changed, it also moved!!
 Usually this is an undesirable effect
 We will discuss later (soon) how to fix it
3x3 2D Scaling Matrix
x’ Sx 0 x
y’ 0 Sy y
=
x’ Sx 0 0 x
y’ = 0 Sy 0 * y
1 0 0 1 1
Put it all together
 Translation: x’ x tx
y’ y ty
 Rotation: x’ cos(q) -sin(q) x
y’ sin(q) cos(q) y
 Scaling: x’ Sx 0 x
y’ 0 Sy y
= +
= *
= *
Or, 3x3 Matrix representations
 Translation:
 Rotation:
 Scaling:
Why use 3x3 matrices?
x’ 1 0 tx x
y’ = 0 1 ty * y
1 0 0 1 1
x’ cos(q) -sin(q) 0 x
y’ sin(q) cos(q) 0 * y
1 0 0 1 1
=
x’ Sx 0 0 x
y’ = 0 Sy 0 * y
1 0 0 1 1
Why use 3x3 matrices?
 So that we can perform all transformations
using matrix/vector multiplications
 This allows us to pre-multiply all the matrices
together
 The point (x,y) needs to be represented as
(x,y,1) -> this is called Homogeneous
coordinates!
Shearing
 Y coordinates are unaffected, but x cordinates
are translated linearly with y
 That is:
 y’ = y
 x’ = x + y * h
x 1 h 0 x
y = 0 1 0 * y
1 0 0 1 1
Shearing in y
x 1 0 0 x
y = g 1 0 * y
1 0 0 1 1
 A 2D rotation is three shears
 Shearing will not change the area of the object
 Any 2D shearing can be done by a rotation, followed
by a scaling, and followed by a rotation
Interesting Facts:
Rotation Revisit
 The standard rotation matrix is used to
rotate about the origin (0,0)
cos(q) -sin(q) 0
sin(q) cos(q) 0
0 0 1
 What if I want to rotate about an
arbitrary center?
Arbitrary Rotation Center
 To rotate about an arbitrary point P (px,py)
by q:
 Translate the object so that P will coincide with
the origin: T(-px, -py)
 Rotate the object: R(q)
 Translate the object back: T(px,py)
(px,py)
Arbitrary Rotation Center
 Translate the object so that P will coincide with
the origin: T(-px, -py)
 Rotate the object: R(q)
 Translate the object back: T(px,py)
 Put in matrix form: T(px,py) R(q) T(-px, -py) * P
x’ 1 0 px cos(q) -sin(q) 0 1 0 -px x
y’ = 0 1 py sin(q) cos(q) 0 0 1 -py y
1 0 0 1 0 0 1 0 0 1 1
Scaling Revisit
 The standard scaling matrix will only
anchor at (0,0)
Sx 0 0
0 Sy 0
0 0 1
 What if I want to scale about an arbitrary
pivot point?
Arbitrary Scaling Pivot
 To scale about an arbitrary pivot point P
(px,py):
 Translate the object so that P will coincide with
the origin: T(-px, -py)
 Rotate the object: S(sx, sy)
 Translate the object back: T(px,py)
(px,py)
Affine Transformation
 Translation, Scaling, Rotation, Shearing are all affine
transformation
 Affine transformation – transformed point P’ (x’,y’) is
a linear combination of the original point P (x,y), i.e.
x’ m11 m12 m13 x
y’ = m21 m22 m23 y
1 0 0 1 1
 Any 2D affine transformation can be decomposed
into a rotation, followed by a scaling, followed by a
shearing, and followed by a translation.
Affine matrix = translation x shearing x scaling x rotation
Composing Transformation
 Composing Transformation – the process of applying
several transformation in succession to form one
overall transformation
 If we apply transform a point P using M1 matrix first,
and then transform using M2, and then M3, then we
have:
(M3 x (M2 x (M1 x P ))) = M3 x M2 x M1 x P
M
(pre-multiply)
Composing Transformation
 Matrix multiplication is associative
M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)
 Transformation products may not be commutative A x B != B
x A
 Some cases where A x B = B x A
A B
translation translation
scaling scaling
rotation rotation
uniform scaling rotation
(sx = sy)
Transformation order matters!
 Example: rotation and translation are not
commutative
Translate (5,0) and then Rotate 60 degree
OR
Rotate 60 degree and then translate (5,0)??
Rotate and then translate !!
How OpenGL does it?
 OpenGL’s transformation functions are
meant to be used in 3D
 No problem for 2D though – just ignore
the z dimension
 Translation:
 glTranslatef(d)(tx, ty, tz) ->
glTranslatef(d)tx,ty,0) for 2D
How OpenGL does it?
 Rotation:
 glRotatef(d)(angle, vx, vy, vz) ->
glRotatef(d)(angle, 0,0,1) for 2D
x
y
z
(vx, vy, vz) – rotation axis
x
y
You can imagine z is pointing out
of the slide
OpenGL Transformation Composition
 A global modeling transformation matrix
(GL_MODELVIEW, called it M here)
glMatrixMode(GL_MODELVIEW)
 The user is responsible to reset it if necessary
glLoadIdentity()
-> M = 1 0 0
0 1 0
0 0 1
OpenGL Transformation Composition
 Matrices for performing user-specified
transformations are multiplied to the model view
global matrix
 For example,
1 0 1
glTranslated(1,1 0); M = M x 0 1 1
0 0 1
 All the vertices P defined within glBegin() will first go
through the transformation (modeling
transformation)
P’ = M x P
Transformation Pipeline
Object
Local Coordinates
Object
World Coordinates
Modeling
transformation
…
Ad

More Related Content

What's hot (20)

Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
宗翰 謝
 
2d-transformation
2d-transformation2d-transformation
2d-transformation
Pooja Dixit
 
3D Transformation
3D Transformation3D Transformation
3D Transformation
Ahammednayeem
 
Discrete-Chapter 12 Modeling Computation
Discrete-Chapter 12 Modeling ComputationDiscrete-Chapter 12 Modeling Computation
Discrete-Chapter 12 Modeling Computation
Wongyos Keardsri
 
Knights tour on chessboard using backtracking
Knights tour on chessboard using backtrackingKnights tour on chessboard using backtracking
Knights tour on chessboard using backtracking
Abhishek Singh
 
Computer Graphics
Computer GraphicsComputer Graphics
Computer Graphics
Sneha Chopra
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
babak danyal
 
3D Transformation
3D Transformation 3D Transformation
3D Transformation
Mahmudul Hasan
 
Mid point circle algorithm
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithm
Mani Kanth
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
Christopher Chibangu
 
PDA (1) (1).pptx
PDA (1) (1).pptxPDA (1) (1).pptx
PDA (1) (1).pptx
nandan543979
 
2D Transformations(Computer Graphics)
2D Transformations(Computer Graphics)2D Transformations(Computer Graphics)
2D Transformations(Computer Graphics)
AditiPatni3
 
seminar on 2D transformation
seminar on 2D transformationseminar on 2D transformation
seminar on 2D transformation
9784
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
EasyStudy3
 
2 d transformations by amit kumar (maimt)
2 d transformations by amit kumar (maimt)2 d transformations by amit kumar (maimt)
2 d transformations by amit kumar (maimt)
Amit Kapoor
 
2 d geometric transformations
2 d geometric transformations2 d geometric transformations
2 d geometric transformations
Mohd Arif
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
Syeilendra Pramuditya
 
06.Transformation.ppt
06.Transformation.ppt06.Transformation.ppt
06.Transformation.ppt
RobinAhmedSaikat
 
Decoder Full Presentation
Decoder Full Presentation Decoder Full Presentation
Decoder Full Presentation
Adeel Rasheed
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
宗翰 謝
 
2d-transformation
2d-transformation2d-transformation
2d-transformation
Pooja Dixit
 
Discrete-Chapter 12 Modeling Computation
Discrete-Chapter 12 Modeling ComputationDiscrete-Chapter 12 Modeling Computation
Discrete-Chapter 12 Modeling Computation
Wongyos Keardsri
 
Knights tour on chessboard using backtracking
Knights tour on chessboard using backtrackingKnights tour on chessboard using backtracking
Knights tour on chessboard using backtracking
Abhishek Singh
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
babak danyal
 
Mid point circle algorithm
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithm
Mani Kanth
 
2D Transformations(Computer Graphics)
2D Transformations(Computer Graphics)2D Transformations(Computer Graphics)
2D Transformations(Computer Graphics)
AditiPatni3
 
seminar on 2D transformation
seminar on 2D transformationseminar on 2D transformation
seminar on 2D transformation
9784
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
EasyStudy3
 
2 d transformations by amit kumar (maimt)
2 d transformations by amit kumar (maimt)2 d transformations by amit kumar (maimt)
2 d transformations by amit kumar (maimt)
Amit Kapoor
 
2 d geometric transformations
2 d geometric transformations2 d geometric transformations
2 d geometric transformations
Mohd Arif
 
Decoder Full Presentation
Decoder Full Presentation Decoder Full Presentation
Decoder Full Presentation
Adeel Rasheed
 

Viewers also liked (20)

Hearn and Baker 2 D transformations
Hearn and Baker 2 D transformations   Hearn and Baker 2 D transformations
Hearn and Baker 2 D transformations
Taher Barodawala
 
Geometric transformation 2d chapter 5
Geometric transformation 2d   chapter 5Geometric transformation 2d   chapter 5
Geometric transformation 2d chapter 5
geethawilliam
 
Notes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNotes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphics
NANDINI SHARMA
 
Computer graphics basic transformation
Computer graphics basic transformationComputer graphics basic transformation
Computer graphics basic transformation
Selvakumar Gna
 
04transformation2d
04transformation2d04transformation2d
04transformation2d
Ketan Jani
 
2d transformations
2d transformations2d transformations
2d transformations
kmrvivek2
 
Two dimentional transform
Two dimentional transformTwo dimentional transform
Two dimentional transform
Patel Punit
 
3D transformation in computer graphics
3D transformation in computer graphics3D transformation in computer graphics
3D transformation in computer graphics
SHIVANI SONI
 
Spatial Transformation
Spatial TransformationSpatial Transformation
Spatial Transformation
Ehsan Hamzei
 
Transformations(scaling rotation translation)
Transformations(scaling rotation translation)Transformations(scaling rotation translation)
Transformations(scaling rotation translation)
Arjun Betageri
 
Improper Rotation
Improper RotationImproper Rotation
Improper Rotation
SCIENCE Pakistan
 
Geometric transformations
Geometric transformationsGeometric transformations
Geometric transformations
Brenda Obando
 
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIMHow to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
Safe Software
 
3 D Graphics
3 D Graphics3 D Graphics
3 D Graphics
Ghaffar Khan
 
Homogeneous representation
Homogeneous representationHomogeneous representation
Homogeneous representation
gosaliya dheirya
 
Two dimensional geometric transformation
Two dimensional geometric transformationTwo dimensional geometric transformation
Two dimensional geometric transformation
japan vasani
 
Cohen and Sutherland Algorithm for 7-8 marks
Cohen and Sutherland Algorithm for 7-8 marksCohen and Sutherland Algorithm for 7-8 marks
Cohen and Sutherland Algorithm for 7-8 marks
Rehan Khan
 
Supot37255412160
Supot37255412160Supot37255412160
Supot37255412160
Ajay Ochani
 
Lect6 transformation2d
Lect6 transformation2dLect6 transformation2d
Lect6 transformation2d
BCET
 
2D graphics
2D graphics2D graphics
2D graphics
Muhammad Rashid
 
Hearn and Baker 2 D transformations
Hearn and Baker 2 D transformations   Hearn and Baker 2 D transformations
Hearn and Baker 2 D transformations
Taher Barodawala
 
Geometric transformation 2d chapter 5
Geometric transformation 2d   chapter 5Geometric transformation 2d   chapter 5
Geometric transformation 2d chapter 5
geethawilliam
 
Notes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNotes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphics
NANDINI SHARMA
 
Computer graphics basic transformation
Computer graphics basic transformationComputer graphics basic transformation
Computer graphics basic transformation
Selvakumar Gna
 
04transformation2d
04transformation2d04transformation2d
04transformation2d
Ketan Jani
 
2d transformations
2d transformations2d transformations
2d transformations
kmrvivek2
 
Two dimentional transform
Two dimentional transformTwo dimentional transform
Two dimentional transform
Patel Punit
 
3D transformation in computer graphics
3D transformation in computer graphics3D transformation in computer graphics
3D transformation in computer graphics
SHIVANI SONI
 
Spatial Transformation
Spatial TransformationSpatial Transformation
Spatial Transformation
Ehsan Hamzei
 
Transformations(scaling rotation translation)
Transformations(scaling rotation translation)Transformations(scaling rotation translation)
Transformations(scaling rotation translation)
Arjun Betageri
 
Geometric transformations
Geometric transformationsGeometric transformations
Geometric transformations
Brenda Obando
 
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIMHow to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
Safe Software
 
Homogeneous representation
Homogeneous representationHomogeneous representation
Homogeneous representation
gosaliya dheirya
 
Two dimensional geometric transformation
Two dimensional geometric transformationTwo dimensional geometric transformation
Two dimensional geometric transformation
japan vasani
 
Cohen and Sutherland Algorithm for 7-8 marks
Cohen and Sutherland Algorithm for 7-8 marksCohen and Sutherland Algorithm for 7-8 marks
Cohen and Sutherland Algorithm for 7-8 marks
Rehan Khan
 
Supot37255412160
Supot37255412160Supot37255412160
Supot37255412160
Ajay Ochani
 
Lect6 transformation2d
Lect6 transformation2dLect6 transformation2d
Lect6 transformation2d
BCET
 
Ad

Similar to Transforms UNIt 2 (20)

2d transformations
2d transformations2d transformations
2d transformations
rajeshranjithsingh
 
2 d transformation
2 d transformation2 d transformation
2 d transformation
Ankit Garg
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
Bala Murali
 
2d transformation
2d transformation2d transformation
2d transformation
Sarkunavathi Aribal
 
Computer Graphics - transformations in 2d
Computer Graphics - transformations in 2dComputer Graphics - transformations in 2d
Computer Graphics - transformations in 2d
Hisham Al Kurdi, EAVA, DMC-D-4K, HCCA-P, HCAA-D
 
Computer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2DComputer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2D
2013901097
 
Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2
SIMONTHOMAS S
 
Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
Tarun Gehlot
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 d
xyz120
 
2D-transformation-1.pdf
2D-transformation-1.pdf2D-transformation-1.pdf
2D-transformation-1.pdf
bcanawakadalcollege
 
2D transformation (Computer Graphics)
2D transformation (Computer Graphics)2D transformation (Computer Graphics)
2D transformation (Computer Graphics)
Timbal Mayank
 
2D-Transformations-Transformations are the operations applied to geometrical ...
2D-Transformations-Transformations are the operations applied to geometrical ...2D-Transformations-Transformations are the operations applied to geometrical ...
2D-Transformations-Transformations are the operations applied to geometrical ...
BINJAD1
 
1533 game mathematics
1533 game mathematics1533 game mathematics
1533 game mathematics
Dr Fereidoun Dejahang
 
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.pptCOMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
urvashipundir04
 
Geometric transformation cg
Geometric transformation cgGeometric transformation cg
Geometric transformation cg
harinipriya1994
 
Three dimensional transformations
Three dimensional transformationsThree dimensional transformations
Three dimensional transformations
Nareek
 
2-D Transformations.pdf
2-D Transformations.pdf2-D Transformations.pdf
2-D Transformations.pdf
Mattupallipardhu
 
Computer Graphics Unit 2
Computer Graphics Unit 2Computer Graphics Unit 2
Computer Graphics Unit 2
aravindangc
 
10CSL67 CG LAB PROGRAM 4
10CSL67 CG LAB PROGRAM 410CSL67 CG LAB PROGRAM 4
10CSL67 CG LAB PROGRAM 4
Vanishree Arun
 
3 d transformation
3 d transformation3 d transformation
3 d transformation
Mani Kanth
 
2 d transformation
2 d transformation2 d transformation
2 d transformation
Ankit Garg
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
Bala Murali
 
Computer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2DComputer Graphic - Transformations in 2D
Computer Graphic - Transformations in 2D
2013901097
 
Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2
SIMONTHOMAS S
 
Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
Tarun Gehlot
 
Matrix 2 d
Matrix 2 dMatrix 2 d
Matrix 2 d
xyz120
 
2D transformation (Computer Graphics)
2D transformation (Computer Graphics)2D transformation (Computer Graphics)
2D transformation (Computer Graphics)
Timbal Mayank
 
2D-Transformations-Transformations are the operations applied to geometrical ...
2D-Transformations-Transformations are the operations applied to geometrical ...2D-Transformations-Transformations are the operations applied to geometrical ...
2D-Transformations-Transformations are the operations applied to geometrical ...
BINJAD1
 
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.pptCOMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
COMPOSITE TRANSFORMATION COMPUTER GRAPHICDS.ppt
urvashipundir04
 
Geometric transformation cg
Geometric transformation cgGeometric transformation cg
Geometric transformation cg
harinipriya1994
 
Three dimensional transformations
Three dimensional transformationsThree dimensional transformations
Three dimensional transformations
Nareek
 
Computer Graphics Unit 2
Computer Graphics Unit 2Computer Graphics Unit 2
Computer Graphics Unit 2
aravindangc
 
10CSL67 CG LAB PROGRAM 4
10CSL67 CG LAB PROGRAM 410CSL67 CG LAB PROGRAM 4
10CSL67 CG LAB PROGRAM 4
Vanishree Arun
 
3 d transformation
3 d transformation3 d transformation
3 d transformation
Mani Kanth
 
Ad

Recently uploaded (20)

How to Manage Amounts in Local Currency in Odoo 18 Purchase
How to Manage Amounts in Local Currency in Odoo 18 PurchaseHow to Manage Amounts in Local Currency in Odoo 18 Purchase
How to Manage Amounts in Local Currency in Odoo 18 Purchase
Celine George
 
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon DolabaniHistory Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
fruinkamel7m
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
puzzle Irregular Verbs- Simple Past Tense
puzzle Irregular Verbs- Simple Past Tensepuzzle Irregular Verbs- Simple Past Tense
puzzle Irregular Verbs- Simple Past Tense
OlgaLeonorTorresSnch
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
parmarjuli1412
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Search Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo SlidesSearch Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo Slides
Celine George
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)
jemille6
 
Module 1: Foundations of Research
Module 1: Foundations of ResearchModule 1: Foundations of Research
Module 1: Foundations of Research
drroxannekemp
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 
How to Manage Amounts in Local Currency in Odoo 18 Purchase
How to Manage Amounts in Local Currency in Odoo 18 PurchaseHow to Manage Amounts in Local Currency in Odoo 18 Purchase
How to Manage Amounts in Local Currency in Odoo 18 Purchase
Celine George
 
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon DolabaniHistory Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
History Of The Monastery Of Mor Gabriel Philoxenos Yuhanon Dolabani
fruinkamel7m
 
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and GuestsLDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDMMIA Reiki News Ed3 Vol1 For Team and Guests
LDM Mia eStudios
 
How to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo SlidesHow to Create Kanban View in Odoo 18 - Odoo Slides
How to Create Kanban View in Odoo 18 - Odoo Slides
Celine George
 
puzzle Irregular Verbs- Simple Past Tense
puzzle Irregular Verbs- Simple Past Tensepuzzle Irregular Verbs- Simple Past Tense
puzzle Irregular Verbs- Simple Past Tense
OlgaLeonorTorresSnch
 
Form View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo SlidesForm View Attributes in Odoo 18 - Odoo Slides
Form View Attributes in Odoo 18 - Odoo Slides
Celine George
 
Chemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptxChemotherapy of Malignancy -Anticancer.pptx
Chemotherapy of Malignancy -Anticancer.pptx
Mayuri Chavan
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
BÀI TẬP BỔ TRỢ TIẾNG ANH 9 THEO ĐƠN VỊ BÀI HỌC - GLOBAL SUCCESS - CẢ NĂM (TỪ...
Nguyen Thanh Tu Collection
 
antiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidenceantiquity of writing in ancient India- literary & archaeological evidence
antiquity of writing in ancient India- literary & archaeological evidence
PrachiSontakke5
 
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
Mental Health Assessment in 5th semester bsc. nursing and also used in 2nd ye...
parmarjuli1412
 
CNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscessCNS infections (encephalitis, meningitis & Brain abscess
CNS infections (encephalitis, meningitis & Brain abscess
Mohamed Rizk Khodair
 
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
How to Clean Your Contacts Using the Deduplication Menu in Odoo 18
Celine George
 
Ajanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of HistoryAjanta Paintings: Study as a Source of History
Ajanta Paintings: Study as a Source of History
Virag Sontakke
 
Search Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo SlidesSearch Matching Applicants in Odoo 18 - Odoo Slides
Search Matching Applicants in Odoo 18 - Odoo Slides
Celine George
 
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptxU3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
U3 ANTITUBERCULAR DRUGS Pharmacology 3.pptx
Mayuri Chavan
 
2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx2025 The Senior Landscape and SET plan preparations.pptx
2025 The Senior Landscape and SET plan preparations.pptx
mansk2
 
E-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26ASE-Filing_of_Income_Tax.pptx and concept of form 26AS
E-Filing_of_Income_Tax.pptx and concept of form 26AS
Abinash Palangdar
 
What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)What is the Philosophy of Statistics? (and how I was drawn to it)
What is the Philosophy of Statistics? (and how I was drawn to it)
jemille6
 
Module 1: Foundations of Research
Module 1: Foundations of ResearchModule 1: Foundations of Research
Module 1: Foundations of Research
drroxannekemp
 
Myopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduateMyopathies (muscle disorders) for undergraduate
Myopathies (muscle disorders) for undergraduate
Mohamed Rizk Khodair
 

Transforms UNIt 2

  • 1. 2D Transformations x y x y x y Prof.M Kumbhkar Christian Eminiant college college Indore (mp)
  • 2. 2D Transformation  Given a 2D object, transformation is to change the object’s  Position (translation)  Size (scaling)  Orientation (rotation)  Shapes (shear)  Apply a sequence of matrix multiplication to the object vertices
  • 3. Point representation  We can use a column vector (a 2x1 matrix) to represent a 2D point x y  A general form of linear transformation can be written as: x’ = ax + by + c OR y’ = dx + ey + f X’ a b c x Y’ = d e f * y 1 0 0 1 1
  • 4. Translation  Re-position a point along a straight line  Given a point (x,y), and the translation distance (tx,ty) The new point: (x’, y’) x’ = x + tx y’ = y + ty (x,y) (x’,y’) OR P’ = P + T where P’ = x’ p = x T = tx y’ y ty tx ty
  • 5. 3x3 2D Translation Matrix x’ = x + tx y’ y ty Use 3 x 1 vector x’ 1 0 tx x y’ = 0 1 ty * y 1 0 0 1 1  Note that now it becomes a matrix-vector multiplication
  • 6. Translation  How to translate an object with multiple vertices? Translate individual vertices
  • 7. 2D Rotation  Default rotation center: Origin (0,0) q q> 0 : Rotate counter clockwise q< 0 : Rotate clockwise q
  • 8. Rotation (x,y) (x’,y’) q (x,y) -> Rotate about the origin by q (x’, y’) How to compute (x’, y’) ? f x = r cos (f) y = r sin (f) r x’ = r cos (f + q) y = r sin (f + q)
  • 9. Rotation (x,y) (x’,y’) q f r x = r cos (f) y = r sin (f) x’ = r cos (f + q) y = r sin (f + q) x’ = r cos (f + q) = r cos(f) cos(q) – r sin(f) sin(q) = x cos(q) – y sin(q) y’ = r sin (f + q) = r sin(f) cos(q) + r cos(f)sin(q) = y cos(q) + x sin(q)
  • 10. Rotation (x,y) (x’,y’) q f r x’ = x cos(q) – y sin(q) y’ = y cos(q) + x sin(q) Matrix form? x’ cos(q) -sin(q) x y’ sin(q) cos(q) y = 3 x 3?
  • 11. 3x3 2D Rotation Matrix x’ cos(q) -sin(q) x y’ sin(q) cos(q) y = (x,y) (x’,y’) q f r x’ cos(q) -sin(q) 0 x y’ sin(q) cos(q) 0 y 1 0 0 1 1 =
  • 12. Rotation  How to rotate an object with multiple vertices? Rotate individual Vertices q
  • 13. 2D Scaling Scale: Alter the size of an object by a scaling factor (Sx, Sy), i.e. x’ = x . Sx y’ = y . Sy x’ Sx 0 x y’ 0 Sy y = (1,1) (2,2) Sx = 2, Sy = 2 (2,2) (4,4)
  • 14. 2D Scaling (1,1) (2,2) Sx = 2, Sy = 2 (2,2) (4,4)  Not only the object size is changed, it also moved!!  Usually this is an undesirable effect  We will discuss later (soon) how to fix it
  • 15. 3x3 2D Scaling Matrix x’ Sx 0 x y’ 0 Sy y = x’ Sx 0 0 x y’ = 0 Sy 0 * y 1 0 0 1 1
  • 16. Put it all together  Translation: x’ x tx y’ y ty  Rotation: x’ cos(q) -sin(q) x y’ sin(q) cos(q) y  Scaling: x’ Sx 0 x y’ 0 Sy y = + = * = *
  • 17. Or, 3x3 Matrix representations  Translation:  Rotation:  Scaling: Why use 3x3 matrices? x’ 1 0 tx x y’ = 0 1 ty * y 1 0 0 1 1 x’ cos(q) -sin(q) 0 x y’ sin(q) cos(q) 0 * y 1 0 0 1 1 = x’ Sx 0 0 x y’ = 0 Sy 0 * y 1 0 0 1 1
  • 18. Why use 3x3 matrices?  So that we can perform all transformations using matrix/vector multiplications  This allows us to pre-multiply all the matrices together  The point (x,y) needs to be represented as (x,y,1) -> this is called Homogeneous coordinates!
  • 19. Shearing  Y coordinates are unaffected, but x cordinates are translated linearly with y  That is:  y’ = y  x’ = x + y * h x 1 h 0 x y = 0 1 0 * y 1 0 0 1 1
  • 20. Shearing in y x 1 0 0 x y = g 1 0 * y 1 0 0 1 1  A 2D rotation is three shears  Shearing will not change the area of the object  Any 2D shearing can be done by a rotation, followed by a scaling, and followed by a rotation Interesting Facts:
  • 21. Rotation Revisit  The standard rotation matrix is used to rotate about the origin (0,0) cos(q) -sin(q) 0 sin(q) cos(q) 0 0 0 1  What if I want to rotate about an arbitrary center?
  • 22. Arbitrary Rotation Center  To rotate about an arbitrary point P (px,py) by q:  Translate the object so that P will coincide with the origin: T(-px, -py)  Rotate the object: R(q)  Translate the object back: T(px,py) (px,py)
  • 23. Arbitrary Rotation Center  Translate the object so that P will coincide with the origin: T(-px, -py)  Rotate the object: R(q)  Translate the object back: T(px,py)  Put in matrix form: T(px,py) R(q) T(-px, -py) * P x’ 1 0 px cos(q) -sin(q) 0 1 0 -px x y’ = 0 1 py sin(q) cos(q) 0 0 1 -py y 1 0 0 1 0 0 1 0 0 1 1
  • 24. Scaling Revisit  The standard scaling matrix will only anchor at (0,0) Sx 0 0 0 Sy 0 0 0 1  What if I want to scale about an arbitrary pivot point?
  • 25. Arbitrary Scaling Pivot  To scale about an arbitrary pivot point P (px,py):  Translate the object so that P will coincide with the origin: T(-px, -py)  Rotate the object: S(sx, sy)  Translate the object back: T(px,py) (px,py)
  • 26. Affine Transformation  Translation, Scaling, Rotation, Shearing are all affine transformation  Affine transformation – transformed point P’ (x’,y’) is a linear combination of the original point P (x,y), i.e. x’ m11 m12 m13 x y’ = m21 m22 m23 y 1 0 0 1 1  Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation. Affine matrix = translation x shearing x scaling x rotation
  • 27. Composing Transformation  Composing Transformation – the process of applying several transformation in succession to form one overall transformation  If we apply transform a point P using M1 matrix first, and then transform using M2, and then M3, then we have: (M3 x (M2 x (M1 x P ))) = M3 x M2 x M1 x P M (pre-multiply)
  • 28. Composing Transformation  Matrix multiplication is associative M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)  Transformation products may not be commutative A x B != B x A  Some cases where A x B = B x A A B translation translation scaling scaling rotation rotation uniform scaling rotation (sx = sy)
  • 29. Transformation order matters!  Example: rotation and translation are not commutative Translate (5,0) and then Rotate 60 degree OR Rotate 60 degree and then translate (5,0)?? Rotate and then translate !!
  • 30. How OpenGL does it?  OpenGL’s transformation functions are meant to be used in 3D  No problem for 2D though – just ignore the z dimension  Translation:  glTranslatef(d)(tx, ty, tz) -> glTranslatef(d)tx,ty,0) for 2D
  • 31. How OpenGL does it?  Rotation:  glRotatef(d)(angle, vx, vy, vz) -> glRotatef(d)(angle, 0,0,1) for 2D x y z (vx, vy, vz) – rotation axis x y You can imagine z is pointing out of the slide
  • 32. OpenGL Transformation Composition  A global modeling transformation matrix (GL_MODELVIEW, called it M here) glMatrixMode(GL_MODELVIEW)  The user is responsible to reset it if necessary glLoadIdentity() -> M = 1 0 0 0 1 0 0 0 1
  • 33. OpenGL Transformation Composition  Matrices for performing user-specified transformations are multiplied to the model view global matrix  For example, 1 0 1 glTranslated(1,1 0); M = M x 0 1 1 0 0 1  All the vertices P defined within glBegin() will first go through the transformation (modeling transformation) P’ = M x P
  • 34. Transformation Pipeline Object Local Coordinates Object World Coordinates Modeling transformation …
  翻译: