SlideShare a Scribd company logo
National Taiwan UniversityNational Taiwan University
A Parallel Test Pattern
Generation Algorithm to Meet
Multiple Quality Objectives
K.Y. Liao, IEEE Trans. Comput.-Aided Design
Intergr. Circuits Syst., Vol. 30, Issue 11
1
J.Y.  Chen,  2015/09/15
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
2
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
3
Outline  
• Introduction
– Background  knowledge  
– PODEM  Quick  Review  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
4
Introduction  -­ Background  Knowledge  
• Single  stuck-­at  fault  (SSF)  model  is  no  longer  
effective  enough  in  deep  sub-­micron  (DSM)  
circuits
• Several  quality  metrics  are  introduced  to  grade  
patterns
5
Introduction  -­ Background  Knowledge  
• Quality  metrics  
– N-­detect  
– Physical-­aware  N-­detect  (PAN)
– Gate  exhaustive  (GE)
– Bridging  coverage  Estimate  (BCE)
6
Introduction  -­ Background  Knowledge  
• To  achieve  high  quality  test  pattern  generation  (TPG),  
quality  objective  are  introduced  during  the  process  
• Additional  quality  objectives  may  cause  lots  of  
backtracks  during  TPG  
• Some  tries  to  grade  and  select  patterns  from  large-­N-­
detect  test  set  generated  by  traditional  TPG  tool  
• SWK  adopted  bit-­wise  parallel  strategy  to  realize  search-­
space  parallelism,  thus  get  more  chance  to  justify  
additional  quality  objectives    
7
Introduction  -­ PODEM  Quick  Review    
• Path-­sensitizing  ATPG  algorithm  
• After  fault  activation,  system  choose  a  gate  from  
D-­frontier  and  then  gradually  map  corresponding  
D-­drive  objective  to  a  PI/PPI  decision,  called  
backtrace
• After  each  decision  make,  run  implication to  
update  the  logic  value  of  circuit  
• Heuristics  such  as  X-­path  search are  adopted  
for  early  avoidance  of  backtrack  
8
Outline  
• Introduction
– Background  knowledge  
– PODEM  Quick  Review  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
9
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
10
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
11
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
– 7-­Valued  Logic  
– System  Flow  
• Experiment  Result  
• Conclusion  
12
SWK  -­ 7-­Valued  Logic  
13
SWK  -­ 7-­Valued  Logic  
14
SWK  -­ System  Flow  
15
SWK  -­ System  Flow  
16
SWK  -­ System  Flow  
17
SWK  -­ System  Flow  
18
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
– 7-­Valued  Logic  
– System  Flow  
• Experiment  Result  
• Conclusion  
19
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion
20
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion
21
Experiment  Result  
22
Experiment  Result  
23
Outline  
• Introduction  
• Split-­into-­W-­Clones(SWK)  
• Experiment  Result  
• Conclusion  
24
Conclusion  
• SWK  optimize  test  pattern  quality  during  TPG  
• Might  able  to  integrate  SWK  into  other  
parallelism  strategy  
• Word  size  are  predefined  and  less  flexible  
• Only  support  parallel  pattern  generation  target  
on  single  fault    
25
Ad

More Related Content

What's hot (20)

Spyglass dft
Spyglass dftSpyglass dft
Spyglass dft
kumar gavanurmath
 
01 Transition Fault Detection methods by Swetha
01 Transition Fault Detection methods by Swetha01 Transition Fault Detection methods by Swetha
01 Transition Fault Detection methods by Swetha
swethamg18
 
Coverage and Introduction to UVM
Coverage and Introduction to UVMCoverage and Introduction to UVM
Coverage and Introduction to UVM
Dr. Shivananda Koteshwar
 
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systemsTMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
Iosif Itkin
 
Uvm cookbook-systemverilog-guidelines-verification-academy
Uvm cookbook-systemverilog-guidelines-verification-academyUvm cookbook-systemverilog-guidelines-verification-academy
Uvm cookbook-systemverilog-guidelines-verification-academy
Raghavendra Kamath
 
faults in digital systems
faults in digital systemsfaults in digital systems
faults in digital systems
dennis gookyi
 
Session 9 advance_verification_features
Session 9 advance_verification_featuresSession 9 advance_verification_features
Session 9 advance_verification_features
Nirav Desai
 
DO-178C OOT supplement: A user's perspective
DO-178C OOT supplement: A user's perspectiveDO-178C OOT supplement: A user's perspective
DO-178C OOT supplement: A user's perspective
AdaCore
 
Introduction to System verilog
Introduction to System verilog Introduction to System verilog
Introduction to System verilog
Pushpa Yakkala
 
Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Trace-Checking CPS Properties: Bridging the Cyber-Physical GapTrace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Lionel Briand
 
Faults in Digital VLSI Circuits
Faults in Digital VLSI CircuitsFaults in Digital VLSI Circuits
Faults in Digital VLSI Circuits
ijsrd.com
 
UVM TUTORIAL;
UVM TUTORIAL;UVM TUTORIAL;
UVM TUTORIAL;
Azad Mishra
 
Session 6 sv_randomization
Session 6 sv_randomizationSession 6 sv_randomization
Session 6 sv_randomization
Nirav Desai
 
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
ICSM 2011
 
Model-driven trace diagnostics for pattern-based temporal specifications
Model-driven trace diagnostics for pattern-based temporal specificationsModel-driven trace diagnostics for pattern-based temporal specifications
Model-driven trace diagnostics for pattern-based temporal specifications
Lionel Briand
 
Ch 6 randomization
Ch 6 randomizationCh 6 randomization
Ch 6 randomization
Team-VLSI-ITMU
 
Session 7 code_functional_coverage
Session 7 code_functional_coverageSession 7 code_functional_coverage
Session 7 code_functional_coverage
Nirav Desai
 
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Benoit Combemale
 
system verilog
system verilogsystem verilog
system verilog
Vinchipsytm Vlsitraining
 
Verification challenges and methodologies - SoC and ASICs
Verification challenges and methodologies - SoC and ASICsVerification challenges and methodologies - SoC and ASICs
Verification challenges and methodologies - SoC and ASICs
Dr. Shivananda Koteshwar
 
01 Transition Fault Detection methods by Swetha
01 Transition Fault Detection methods by Swetha01 Transition Fault Detection methods by Swetha
01 Transition Fault Detection methods by Swetha
swethamg18
 
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systemsTMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
TMPA-2017: Evolutionary Algorithms in Test Generation for digital systems
Iosif Itkin
 
Uvm cookbook-systemverilog-guidelines-verification-academy
Uvm cookbook-systemverilog-guidelines-verification-academyUvm cookbook-systemverilog-guidelines-verification-academy
Uvm cookbook-systemverilog-guidelines-verification-academy
Raghavendra Kamath
 
faults in digital systems
faults in digital systemsfaults in digital systems
faults in digital systems
dennis gookyi
 
Session 9 advance_verification_features
Session 9 advance_verification_featuresSession 9 advance_verification_features
Session 9 advance_verification_features
Nirav Desai
 
DO-178C OOT supplement: A user's perspective
DO-178C OOT supplement: A user's perspectiveDO-178C OOT supplement: A user's perspective
DO-178C OOT supplement: A user's perspective
AdaCore
 
Introduction to System verilog
Introduction to System verilog Introduction to System verilog
Introduction to System verilog
Pushpa Yakkala
 
Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Trace-Checking CPS Properties: Bridging the Cyber-Physical GapTrace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap
Lionel Briand
 
Faults in Digital VLSI Circuits
Faults in Digital VLSI CircuitsFaults in Digital VLSI Circuits
Faults in Digital VLSI Circuits
ijsrd.com
 
Session 6 sv_randomization
Session 6 sv_randomizationSession 6 sv_randomization
Session 6 sv_randomization
Nirav Desai
 
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
Dynamic Analysis - SCOTCH: Improving Test-to-Code Traceability using Slicing ...
ICSM 2011
 
Model-driven trace diagnostics for pattern-based temporal specifications
Model-driven trace diagnostics for pattern-based temporal specificationsModel-driven trace diagnostics for pattern-based temporal specifications
Model-driven trace diagnostics for pattern-based temporal specifications
Lionel Briand
 
Session 7 code_functional_coverage
Session 7 code_functional_coverageSession 7 code_functional_coverage
Session 7 code_functional_coverage
Nirav Desai
 
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Efficient and Advanced Omniscient Debugging for xDSMLs (SLE 2015)
Benoit Combemale
 
Verification challenges and methodologies - SoC and ASICs
Verification challenges and methodologies - SoC and ASICsVerification challenges and methodologies - SoC and ASICs
Verification challenges and methodologies - SoC and ASICs
Dr. Shivananda Koteshwar
 

Similar to Paper-review: A Parallel Test Pattern Generation Algorithm to Meet Multiple Quality Objectives (20)

Application of formal methods for system level verification of final
Application of formal methods for system level verification of finalApplication of formal methods for system level verification of final
Application of formal methods for system level verification of final
Vinita Palaniveloo
 
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
HostedbyConfluent
 
Design for testability for Beginners PPT for FDP.pptx
Design for testability for Beginners PPT for FDP.pptxDesign for testability for Beginners PPT for FDP.pptx
Design for testability for Beginners PPT for FDP.pptx
ssuser13dc7d
 
Discrete-event simulation: best practices and implementation details in Pytho...
Discrete-event simulation: best practices and implementation details in Pytho...Discrete-event simulation: best practices and implementation details in Pytho...
Discrete-event simulation: best practices and implementation details in Pytho...
Carlos Natalino da Silva
 
Module5 Testing and Verification.pdf
Module5 Testing and Verification.pdfModule5 Testing and Verification.pdf
Module5 Testing and Verification.pdf
BhavanaHN5
 
Finding Bugs Faster with Assertion Based Verification (ABV)
Finding Bugs Faster with Assertion Based Verification (ABV)Finding Bugs Faster with Assertion Based Verification (ABV)
Finding Bugs Faster with Assertion Based Verification (ABV)
DVClub
 
Data quality evaluation & orbit identification from scatterometer
Data quality evaluation & orbit identification from scatterometerData quality evaluation & orbit identification from scatterometer
Data quality evaluation & orbit identification from scatterometer
Mudit Dholakia
 
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
amril22
 
Performance Test Driven Development with Oracle Coherence
Performance Test Driven Development with Oracle CoherencePerformance Test Driven Development with Oracle Coherence
Performance Test Driven Development with Oracle Coherence
aragozin
 
FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015
Muhammad Saleem
 
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Pavel Popa
 
Dealing with the Three Horrible Problems in Verification
Dealing with the Three Horrible Problems in VerificationDealing with the Three Horrible Problems in Verification
Dealing with the Three Horrible Problems in Verification
DVClub
 
A Novel Specification and Composition Language for Services
A Novel Specification and Composition Language for ServicesA Novel Specification and Composition Language for Services
A Novel Specification and Composition Language for Services
George Baryannis
 
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
Arpan_booth_talk_2 DNN and Tsnor Floww.pdfArpan_booth_talk_2 DNN and Tsnor Floww.pdf
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
sadaatitsolutions
 
ABC of developer test
ABC of developer testABC of developer test
ABC of developer test
Dr. Anish Cheriyan (PhD)
 
Final present
Final presentFinal present
Final present
彰寧 蔡
 
[Vu Van Nguyen] Test Estimation in Practice
[Vu Van Nguyen]  Test Estimation in Practice[Vu Van Nguyen]  Test Estimation in Practice
[Vu Van Nguyen] Test Estimation in Practice
Ho Chi Minh City Software Testing Club
 
Recent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
Recent and Robust Query Auto-Completion - WWW 2014 Conference PresentationRecent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
Recent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
stewhir
 
STV-20151019-ServiceFunctionaTestAutomation (2)
STV-20151019-ServiceFunctionaTestAutomation (2)STV-20151019-ServiceFunctionaTestAutomation (2)
STV-20151019-ServiceFunctionaTestAutomation (2)
Libero Maesano
 
Continuous Validation at Scale
Continuous Validation at ScaleContinuous Validation at Scale
Continuous Validation at Scale
Mirantis
 
Application of formal methods for system level verification of final
Application of formal methods for system level verification of finalApplication of formal methods for system level verification of final
Application of formal methods for system level verification of final
Vinita Palaniveloo
 
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
Automating Speed: A Proven Approach to Preventing Performance Regressions in ...
HostedbyConfluent
 
Design for testability for Beginners PPT for FDP.pptx
Design for testability for Beginners PPT for FDP.pptxDesign for testability for Beginners PPT for FDP.pptx
Design for testability for Beginners PPT for FDP.pptx
ssuser13dc7d
 
Discrete-event simulation: best practices and implementation details in Pytho...
Discrete-event simulation: best practices and implementation details in Pytho...Discrete-event simulation: best practices and implementation details in Pytho...
Discrete-event simulation: best practices and implementation details in Pytho...
Carlos Natalino da Silva
 
Module5 Testing and Verification.pdf
Module5 Testing and Verification.pdfModule5 Testing and Verification.pdf
Module5 Testing and Verification.pdf
BhavanaHN5
 
Finding Bugs Faster with Assertion Based Verification (ABV)
Finding Bugs Faster with Assertion Based Verification (ABV)Finding Bugs Faster with Assertion Based Verification (ABV)
Finding Bugs Faster with Assertion Based Verification (ABV)
DVClub
 
Data quality evaluation & orbit identification from scatterometer
Data quality evaluation & orbit identification from scatterometerData quality evaluation & orbit identification from scatterometer
Data quality evaluation & orbit identification from scatterometer
Mudit Dholakia
 
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
3653223-analisis-dan-perancangan-sistem-informasi.pdf.pptx
amril22
 
Performance Test Driven Development with Oracle Coherence
Performance Test Driven Development with Oracle CoherencePerformance Test Driven Development with Oracle Coherence
Performance Test Driven Development with Oracle Coherence
aragozin
 
FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015FEASIBLE-Benchmark-Framework-ISWC2015
FEASIBLE-Benchmark-Framework-ISWC2015
Muhammad Saleem
 
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Analysis and Implementation of Software-Defined Network (SDN) Techniques on C...
Pavel Popa
 
Dealing with the Three Horrible Problems in Verification
Dealing with the Three Horrible Problems in VerificationDealing with the Three Horrible Problems in Verification
Dealing with the Three Horrible Problems in Verification
DVClub
 
A Novel Specification and Composition Language for Services
A Novel Specification and Composition Language for ServicesA Novel Specification and Composition Language for Services
A Novel Specification and Composition Language for Services
George Baryannis
 
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
Arpan_booth_talk_2 DNN and Tsnor Floww.pdfArpan_booth_talk_2 DNN and Tsnor Floww.pdf
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
sadaatitsolutions
 
Recent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
Recent and Robust Query Auto-Completion - WWW 2014 Conference PresentationRecent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
Recent and Robust Query Auto-Completion - WWW 2014 Conference Presentation
stewhir
 
STV-20151019-ServiceFunctionaTestAutomation (2)
STV-20151019-ServiceFunctionaTestAutomation (2)STV-20151019-ServiceFunctionaTestAutomation (2)
STV-20151019-ServiceFunctionaTestAutomation (2)
Libero Maesano
 
Continuous Validation at Scale
Continuous Validation at ScaleContinuous Validation at Scale
Continuous Validation at Scale
Mirantis
 
Ad

Recently uploaded (20)

Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
Understand water laser communication using Arduino laser and solar panel
Understand water laser communication using Arduino laser and solar panelUnderstand water laser communication using Arduino laser and solar panel
Understand water laser communication using Arduino laser and solar panel
NaveenBotsa
 
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023
Rajesh Prasad
 
Introduction to Additive Manufacturing(3D printing)
Introduction to Additive Manufacturing(3D printing)Introduction to Additive Manufacturing(3D printing)
Introduction to Additive Manufacturing(3D printing)
vijimech408
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Zeiss-Ultra-Optimeter metrology subject.pdf
Zeiss-Ultra-Optimeter metrology subject.pdfZeiss-Ultra-Optimeter metrology subject.pdf
Zeiss-Ultra-Optimeter metrology subject.pdf
Saikumar174642
 
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptxUnleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
SanjeetMishra29
 
Slide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptxSlide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptx
vvsasane
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
AI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in RetailAI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in Retail
IJDKP
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
Environment .................................
Environment .................................Environment .................................
Environment .................................
shadyozq9
 
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning ModelsMode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Journal of Soft Computing in Civil Engineering
 
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
Guru Nanak Technical Institutions
 
Lecture - 7 Canals of the topic of the civil engineering
Lecture - 7  Canals of the topic of the civil engineeringLecture - 7  Canals of the topic of the civil engineering
Lecture - 7 Canals of the topic of the civil engineering
MJawadkhan1
 
AI Chatbots & Software Development Teams
AI Chatbots & Software Development TeamsAI Chatbots & Software Development Teams
AI Chatbots & Software Development Teams
Joe Krall
 
David Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And PythonDavid Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And Python
David Boutry
 
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdfLittle Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
Little Known Ways To 3 Best sites to Buy Linkedin Accounts.pdf
gori42199
 
Understand water laser communication using Arduino laser and solar panel
Understand water laser communication using Arduino laser and solar panelUnderstand water laser communication using Arduino laser and solar panel
Understand water laser communication using Arduino laser and solar panel
NaveenBotsa
 
Frontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend EngineersFrontend Architecture Diagram/Guide For Frontend Engineers
Frontend Architecture Diagram/Guide For Frontend Engineers
Michael Hertzberg
 
Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023Urban Transport Infrastructure September 2023
Urban Transport Infrastructure September 2023
Rajesh Prasad
 
Introduction to Additive Manufacturing(3D printing)
Introduction to Additive Manufacturing(3D printing)Introduction to Additive Manufacturing(3D printing)
Introduction to Additive Manufacturing(3D printing)
vijimech408
 
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
01.คุณลักษณะเฉพาะของอุปกรณ์_pagenumber.pdf
PawachMetharattanara
 
Zeiss-Ultra-Optimeter metrology subject.pdf
Zeiss-Ultra-Optimeter metrology subject.pdfZeiss-Ultra-Optimeter metrology subject.pdf
Zeiss-Ultra-Optimeter metrology subject.pdf
Saikumar174642
 
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptxUnleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
Unleashing the Power of Salesforce Flows &amp_ Slack Integration!.pptx
SanjeetMishra29
 
Slide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptxSlide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptx
vvsasane
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
AI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in RetailAI-Powered Data Management and Governance in Retail
AI-Powered Data Management and Governance in Retail
IJDKP
 
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdfSmart City is the Future EN - 2024 Thailand Modify V1.0.pdf
Smart City is the Future EN - 2024 Thailand Modify V1.0.pdf
PawachMetharattanara
 
hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .hypermedia_system_revisit_roy_fielding .
hypermedia_system_revisit_roy_fielding .
NABLAS株式会社
 
Environment .................................
Environment .................................Environment .................................
Environment .................................
shadyozq9
 
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx22PCOAM16 Unit 3 Session 23  Different ways to Combine Classifiers.pptx
22PCOAM16 Unit 3 Session 23 Different ways to Combine Classifiers.pptx
Guru Nanak Technical Institutions
 
Lecture - 7 Canals of the topic of the civil engineering
Lecture - 7  Canals of the topic of the civil engineeringLecture - 7  Canals of the topic of the civil engineering
Lecture - 7 Canals of the topic of the civil engineering
MJawadkhan1
 
AI Chatbots & Software Development Teams
AI Chatbots & Software Development TeamsAI Chatbots & Software Development Teams
AI Chatbots & Software Development Teams
Joe Krall
 
David Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And PythonDavid Boutry - Specializes In AWS, Microservices And Python
David Boutry - Specializes In AWS, Microservices And Python
David Boutry
 
Ad

Paper-review: A Parallel Test Pattern Generation Algorithm to Meet Multiple Quality Objectives

  • 1. National Taiwan UniversityNational Taiwan University A Parallel Test Pattern Generation Algorithm to Meet Multiple Quality Objectives K.Y. Liao, IEEE Trans. Comput.-Aided Design Intergr. Circuits Syst., Vol. 30, Issue 11 1 J.Y.  Chen,  2015/09/15
  • 2. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   2
  • 3. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   3
  • 4. Outline   • Introduction – Background  knowledge   – PODEM  Quick  Review   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   4
  • 5. Introduction  -­ Background  Knowledge   • Single  stuck-­at  fault  (SSF)  model  is  no  longer   effective  enough  in  deep  sub-­micron  (DSM)   circuits • Several  quality  metrics  are  introduced  to  grade   patterns 5
  • 6. Introduction  -­ Background  Knowledge   • Quality  metrics   – N-­detect   – Physical-­aware  N-­detect  (PAN) – Gate  exhaustive  (GE) – Bridging  coverage  Estimate  (BCE) 6
  • 7. Introduction  -­ Background  Knowledge   • To  achieve  high  quality  test  pattern  generation  (TPG),   quality  objective  are  introduced  during  the  process   • Additional  quality  objectives  may  cause  lots  of   backtracks  during  TPG   • Some  tries  to  grade  and  select  patterns  from  large-­N-­ detect  test  set  generated  by  traditional  TPG  tool   • SWK  adopted  bit-­wise  parallel  strategy  to  realize  search-­ space  parallelism,  thus  get  more  chance  to  justify   additional  quality  objectives     7
  • 8. Introduction  -­ PODEM  Quick  Review     • Path-­sensitizing  ATPG  algorithm   • After  fault  activation,  system  choose  a  gate  from   D-­frontier  and  then  gradually  map  corresponding   D-­drive  objective  to  a  PI/PPI  decision,  called   backtrace • After  each  decision  make,  run  implication to   update  the  logic  value  of  circuit   • Heuristics  such  as  X-­path  search are  adopted   for  early  avoidance  of  backtrack   8
  • 9. Outline   • Introduction – Background  knowledge   – PODEM  Quick  Review   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   9
  • 10. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   10
  • 11. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   11
  • 12. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   – 7-­Valued  Logic   – System  Flow   • Experiment  Result   • Conclusion   12
  • 13. SWK  -­ 7-­Valued  Logic   13
  • 14. SWK  -­ 7-­Valued  Logic   14
  • 15. SWK  -­ System  Flow   15
  • 16. SWK  -­ System  Flow   16
  • 17. SWK  -­ System  Flow   17
  • 18. SWK  -­ System  Flow   18
  • 19. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   – 7-­Valued  Logic   – System  Flow   • Experiment  Result   • Conclusion   19
  • 20. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion 20
  • 21. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion 21
  • 24. Outline   • Introduction   • Split-­into-­W-­Clones(SWK)   • Experiment  Result   • Conclusion   24
  • 25. Conclusion   • SWK  optimize  test  pattern  quality  during  TPG   • Might  able  to  integrate  SWK  into  other   parallelism  strategy   • Word  size  are  predefined  and  less  flexible   • Only  support  parallel  pattern  generation  target   on  single  fault     25
  翻译: