- The document discusses linear regression models and methods for estimating coefficients, including ordinary least squares and regularization methods like ridge regression and lasso regression.
- It explains how lasso regression, unlike ordinary least squares and ridge regression, has the property of driving some of the coefficient estimates exactly to zero, allowing for variable selection.
- An example using crime rate data shows how lasso regression can select a more parsimonious model than other methods by setting some coefficients to zero.
This document discusses various methods for calculating Wasserstein distance between probability distributions, including:
- Sliced Wasserstein distance, which projects distributions onto lower-dimensional spaces to enable efficient 1D optimal transport calculations.
- Max-sliced Wasserstein distance, which focuses sampling on the most informative projection directions.
- Generalized sliced Wasserstein distance, which uses more flexible projection functions than simple slicing, like the Radon transform.
- Augmented sliced Wasserstein distance, which applies a learned transformation to distributions before projecting, allowing more expressive matching between distributions.
These sliced/generalized Wasserstein distances have been used as loss functions for generative models with promising
This document discusses various methods for calculating Wasserstein distance between probability distributions, including:
- Sliced Wasserstein distance, which projects distributions onto lower-dimensional spaces to enable efficient 1D optimal transport calculations.
- Max-sliced Wasserstein distance, which focuses sampling on the most informative projection directions.
- Generalized sliced Wasserstein distance, which uses more flexible projection functions than simple slicing, like the Radon transform.
- Augmented sliced Wasserstein distance, which applies a learned transformation to distributions before projecting, allowing more expressive matching between distributions.
These sliced/generalized Wasserstein distances have been used as loss functions for generative models with promising
This document discusses Python and machine learning libraries like scikit-learn. It provides code examples for loading data, fitting models, and making predictions using scikit-learn algorithms. It also covers working with NumPy arrays and loading data from files like CSVs.
This document discusses Mahout, an Apache project for machine learning algorithms like classification, clustering, and pattern mining. It describes using Mahout with Hadoop to build a Naive Bayes classifier on Wikipedia data to classify articles into categories like "game" and "sports". The process includes splitting Wikipedia XML, training the classifier on Hadoop, and testing it to generate a confusion matrix. Mahout can also integrate with other systems like HBase for real-time classification.