SlideShare a Scribd company logo
Prolog Programming
2
Prolog ProgrammingProlog Programming
 DATA STRUCTURES IN PROLOG
 PROGRAMMING TECHNIQUES
 CONTROL IN PROLOG
 CUTS
3
DATA STRUCTURES IN
PROLOG
 Lists in Prolog
List notation is a way of writing terms
 Terms as Data
Term correspond with list
4
Lists in Prolog
 The simplest way of writing a list is to
enumerate its elements.
The list consisting of the 3 atoms a, b and c can be
written as
[a, b, c]
The list that doesn’t have elements called empty
list denoted as [ ]
5
Lists in Prolog
 We can also specify an initial sequence of
elements and a trailing list, separated by |
The list [a, b, c] can also be written as
[a, b, c | [ ] ]
[a, b | [c] ]
[a | [b, c] ]
6
Lists : Head & Tail
 A special case of this notation is a list with
head H and tail T, written as [H|T]
 The head is the first element of a list, and
 The tail is the list consisting of the remaining
elements.
The list [a, b, c] can also be separated as
• Head:The first element is a
• Tail:The list of remaining elements = [b, c]
7
Lists : Unification
 Unification can be used to extract the
components of a list, so explicit operators for
extracting the head and tail are not needed.
The solution of the query
 Bind variable H to the head and variable T to
the tail of list [a, b, c].
?- [H | T] = [a, b, c].
H = a
T = [b, c]
8
Lists : Specified terms
 The query (partially specified terms)
 The term [ a | T ] is a partial specification of a
list with head a and unknown tail denoted by
variable T.
 Similarly, [ H, b, c] is a partial specification of a
list with unknown head H and tail [b, c].
 These two specification to unify H = a, T =[b,c]
?- [a | T] = [H, b, c].
T = [b, c]
H = a
9
Lists in Prolog
 Example 2 The append relation on lists is
defined by the following rules:
Append([ ], Y, Y).
Append([H | X], Y, [H | Z]) :- append(X,Y,Z).
In words,
The result of appending the empty list [ ] and a list Y is Y.
If the result of appending X and Y is Z, then
the result of appending [H | X] and Y is [H | Z]
10
Lists : Compute Arguments
 The rules for append can be used to compute
any one of the arguments from the other two:
 Inconsistent arguments are rejected
?- append([a, b], [c, d], Z).
Z = [a, b, c, d]
?- append([a, b], Y, [a, b, c, d]).
Y = [c, d]
?- append(X, [c, d], [a, b, c, d]).
X = [a, b]
?- append(X, [d, c], [a, b, c, d]).
no
11
Terms as Data
 The Dot operator or functor ‘.’ corresponds to
make list with H and T.
 [H | T ] is syntactic sugar for the term .(H,T)
 Lists are terms. The term for the list [a, b, c] is
.(H,T)
.(a, .(b, .(c, [])))
12
Terms as Data
 following terms can be drawn a tree
 There is a one-to-one correspondence
between trees and terms
.(a, .(b, .(c, [])))
∙
∙
∙
a
b
c []
13
Terms : Binary Tree
 Binary trees can be written as terms
 An atom leaf for a leaf
 A functor nonleaf with 2 arguments
leaf
nonleaf(leaf,leaf)
nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf))
nonleaf(nonleaf(leaf,leaf),leaf)
nonleaf(leaf,nonleaf(leaf,leaf))
14
List : tree
 Example 3 A binary search tree is either
empty, or it consists of a node with two binary
search trees as subtrees.
 Each node holds an integer.
 Smaller elements appear in the left subtree of
a node and larger elements appear in the right
subtree.
 Let a term node(K,S,T) represent a tree
K
S T
15
Binary search trees
15
2 16
10
129
0
3
19
10
2 12
9
153
0 16
3
16
Binary search trees
 The rules define a relation member to test
whether an integer appear at some node in a
tree. The two arguments of member are an
integer and a tree.
member(K,_,_).
member(K, node(N,S,_)) :- K < N, member(K, S).
member(K, node(N,_,T)) :- K > N, member(K, T).
17
PROGRAMMING TECHNIQUES
 The strengths of Prolog namely, backtracking
and unification.
 Backtracking allows a solution to be found if
one exists
 Unification allows variables to be used as
placeholders for data to be filled in later.
 Careful use of the techniques in this section
can lead to efficient programs. The programs
rely on left-to-right evaluation of subgoals.
18
Guess and Verify
 A guess-and-verify query has the form
Where guess(S) and verify(S) are subgoals.
 Prolog respond to a query by generating
solutions to guess(S) until a solution satisfying
verify(S) is found. Such queries are also called
generate-and-test queries.
Is there an S such that
guess(S) and verify(S)?
19
Guess and Verify
 Similarly, a guess-and-verify rule has the
following form:
 Example
Conslusion(…) if guess(…,S,…) and verify(…,S,…)
overlap(X, Y) :- member(M, X), member(M, Y).
Two lists X and Y overlap if there is some M that is a
member of both X and Y. The first goal member(M, X)
guesses an M from list X, and the second goal member(M,
Y) verifies that M also appears in list Y.
20
 The rules for member are
member(M, [M |_]).
Member(M, [_ |T]) :- member(M, T).
The first rule says that M is a member of a list with head
M. The second rule says that M is a member of a list if M
is a member of its tail T.
21
Consider query
 These query
 The first goal in this query generates
solutions and the second goal tests to see
whether they are acceptable.
?- overlap([a,b,c,d],[1,2,c,d]).
yes
?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
22
Consider query
 The solutions generated by the first goal are
 Test the second goal
?- member(M,[a,b,c,d]).
M = a;
M = b;
M = c;
M = d;
no
?- member(a,[1,2,c,d]).
no
?- member(b,[1,2,c,d]).
no
?- member(c,[1,2,c,d]).
yes
23
Hint
 Since computation in Prolog proceeds from
left to right, the order of the subgoals in a
guess-and-verify query can affect efficiency.
 Choose the subgoal with fewer solutions as
the guess goal.
 Example of the effect of goal order
?- X = [1,2,3], member(a,X).
no
?- member(a,X), X = [1,2,3]).
[infinite computation]
24
Variables as Placeholders in Terms
 Variables have been used in rules and
queries but not in terms representing objects.
 Terms containing varibales can be used to
simulate modifiable data structures;
 The variables serve as placeholders for
subterms to be filled in later.
25
Represent Binary Trees in Terms
 The terms leaf and nonleaf(leaf,leaf)
are completely specified.
leaf
nonleaf(leaf,leaf)
26
Partially specified list
 The example list [a, b | X] has
 Its first element : a
 Its second element : b
 Do not yet know what X represents
 “Open list” if its ending in a variable, referred
“end marker variable”
 “Close list” if it is not open.
27
How prolog know variable
 Prolog used machine-generated variables,
written with a leading underscore (“_”)
followed by an integer.
?- L = [a, b | X].
L = [a, |_G172]
X = _G172
Yes
28
 Prolog generates fresh variables each time it
responds to a query or applies a rule.
 An open list can be modified by unifying its
end marker
?- L = [a, b | X], X = [c,Y].
L = [a,b,c |_G236]
X = [c,_G236]
Y = _G236
Yes
29
 Extending an open list by unifying its end
marker.
a b
L X
_172
a b
L X
_236
c
(a) Before X is bound. (b) After X = [c | Y].
30
 Unification of an end-marker variable is akin
to an assignment to that variable.
 List L changes from
[a, b | _172]  [a, b, c | _236]
when _172 unifies with [c | _236]
 Advantage of working with open lists is that
the end of a list can be accessed quickly.
31
Open list implement queues
when a queue is created, where L is an open list with
end marker E
When element a enters queue Q, we get queue R.
When element a leaves queue Q, we get queue R.
q(L,E)
enter(a,Q,R)
leave(a,Q,R)
32
Open list implement queue
?- setup(Q).
?- setup(Q), enter(a,Q,R).
?- setup(Q), enter(a,Q,R), leave(S,R,T).
?- setup(Q), enter(a,Q,R), enter(b,R,S),
leave(X,S,T),leave(Y,T,U), wrapup(q([],[])).
setup(q(X,X)).
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y].
wrapup(q([],[])).
33
Test queue
?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T),
leave(Y,T,U),wrapup(U).
Q = q([a, b], [a, b])
R = q([a, b], [b])
S = q([a, b], [])
X = a
T = q([b], [])
Y = b
U = q([], [])
Yes
?-
34
Operations on a queue
Q
_1
R
_2
a
a
T
_3
b
Q
Q R
setup(Q)
enter(a,Q,R)
enter(b,R,S)
35
Operations on a queue
a
T
_3
b
X
leave(X,S,T)
a
T
_3
b
Y
leave(Y,T,U)
36
Internal Prolog
 A queue q(L,E) consists of open list L with
end marker E.
 The arrows from Q therefore go to the empty
open list _1 with end marker _1.
setup(q(X,X)).
?-setup(Q).
Q = q(_1,_1)
yes
37
Second goal
 To enter A into a queue q(X,Y),
bind Y to a list [A|Z],
where Z is a fresh end marker,
and return q(X,Z).
enter(A,q(X,Y),q(X,Z)):- Y = [A|Z].
?-setup(Q),enter(a,Q,R).
Q = q([a|_2], [a|_2])
R = q([a|_2], _2)
Unifies _1 with [a|_2],where _2 is a fresh end marker
38
 When an element leaves a queue q(L,E), the
resulting queue has the tail of L in place of L.
Note in the diagram to the right of
leave(X,S,T) that the open list for queue T is
the tail of the open list for S.
 The final goal wrapup(U) checks that the
enter and leave operations leave U in an
initial state q(L,E), where L is an empty
openlist with end marker E.
39
Difference Lists
 Difference List are a technique for coping with
such changes.
 Difference List consists of a list and its suffix.
 We write this difference list as
dl(L,E).
40
Contents of Difference List
 The contents of the difference list consist of
the elements that are in L but not in E.
 Examples of difference lists with contents
[a,b] are
dl([a,b],[]).
Dl([a,b,c],[c]).
Dl([a,b|E],E).
Dl([a,b,c|F],[c|F]).
41
CONTROL IN PROLOG
 In the informal equation
 “Logic” refers to the rules and queries in a
logic program and
 “control” refers to how a language computes
a response to a query.
algorithm = logic + control
42
CONTROL IN PROLOG
 Control in Prolog is characterized by two
decisions
 Goal order : Choose the leftmost subgoal.
 Rule order : Select the first applicable rule.
 The response to a query is affected both by
goal order within the query and by rule order
with in the database of facts and rules.
43
CONTROL IN PROLOG
start with a query as the current goal;
while the current goal is nonempty do
choose the leftmost subgoal;
if a rule applies to the subgoal then
select the first applicable rule;
form a new current goal
else
backtrack
end if
end while;
succeed
44
Example
 A sublist S of Z can be specified in the
following seemingly equivalent ways:
 preffix X of Z and suffix S of X.
 suffix S of X and prefix X of Z.
appen1([],Y,Y).
appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z).
Prefix(X,Z) :- appen1(X,Y,Z).
Suffix(Y,Z) :- appen1(X,Y,Z).
appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z).
appen2([],Y,Y).
45
Queries
 The corresponding queries usually produce
the same responses.
 Rule order can also make a difference.
?-prefix(X,[a,b,c]),suffix([e],X).
no
?-suffix([e],X),prefix(X,[a,b,c]).
[infinite computation]
46
Queries
?- appen1(X,[c],Z).
X = []
Z = [c] ;
X = [_G230]
Z = [_G230, c] ;
X = [_G230, _G236]
Z = [_G230, _G236, c] ;
?- appen2(X,[c],Z).
 New Solutions are produced on demand for
47
Unification an Substitutions
 Unification is central to control in Prolog
 Substitution is a function from variables to
terms
48
Applying a Rule to a Goal
 A rule applies to a
subgoal G if its head A unifies with G
 Variables in the rule are renamed before
unification to keep them distinct from
variables in the subgoal.
A :- B1, B2, …, Bn
49
A computation that succeeds without backtracking
GOAL
Suffix([a],L),prefix(L,[a,b,c]).
suffix([a],L) if append(_1,[a],L).
Append(_1,[a],L),prefix(L,[a,b,c]).
{_1[],L[a]} append([],[a],[a]).
Prefix([a],[a,b,c]).
prefix([a],[a,b,c]) if append([a],_2,[a,b,c])
append([a],_2,[a,b,c]).
prefix([a],[a,b,c]) if append([],_2,[b,c])
Append([],_2,[b,c]).
{_2[b,c]} append([],[b,c],[b,c])
yes
50
Prolog Search Trees
51
Goal Order Changes Solutions
52
Cuts
 A cut prunes or “cuts out” and unexplored
part of a Prolog search tree.
 Cuts can therefore be used to make a
computation more efficient by eliminating
futile searching and backtracking.
 Cuts can also be used to implement a form of
negation
53
Cuts
 A cut, written as !, appears as a condition
within a rule. When rule
is applied, the cut tells control to backtrack
past Cj-1,…,C1,B, without considering any
remaining rules for them.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
54
A cut as the First Condition
 Consider rules of the form
 If the goal C fails, then control backtracks
past B without considering any remaining
rules for B. Thus the cut has the effect of
making B fail if C fails.
B :- !, C.
55
Example
b :- c.
b :- d.
b :- e.
b,G
c,G e,G
X
d,G!,d,G
d,G
b :- c.
b :- !,d.
b :- e.
56
Example
 ?-a(X).
a(1) :- b;
a(2) :- e;
b :- c.
b :- d.
a(1) :- b;
a(2) :- e;
b :- !,c.
b :- d.
a(X)
b e
c d Yes
X=2Yes
X=1
backtrack
a(X)
b e
!c d Yes
X=2
backtrack
c
57
The Effect of Cut
 As mentioned earlier, when a rule
is applied during a computation
 The cut tells control to backtrack past Cj-
1,..C1,B without considering any remaining
rules for them.
 The effect of inserting a cut in the middle of a
guess-and-verify rule.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
58
The Effect of Cut
 The right side of a guess-and-verify rule has
the form guess(S), verify(S), where guess(S)
generates potential solutions until one
satisfying verify(S) is found.
 The effect of insering a cut between them, as
is to eliminate all but the first guess.
Conclusion(S) :- guess(S), !, verify(S)
59
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),!,v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
(a) (b)
60
a(Z)
b(Z) f(5)
g(Z),v(Z) v(4)
v(1) v(2) v(3)
a(Z)
b(Z) f(5)
g(Z),!,v(Z) v(4)
!v(X)
v(1)
v(2) v(3)
(a) (b)
61
Negation as Failure
 The not operator in Prolog is implemented by
the rules
not(X) :- X, !, fail.
not(_).
Ad

More Related Content

What's hot (16)

Functions And Relations
Functions And RelationsFunctions And Relations
Functions And Relations
andrewhickson
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
Leslie Amoguis
 
SETS [Algebra]
SETS [Algebra]SETS [Algebra]
SETS [Algebra]
Natasha Pereira
 
Set operations
Set operationsSet operations
Set operations
rajshreemuthiah
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
math260
 
05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website
Varun Kumar
 
Sets, functions and groups
Sets, functions and groupsSets, functions and groups
Sets, functions and groups
Muhammad Adnan Ejaz
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1
ramlahmailok
 
Prolog programming
Prolog programmingProlog programming
Prolog programming
Harry Potter
 
2.2 Set Operations
2.2 Set Operations2.2 Set Operations
2.2 Set Operations
showslidedump
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
Sets
SetsSets
Sets
indu psthakur
 
Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3
luxvis
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
Seyid Kadher
 
Introduction of set
Introduction of set Introduction of set
Introduction of set
VishalVishwakarma59
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
math260
 
Functions And Relations
Functions And RelationsFunctions And Relations
Functions And Relations
andrewhickson
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
Leslie Amoguis
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
math260
 
05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website05 tat math class xi_r&f-1_for website
05 tat math class xi_r&f-1_for website
Varun Kumar
 
Mkk1013 chapter 2.1
Mkk1013 chapter 2.1Mkk1013 chapter 2.1
Mkk1013 chapter 2.1
ramlahmailok
 
Prolog programming
Prolog programmingProlog programming
Prolog programming
Harry Potter
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Tzenma
 
Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3
luxvis
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
Seyid Kadher
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
math260
 

Viewers also liked (17)

How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching works
James Wong
 
Key exchange in crypto
Key exchange in cryptoKey exchange in crypto
Key exchange in crypto
James Wong
 
Pelajaran di balik ukg
Pelajaran di balik ukgPelajaran di balik ukg
Pelajaran di balik ukg
Suyanto Suyanto
 
Learn ruby intro
Learn ruby introLearn ruby intro
Learn ruby intro
James Wong
 
Proms Roermond red.
Proms Roermond red.Proms Roermond red.
Proms Roermond red.
Jack Niessen
 
Game theory
Game theoryGame theory
Game theory
James Wong
 
Principales debates de los foros
Principales debates de los forosPrincipales debates de los foros
Principales debates de los foros
Ro Díaz Cerutti
 
Text classification-php-v4
Text classification-php-v4Text classification-php-v4
Text classification-php-v4
Glenn De Backer
 
24291
2429124291
24291
Hugh Vefrito
 
Galileo Galilei -Spanish
Galileo Galilei  -SpanishGalileo Galilei  -Spanish
Galileo Galilei -Spanish
mcullmann
 
Linked list
Linked listLinked list
Linked list
Young Alista
 
Maven
MavenMaven
Maven
Young Alista
 
Programming for engineers in python
Programming for engineers in pythonProgramming for engineers in python
Programming for engineers in python
Young Alista
 
Datamining with nb
Datamining with nbDatamining with nb
Datamining with nb
Young Alista
 
Python basics
Python basicsPython basics
Python basics
Young Alista
 
Object model
Object modelObject model
Object model
Young Alista
 
How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching works
James Wong
 
Key exchange in crypto
Key exchange in cryptoKey exchange in crypto
Key exchange in crypto
James Wong
 
Learn ruby intro
Learn ruby introLearn ruby intro
Learn ruby intro
James Wong
 
Proms Roermond red.
Proms Roermond red.Proms Roermond red.
Proms Roermond red.
Jack Niessen
 
Principales debates de los foros
Principales debates de los forosPrincipales debates de los foros
Principales debates de los foros
Ro Díaz Cerutti
 
Text classification-php-v4
Text classification-php-v4Text classification-php-v4
Text classification-php-v4
Glenn De Backer
 
Galileo Galilei -Spanish
Galileo Galilei  -SpanishGalileo Galilei  -Spanish
Galileo Galilei -Spanish
mcullmann
 
Programming for engineers in python
Programming for engineers in pythonProgramming for engineers in python
Programming for engineers in python
Young Alista
 
Datamining with nb
Datamining with nbDatamining with nb
Datamining with nb
Young Alista
 
Ad

Similar to Prolog programming (20)

PrologListsGraphs.ppt
PrologListsGraphs.pptPrologListsGraphs.ppt
PrologListsGraphs.ppt
PRITISHDASH8
 
Section3 Prologppt
Section3 PrologpptSection3 Prologppt
Section3 Prologppt
Mariam asfour
 
python_avw - Unit-03.pdf
python_avw - Unit-03.pdfpython_avw - Unit-03.pdf
python_avw - Unit-03.pdf
AshaWankar1
 
GE3151_PSPP_UNIT_4_Notes
GE3151_PSPP_UNIT_4_NotesGE3151_PSPP_UNIT_4_Notes
GE3151_PSPP_UNIT_4_Notes
Guru Nanak Technical Institutions
 
Python lecture 07
Python lecture 07Python lecture 07
Python lecture 07
Tanwir Zaman
 
Bai tap-prolog-da-tap-hop-9889
Bai tap-prolog-da-tap-hop-9889Bai tap-prolog-da-tap-hop-9889
Bai tap-prolog-da-tap-hop-9889
anhsaobang1289
 
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptxAddressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
AshishPandey502
 
List and Dictionary in python
List and Dictionary in pythonList and Dictionary in python
List and Dictionary in python
Sangita Panchal
 
Pytho lists
Pytho listsPytho lists
Pytho lists
BMS Institute of Technology and Management
 
making of lists,tables,matrix,vactor,sets.pptx
making of lists,tables,matrix,vactor,sets.pptxmaking of lists,tables,matrix,vactor,sets.pptx
making of lists,tables,matrix,vactor,sets.pptx
farhanshaukat821
 
Relation function
Relation functionRelation function
Relation function
Biswa Nayak
 
Relation function
Relation functionRelation function
Relation function
mentorsnet
 
Lecture-5.pdf
Lecture-5.pdfLecture-5.pdf
Lecture-5.pdf
Bhavya103897
 
Set Concepts
Set ConceptsSet Concepts
Set Concepts
shbest
 
Theory of the sets and Venn diagram-grade 9 math
Theory of the sets and Venn diagram-grade 9 mathTheory of the sets and Venn diagram-grade 9 math
Theory of the sets and Venn diagram-grade 9 math
ivanoberknezev
 
Lecture in Sets, Sequences and Summations
Lecture in Sets, Sequences and SummationsLecture in Sets, Sequences and Summations
Lecture in Sets, Sequences and Summations
Kamal El-Saady
 
Array
ArrayArray
Array
Vivian Chia En Chiang
 
Python lists
Python listsPython lists
Python lists
nuripatidar
 
presentasi
presentasipresentasi
presentasi
Deddy Rahmadi
 
Python _dataStructures_ List, Tuples, its functions
Python _dataStructures_ List, Tuples, its functionsPython _dataStructures_ List, Tuples, its functions
Python _dataStructures_ List, Tuples, its functions
VidhyaB10
 
PrologListsGraphs.ppt
PrologListsGraphs.pptPrologListsGraphs.ppt
PrologListsGraphs.ppt
PRITISHDASH8
 
python_avw - Unit-03.pdf
python_avw - Unit-03.pdfpython_avw - Unit-03.pdf
python_avw - Unit-03.pdf
AshaWankar1
 
Bai tap-prolog-da-tap-hop-9889
Bai tap-prolog-da-tap-hop-9889Bai tap-prolog-da-tap-hop-9889
Bai tap-prolog-da-tap-hop-9889
anhsaobang1289
 
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptxAddressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
Addressing Formulas for Sparse Matrices Using Column Major in 1D Arrays.pptx
AshishPandey502
 
List and Dictionary in python
List and Dictionary in pythonList and Dictionary in python
List and Dictionary in python
Sangita Panchal
 
making of lists,tables,matrix,vactor,sets.pptx
making of lists,tables,matrix,vactor,sets.pptxmaking of lists,tables,matrix,vactor,sets.pptx
making of lists,tables,matrix,vactor,sets.pptx
farhanshaukat821
 
Relation function
Relation functionRelation function
Relation function
Biswa Nayak
 
Relation function
Relation functionRelation function
Relation function
mentorsnet
 
Set Concepts
Set ConceptsSet Concepts
Set Concepts
shbest
 
Theory of the sets and Venn diagram-grade 9 math
Theory of the sets and Venn diagram-grade 9 mathTheory of the sets and Venn diagram-grade 9 math
Theory of the sets and Venn diagram-grade 9 math
ivanoberknezev
 
Lecture in Sets, Sequences and Summations
Lecture in Sets, Sequences and SummationsLecture in Sets, Sequences and Summations
Lecture in Sets, Sequences and Summations
Kamal El-Saady
 
Python _dataStructures_ List, Tuples, its functions
Python _dataStructures_ List, Tuples, its functionsPython _dataStructures_ List, Tuples, its functions
Python _dataStructures_ List, Tuples, its functions
VidhyaB10
 
Ad

More from James Wong (20)

Data race
Data raceData race
Data race
James Wong
 
Multi threaded rtos
Multi threaded rtosMulti threaded rtos
Multi threaded rtos
James Wong
 
Recursion
RecursionRecursion
Recursion
James Wong
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data mining
James Wong
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discovery
James Wong
 
Cache recap
Cache recapCache recap
Cache recap
James Wong
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data mining
James Wong
 
Optimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsOptimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessors
James Wong
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherence
James Wong
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
James Wong
 
Abstraction file
Abstraction fileAbstraction file
Abstraction file
James Wong
 
Hardware managed cache
Hardware managed cacheHardware managed cache
Hardware managed cache
James Wong
 
Object model
Object modelObject model
Object model
James Wong
 
Abstract class
Abstract classAbstract class
Abstract class
James Wong
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
James Wong
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with java
James Wong
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
James Wong
 
Cobol, lisp, and python
Cobol, lisp, and pythonCobol, lisp, and python
Cobol, lisp, and python
James Wong
 
Inheritance
InheritanceInheritance
Inheritance
James Wong
 
Api crash
Api crashApi crash
Api crash
James Wong
 
Multi threaded rtos
Multi threaded rtosMulti threaded rtos
Multi threaded rtos
James Wong
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data mining
James Wong
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discovery
James Wong
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data mining
James Wong
 
Optimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsOptimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessors
James Wong
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherence
James Wong
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
James Wong
 
Abstraction file
Abstraction fileAbstraction file
Abstraction file
James Wong
 
Hardware managed cache
Hardware managed cacheHardware managed cache
Hardware managed cache
James Wong
 
Abstract class
Abstract classAbstract class
Abstract class
James Wong
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
James Wong
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with java
James Wong
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
James Wong
 
Cobol, lisp, and python
Cobol, lisp, and pythonCobol, lisp, and python
Cobol, lisp, and python
James Wong
 

Recently uploaded (20)

An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
MEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptxMEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptx
IC substrate Shawn Wang
 
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Cyntexa
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
ICT Frame Magazine Pvt. Ltd.
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptxUiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
anabulhac
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Build With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdfBuild With AI - In Person Session Slides.pdf
Build With AI - In Person Session Slides.pdf
Google Developer Group - Harare
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
MEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptxMEMS IC Substrate Technologies Guide 2025.pptx
MEMS IC Substrate Technologies Guide 2025.pptx
IC substrate Shawn Wang
 
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Why Slack Should Be Your Next Business Tool? (Tips to Make Most out of Slack)
Cyntexa
 
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Harmonizing Multi-Agent Intelligence | Open Data Science Conference | Gary Ar...
Gary Arora
 
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
MULTI-STAKEHOLDER CONSULTATION PROGRAM On Implementation of DNF 2.0 and Way F...
ICT Frame Magazine Pvt. Ltd.
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Cybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and MitigationCybersecurity Threat Vectors and Mitigation
Cybersecurity Threat Vectors and Mitigation
VICTOR MAESTRE RAMIREZ
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025Top 5 Qualities to Look for in Salesforce Partners in 2025
Top 5 Qualities to Look for in Salesforce Partners in 2025
Damco Salesforce Services
 
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdfKit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Kit-Works Team Study_팀스터디_김한솔_nuqs_20250509.pdf
Wonjun Hwang
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptxUiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
UiPath AgentHack - Build the AI agents of tomorrow_Enablement 1.pptx
anabulhac
 
machines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdfmachines-for-woodworking-shops-en-compressed.pdf
machines-for-woodworking-shops-en-compressed.pdf
AmirStern2
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 

Prolog programming

  • 2. 2 Prolog ProgrammingProlog Programming  DATA STRUCTURES IN PROLOG  PROGRAMMING TECHNIQUES  CONTROL IN PROLOG  CUTS
  • 3. 3 DATA STRUCTURES IN PROLOG  Lists in Prolog List notation is a way of writing terms  Terms as Data Term correspond with list
  • 4. 4 Lists in Prolog  The simplest way of writing a list is to enumerate its elements. The list consisting of the 3 atoms a, b and c can be written as [a, b, c] The list that doesn’t have elements called empty list denoted as [ ]
  • 5. 5 Lists in Prolog  We can also specify an initial sequence of elements and a trailing list, separated by | The list [a, b, c] can also be written as [a, b, c | [ ] ] [a, b | [c] ] [a | [b, c] ]
  • 6. 6 Lists : Head & Tail  A special case of this notation is a list with head H and tail T, written as [H|T]  The head is the first element of a list, and  The tail is the list consisting of the remaining elements. The list [a, b, c] can also be separated as • Head:The first element is a • Tail:The list of remaining elements = [b, c]
  • 7. 7 Lists : Unification  Unification can be used to extract the components of a list, so explicit operators for extracting the head and tail are not needed. The solution of the query  Bind variable H to the head and variable T to the tail of list [a, b, c]. ?- [H | T] = [a, b, c]. H = a T = [b, c]
  • 8. 8 Lists : Specified terms  The query (partially specified terms)  The term [ a | T ] is a partial specification of a list with head a and unknown tail denoted by variable T.  Similarly, [ H, b, c] is a partial specification of a list with unknown head H and tail [b, c].  These two specification to unify H = a, T =[b,c] ?- [a | T] = [H, b, c]. T = [b, c] H = a
  • 9. 9 Lists in Prolog  Example 2 The append relation on lists is defined by the following rules: Append([ ], Y, Y). Append([H | X], Y, [H | Z]) :- append(X,Y,Z). In words, The result of appending the empty list [ ] and a list Y is Y. If the result of appending X and Y is Z, then the result of appending [H | X] and Y is [H | Z]
  • 10. 10 Lists : Compute Arguments  The rules for append can be used to compute any one of the arguments from the other two:  Inconsistent arguments are rejected ?- append([a, b], [c, d], Z). Z = [a, b, c, d] ?- append([a, b], Y, [a, b, c, d]). Y = [c, d] ?- append(X, [c, d], [a, b, c, d]). X = [a, b] ?- append(X, [d, c], [a, b, c, d]). no
  • 11. 11 Terms as Data  The Dot operator or functor ‘.’ corresponds to make list with H and T.  [H | T ] is syntactic sugar for the term .(H,T)  Lists are terms. The term for the list [a, b, c] is .(H,T) .(a, .(b, .(c, [])))
  • 12. 12 Terms as Data  following terms can be drawn a tree  There is a one-to-one correspondence between trees and terms .(a, .(b, .(c, []))) ∙ ∙ ∙ a b c []
  • 13. 13 Terms : Binary Tree  Binary trees can be written as terms  An atom leaf for a leaf  A functor nonleaf with 2 arguments leaf nonleaf(leaf,leaf) nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf)) nonleaf(nonleaf(leaf,leaf),leaf) nonleaf(leaf,nonleaf(leaf,leaf))
  • 14. 14 List : tree  Example 3 A binary search tree is either empty, or it consists of a node with two binary search trees as subtrees.  Each node holds an integer.  Smaller elements appear in the left subtree of a node and larger elements appear in the right subtree.  Let a term node(K,S,T) represent a tree K S T
  • 15. 15 Binary search trees 15 2 16 10 129 0 3 19 10 2 12 9 153 0 16 3
  • 16. 16 Binary search trees  The rules define a relation member to test whether an integer appear at some node in a tree. The two arguments of member are an integer and a tree. member(K,_,_). member(K, node(N,S,_)) :- K < N, member(K, S). member(K, node(N,_,T)) :- K > N, member(K, T).
  • 17. 17 PROGRAMMING TECHNIQUES  The strengths of Prolog namely, backtracking and unification.  Backtracking allows a solution to be found if one exists  Unification allows variables to be used as placeholders for data to be filled in later.  Careful use of the techniques in this section can lead to efficient programs. The programs rely on left-to-right evaluation of subgoals.
  • 18. 18 Guess and Verify  A guess-and-verify query has the form Where guess(S) and verify(S) are subgoals.  Prolog respond to a query by generating solutions to guess(S) until a solution satisfying verify(S) is found. Such queries are also called generate-and-test queries. Is there an S such that guess(S) and verify(S)?
  • 19. 19 Guess and Verify  Similarly, a guess-and-verify rule has the following form:  Example Conslusion(…) if guess(…,S,…) and verify(…,S,…) overlap(X, Y) :- member(M, X), member(M, Y). Two lists X and Y overlap if there is some M that is a member of both X and Y. The first goal member(M, X) guesses an M from list X, and the second goal member(M, Y) verifies that M also appears in list Y.
  • 20. 20  The rules for member are member(M, [M |_]). Member(M, [_ |T]) :- member(M, T). The first rule says that M is a member of a list with head M. The second rule says that M is a member of a list if M is a member of its tail T.
  • 21. 21 Consider query  These query  The first goal in this query generates solutions and the second goal tests to see whether they are acceptable. ?- overlap([a,b,c,d],[1,2,c,d]). yes ?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
  • 22. 22 Consider query  The solutions generated by the first goal are  Test the second goal ?- member(M,[a,b,c,d]). M = a; M = b; M = c; M = d; no ?- member(a,[1,2,c,d]). no ?- member(b,[1,2,c,d]). no ?- member(c,[1,2,c,d]). yes
  • 23. 23 Hint  Since computation in Prolog proceeds from left to right, the order of the subgoals in a guess-and-verify query can affect efficiency.  Choose the subgoal with fewer solutions as the guess goal.  Example of the effect of goal order ?- X = [1,2,3], member(a,X). no ?- member(a,X), X = [1,2,3]). [infinite computation]
  • 24. 24 Variables as Placeholders in Terms  Variables have been used in rules and queries but not in terms representing objects.  Terms containing varibales can be used to simulate modifiable data structures;  The variables serve as placeholders for subterms to be filled in later.
  • 25. 25 Represent Binary Trees in Terms  The terms leaf and nonleaf(leaf,leaf) are completely specified. leaf nonleaf(leaf,leaf)
  • 26. 26 Partially specified list  The example list [a, b | X] has  Its first element : a  Its second element : b  Do not yet know what X represents  “Open list” if its ending in a variable, referred “end marker variable”  “Close list” if it is not open.
  • 27. 27 How prolog know variable  Prolog used machine-generated variables, written with a leading underscore (“_”) followed by an integer. ?- L = [a, b | X]. L = [a, |_G172] X = _G172 Yes
  • 28. 28  Prolog generates fresh variables each time it responds to a query or applies a rule.  An open list can be modified by unifying its end marker ?- L = [a, b | X], X = [c,Y]. L = [a,b,c |_G236] X = [c,_G236] Y = _G236 Yes
  • 29. 29  Extending an open list by unifying its end marker. a b L X _172 a b L X _236 c (a) Before X is bound. (b) After X = [c | Y].
  • 30. 30  Unification of an end-marker variable is akin to an assignment to that variable.  List L changes from [a, b | _172]  [a, b, c | _236] when _172 unifies with [c | _236]  Advantage of working with open lists is that the end of a list can be accessed quickly.
  • 31. 31 Open list implement queues when a queue is created, where L is an open list with end marker E When element a enters queue Q, we get queue R. When element a leaves queue Q, we get queue R. q(L,E) enter(a,Q,R) leave(a,Q,R)
  • 32. 32 Open list implement queue ?- setup(Q). ?- setup(Q), enter(a,Q,R). ?- setup(Q), enter(a,Q,R), leave(S,R,T). ?- setup(Q), enter(a,Q,R), enter(b,R,S), leave(X,S,T),leave(Y,T,U), wrapup(q([],[])). setup(q(X,X)). enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z]. leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y]. wrapup(q([],[])).
  • 33. 33 Test queue ?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T), leave(Y,T,U),wrapup(U). Q = q([a, b], [a, b]) R = q([a, b], [b]) S = q([a, b], []) X = a T = q([b], []) Y = b U = q([], []) Yes ?-
  • 34. 34 Operations on a queue Q _1 R _2 a a T _3 b Q Q R setup(Q) enter(a,Q,R) enter(b,R,S)
  • 35. 35 Operations on a queue a T _3 b X leave(X,S,T) a T _3 b Y leave(Y,T,U)
  • 36. 36 Internal Prolog  A queue q(L,E) consists of open list L with end marker E.  The arrows from Q therefore go to the empty open list _1 with end marker _1. setup(q(X,X)). ?-setup(Q). Q = q(_1,_1) yes
  • 37. 37 Second goal  To enter A into a queue q(X,Y), bind Y to a list [A|Z], where Z is a fresh end marker, and return q(X,Z). enter(A,q(X,Y),q(X,Z)):- Y = [A|Z]. ?-setup(Q),enter(a,Q,R). Q = q([a|_2], [a|_2]) R = q([a|_2], _2) Unifies _1 with [a|_2],where _2 is a fresh end marker
  • 38. 38  When an element leaves a queue q(L,E), the resulting queue has the tail of L in place of L. Note in the diagram to the right of leave(X,S,T) that the open list for queue T is the tail of the open list for S.  The final goal wrapup(U) checks that the enter and leave operations leave U in an initial state q(L,E), where L is an empty openlist with end marker E.
  • 39. 39 Difference Lists  Difference List are a technique for coping with such changes.  Difference List consists of a list and its suffix.  We write this difference list as dl(L,E).
  • 40. 40 Contents of Difference List  The contents of the difference list consist of the elements that are in L but not in E.  Examples of difference lists with contents [a,b] are dl([a,b],[]). Dl([a,b,c],[c]). Dl([a,b|E],E). Dl([a,b,c|F],[c|F]).
  • 41. 41 CONTROL IN PROLOG  In the informal equation  “Logic” refers to the rules and queries in a logic program and  “control” refers to how a language computes a response to a query. algorithm = logic + control
  • 42. 42 CONTROL IN PROLOG  Control in Prolog is characterized by two decisions  Goal order : Choose the leftmost subgoal.  Rule order : Select the first applicable rule.  The response to a query is affected both by goal order within the query and by rule order with in the database of facts and rules.
  • 43. 43 CONTROL IN PROLOG start with a query as the current goal; while the current goal is nonempty do choose the leftmost subgoal; if a rule applies to the subgoal then select the first applicable rule; form a new current goal else backtrack end if end while; succeed
  • 44. 44 Example  A sublist S of Z can be specified in the following seemingly equivalent ways:  preffix X of Z and suffix S of X.  suffix S of X and prefix X of Z. appen1([],Y,Y). appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z). Prefix(X,Z) :- appen1(X,Y,Z). Suffix(Y,Z) :- appen1(X,Y,Z). appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z). appen2([],Y,Y).
  • 45. 45 Queries  The corresponding queries usually produce the same responses.  Rule order can also make a difference. ?-prefix(X,[a,b,c]),suffix([e],X). no ?-suffix([e],X),prefix(X,[a,b,c]). [infinite computation]
  • 46. 46 Queries ?- appen1(X,[c],Z). X = [] Z = [c] ; X = [_G230] Z = [_G230, c] ; X = [_G230, _G236] Z = [_G230, _G236, c] ; ?- appen2(X,[c],Z).  New Solutions are produced on demand for
  • 47. 47 Unification an Substitutions  Unification is central to control in Prolog  Substitution is a function from variables to terms
  • 48. 48 Applying a Rule to a Goal  A rule applies to a subgoal G if its head A unifies with G  Variables in the rule are renamed before unification to keep them distinct from variables in the subgoal. A :- B1, B2, …, Bn
  • 49. 49 A computation that succeeds without backtracking GOAL Suffix([a],L),prefix(L,[a,b,c]). suffix([a],L) if append(_1,[a],L). Append(_1,[a],L),prefix(L,[a,b,c]). {_1[],L[a]} append([],[a],[a]). Prefix([a],[a,b,c]). prefix([a],[a,b,c]) if append([a],_2,[a,b,c]) append([a],_2,[a,b,c]). prefix([a],[a,b,c]) if append([],_2,[b,c]) Append([],_2,[b,c]). {_2[b,c]} append([],[b,c],[b,c]) yes
  • 52. 52 Cuts  A cut prunes or “cuts out” and unexplored part of a Prolog search tree.  Cuts can therefore be used to make a computation more efficient by eliminating futile searching and backtracking.  Cuts can also be used to implement a form of negation
  • 53. 53 Cuts  A cut, written as !, appears as a condition within a rule. When rule is applied, the cut tells control to backtrack past Cj-1,…,C1,B, without considering any remaining rules for them. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 54. 54 A cut as the First Condition  Consider rules of the form  If the goal C fails, then control backtracks past B without considering any remaining rules for B. Thus the cut has the effect of making B fail if C fails. B :- !, C.
  • 55. 55 Example b :- c. b :- d. b :- e. b,G c,G e,G X d,G!,d,G d,G b :- c. b :- !,d. b :- e.
  • 56. 56 Example  ?-a(X). a(1) :- b; a(2) :- e; b :- c. b :- d. a(1) :- b; a(2) :- e; b :- !,c. b :- d. a(X) b e c d Yes X=2Yes X=1 backtrack a(X) b e !c d Yes X=2 backtrack c
  • 57. 57 The Effect of Cut  As mentioned earlier, when a rule is applied during a computation  The cut tells control to backtrack past Cj- 1,..C1,B without considering any remaining rules for them.  The effect of inserting a cut in the middle of a guess-and-verify rule. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 58. 58 The Effect of Cut  The right side of a guess-and-verify rule has the form guess(S), verify(S), where guess(S) generates potential solutions until one satisfying verify(S) is found.  The effect of insering a cut between them, as is to eliminate all but the first guess. Conclusion(S) :- guess(S), !, verify(S)
  • 59. 59 a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),!,v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) (a) (b)
  • 60. 60 a(Z) b(Z) f(5) g(Z),v(Z) v(4) v(1) v(2) v(3) a(Z) b(Z) f(5) g(Z),!,v(Z) v(4) !v(X) v(1) v(2) v(3) (a) (b)
  • 61. 61 Negation as Failure  The not operator in Prolog is implemented by the rules not(X) :- X, !, fail. not(_).
  翻译: