SlideShare a Scribd company logo
More Data Science with Less Engineering
ML Infrastructure at Netflix
SF BIG ANALYTICS
SEPTEMBER 2019
“
Architecture
The model always depends on the
previous day’s model, so it needs
to be processed for consecutive
days regardless when the
upstream data updates.
“
Dependencies
“The problem seem to be that a
dependency of fancyimpute,
cvxpy released a broken version
18h ago.
“
Data Access
“Any ideas why this query takes
20-30 mins to run on Presto, and
it seems to be similarly slow on
Spark too?
“
Scalability
“I’m going to start training a set of
thousands of models. I have many
countries, and I need to estimate a
hundred models per country.
We’re training 28 separate models
and for each model, we want to
run a hyperparameter search in
parallel.
Model Operations
“This shouldn’t be happening.
Interestingly, sounds like the
Friday run was successful even
though Thursday and Saturday
both failed.
My first guess is that we’re
increasingly hitting out of memory
errors as our member count rises.
Types of Friction Data Scientists Experience
Model Development
Feature Engineering
Model Operations
Versioning
Architecture
Job Scheduler
Compute Resources
Data Warehouse
How much
data scientist
cares
How much
infrastructure
is needed
Model Development
Feature Engineering
Model Operations
Versioning
Architecture
Job Scheduler
Compute Resources
Data Warehouse
def compute(input):
...
return output
Baseline
class MyFlow(FlowSpec):
@step
def start(self):
self.next(self.a, self.b)
@step
def a(self):
self.next(self.join)
@step
def b(self):
self.next(self.join)
@step
def join(self, inputs):
self.next(self.end)
Architecture
class MyFlow(FlowSpec):
@step
def start(self):
self.next(self.a, self.b)
@conda(libs={‘tensorflow’: ‘1.14’})
@step
def a(self):
self.next(self.join)
@conda(libs={‘tensorflow’: ‘2.0’})
@step
def b(self):
self.next(self.join)
@step
def join(self, inputs):
self.next(self.end)
isolated
tasks
Dependencies
@step
def b(self):
df = MetaflowDataFrame
.from_parquet(parquet_files())
self.next(self.end)
Data Access
@resources(cpu=16)
@step
def a(self):
self.next(self.join)
@resources(memory=200000)
@step
def b(self):
self.next(self.join)
16 cores
200GB RAM
Vertical Scalability
@step
def start(self):
self.grid = [’x’,’y’,’z’]
self.next(self.a, foreach=’grid’)
@step
def a(self):
self.x = ord(self.input)
self.next(self.join)
@step
def join(self, inputs):
self.result=max(i.x for i in inputs)
self.next(self.end)
Horizontal Scalability
namespace('user:brostykus’)
run = Flow('MyFlow').latest_run
print(run.id) # -> 234
print(run.tags) # -> [‘unsampled_model’]
namespace('user:dberg’)
run = Flow('MyFlow').latest_run
print(run.id) # -> 184
print(run.tags) # -> [‘sampled_model’]
# global namespace
namespace(None)
run = Flow('MyFlow').runs('sampled_model’)
print(run.id) # -> 184
Model Ops: Versioning
run = Flow('MyFlow').latest_run
if run['A'].success:
print(run['A'].data.x)
else:
print(run['A'].stderr)
Model Ops: Monitoring
Addressing real pain
points + fanatic user
support = ❤
“The team's bias towards
helpfulness in the slack channel
(even with questions that are
definitely user error) makes
Metaflow the best developer
product at Netflix.
Metaflow Adoption at Netflix
Time to First Production Deployment
Thank you
If you want to give Metaflow a try in
your organization, please contact us!
Ville Tuulos
@vtuulos
vtuulos@netflix.com
Ad

More Related Content

What's hot (20)

Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDSAccelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Databricks
 
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
MLconf
 
Flink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward SF 2017: Eron Wright - Introducing Flink TensorflowFlink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward
 
CI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel KobranCI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel Kobran
Databricks
 
TFX: A tensor flow-based production-scale machine learning platform
TFX: A tensor flow-based production-scale machine learning platformTFX: A tensor flow-based production-scale machine learning platform
TFX: A tensor flow-based production-scale machine learning platform
Shunya Ueta
 
Brief introduction to Distributed Deep Learning
Brief introduction to Distributed Deep LearningBrief introduction to Distributed Deep Learning
Brief introduction to Distributed Deep Learning
Adam Gibson
 
Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016
MLconf
 
Automating machine learning lifecycle with kubeflow
Automating machine learning lifecycle with kubeflowAutomating machine learning lifecycle with kubeflow
Automating machine learning lifecycle with kubeflow
Stepan Pushkarev
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
Databricks
 
Whats new in_mlflow
Whats new in_mlflowWhats new in_mlflow
Whats new in_mlflow
Databricks
 
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Databricks
 
Flink Forward SF 2017: Dean Wampler - Streaming Deep Learning Scenarios with...
Flink Forward SF 2017: Dean Wampler -  Streaming Deep Learning Scenarios with...Flink Forward SF 2017: Dean Wampler -  Streaming Deep Learning Scenarios with...
Flink Forward SF 2017: Dean Wampler - Streaming Deep Learning Scenarios with...
Flink Forward
 
Snorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher RéSnorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher Ré
Jen Aman
 
Accelerating Data Science with Better Data Engineering on Databricks
Accelerating Data Science with Better Data Engineering on DatabricksAccelerating Data Science with Better Data Engineering on Databricks
Accelerating Data Science with Better Data Engineering on Databricks
Databricks
 
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Malo Denielou
 
Data Science at the Command Line
Data Science at the Command LineData Science at the Command Line
Data Science at the Command Line
Héloïse Nonne
 
Weekly #106: Deep Learning on Mobile
Weekly #106: Deep Learning on MobileWeekly #106: Deep Learning on Mobile
Weekly #106: Deep Learning on Mobile
Bill Liu
 
Suneel Marthi - Deep Learning with Apache Flink and DL4J
Suneel Marthi - Deep Learning with Apache Flink and DL4JSuneel Marthi - Deep Learning with Apache Flink and DL4J
Suneel Marthi - Deep Learning with Apache Flink and DL4J
Flink Forward
 
Productive Use of the Apache Spark Prompt with Sam Penrose
Productive Use of the Apache Spark Prompt with Sam PenroseProductive Use of the Apache Spark Prompt with Sam Penrose
Productive Use of the Apache Spark Prompt with Sam Penrose
Databricks
 
From Pipelines to Refineries: scaling big data applications with Tim Hunter
From Pipelines to Refineries: scaling big data applications with Tim HunterFrom Pipelines to Refineries: scaling big data applications with Tim Hunter
From Pipelines to Refineries: scaling big data applications with Tim Hunter
Databricks
 
Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDSAccelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Accelerated Machine Learning with RAPIDS and MLflow, Nvidia/RAPIDS
Databricks
 
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
Mathias Brandewinder, Software Engineer & Data Scientist, Clear Lines Consult...
MLconf
 
Flink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward SF 2017: Eron Wright - Introducing Flink TensorflowFlink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward SF 2017: Eron Wright - Introducing Flink Tensorflow
Flink Forward
 
CI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel KobranCI/CD for Machine Learning with Daniel Kobran
CI/CD for Machine Learning with Daniel Kobran
Databricks
 
TFX: A tensor flow-based production-scale machine learning platform
TFX: A tensor flow-based production-scale machine learning platformTFX: A tensor flow-based production-scale machine learning platform
TFX: A tensor flow-based production-scale machine learning platform
Shunya Ueta
 
Brief introduction to Distributed Deep Learning
Brief introduction to Distributed Deep LearningBrief introduction to Distributed Deep Learning
Brief introduction to Distributed Deep Learning
Adam Gibson
 
Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016Kaz Sato, Evangelist, Google at MLconf ATL 2016
Kaz Sato, Evangelist, Google at MLconf ATL 2016
MLconf
 
Automating machine learning lifecycle with kubeflow
Automating machine learning lifecycle with kubeflowAutomating machine learning lifecycle with kubeflow
Automating machine learning lifecycle with kubeflow
Stepan Pushkarev
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
Databricks
 
Whats new in_mlflow
Whats new in_mlflowWhats new in_mlflow
Whats new in_mlflow
Databricks
 
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Navigating the ML Pipeline Jungle with MLflow: Notes from the Field with Thun...
Databricks
 
Flink Forward SF 2017: Dean Wampler - Streaming Deep Learning Scenarios with...
Flink Forward SF 2017: Dean Wampler -  Streaming Deep Learning Scenarios with...Flink Forward SF 2017: Dean Wampler -  Streaming Deep Learning Scenarios with...
Flink Forward SF 2017: Dean Wampler - Streaming Deep Learning Scenarios with...
Flink Forward
 
Snorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher RéSnorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher Ré
Jen Aman
 
Accelerating Data Science with Better Data Engineering on Databricks
Accelerating Data Science with Better Data Engineering on DatabricksAccelerating Data Science with Better Data Engineering on Databricks
Accelerating Data Science with Better Data Engineering on Databricks
Databricks
 
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Portable batch and streaming pipelines with Apache Beam (Big Data Application...
Malo Denielou
 
Data Science at the Command Line
Data Science at the Command LineData Science at the Command Line
Data Science at the Command Line
Héloïse Nonne
 
Weekly #106: Deep Learning on Mobile
Weekly #106: Deep Learning on MobileWeekly #106: Deep Learning on Mobile
Weekly #106: Deep Learning on Mobile
Bill Liu
 
Suneel Marthi - Deep Learning with Apache Flink and DL4J
Suneel Marthi - Deep Learning with Apache Flink and DL4JSuneel Marthi - Deep Learning with Apache Flink and DL4J
Suneel Marthi - Deep Learning with Apache Flink and DL4J
Flink Forward
 
Productive Use of the Apache Spark Prompt with Sam Penrose
Productive Use of the Apache Spark Prompt with Sam PenroseProductive Use of the Apache Spark Prompt with Sam Penrose
Productive Use of the Apache Spark Prompt with Sam Penrose
Databricks
 
From Pipelines to Refineries: scaling big data applications with Tim Hunter
From Pipelines to Refineries: scaling big data applications with Tim HunterFrom Pipelines to Refineries: scaling big data applications with Tim Hunter
From Pipelines to Refineries: scaling big data applications with Tim Hunter
Databricks
 

Similar to More Data Science with Less Engineering: Machine Learning Infrastructure at Netflix (20)

Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Provectus
 
Monitoring AI with AI
Monitoring AI with AIMonitoring AI with AI
Monitoring AI with AI
Stepan Pushkarev
 
Data Secrets From a Platform Engineer (Bilbro)
Data Secrets From a Platform Engineer (Bilbro)Data Secrets From a Platform Engineer (Bilbro)
Data Secrets From a Platform Engineer (Bilbro)
Rebecca Bilbro
 
Deep learning and streaming in Apache Spark 2.2 by Matei Zaharia
Deep learning and streaming in Apache Spark 2.2 by Matei ZahariaDeep learning and streaming in Apache Spark 2.2 by Matei Zaharia
Deep learning and streaming in Apache Spark 2.2 by Matei Zaharia
GoDataDriven
 
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Iulian Pintoiu
 
Data science for infrastructure dev week 2022
Data science for infrastructure   dev week 2022Data science for infrastructure   dev week 2022
Data science for infrastructure dev week 2022
ZainAsgar1
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
Machine learning model to production
Machine learning model to productionMachine learning model to production
Machine learning model to production
Georg Heiler
 
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning ModelsApache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Anyscale
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
Data herding
Data herdingData herding
Data herding
unbracketed
 
Data herding
Data herdingData herding
Data herding
unbracketed
 
Spark ML Pipeline serving
Spark ML Pipeline servingSpark ML Pipeline serving
Spark ML Pipeline serving
Stepan Pushkarev
 
Exploring SharePoint with F#
Exploring SharePoint with F#Exploring SharePoint with F#
Exploring SharePoint with F#
Talbott Crowell
 
Building and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache AirflowBuilding and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache Airflow
Kaxil Naik
 
Building Continuous Application with Structured Streaming and Real-Time Data ...
Building Continuous Application with Structured Streaming and Real-Time Data ...Building Continuous Application with Structured Streaming and Real-Time Data ...
Building Continuous Application with Structured Streaming and Real-Time Data ...
Databricks
 
Professional JavaScript: AntiPatterns
Professional JavaScript: AntiPatternsProfessional JavaScript: AntiPatterns
Professional JavaScript: AntiPatterns
Mike Wilcox
 
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
HostedbyConfluent
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
Data Science Milan
 
Making Data Science Scalable - 5 Lessons Learned
Making Data Science Scalable - 5 Lessons LearnedMaking Data Science Scalable - 5 Lessons Learned
Making Data Science Scalable - 5 Lessons Learned
Laurenz Wuttke
 
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Provectus
 
Data Secrets From a Platform Engineer (Bilbro)
Data Secrets From a Platform Engineer (Bilbro)Data Secrets From a Platform Engineer (Bilbro)
Data Secrets From a Platform Engineer (Bilbro)
Rebecca Bilbro
 
Deep learning and streaming in Apache Spark 2.2 by Matei Zaharia
Deep learning and streaming in Apache Spark 2.2 by Matei ZahariaDeep learning and streaming in Apache Spark 2.2 by Matei Zaharia
Deep learning and streaming in Apache Spark 2.2 by Matei Zaharia
GoDataDriven
 
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019Productionizing Machine Learning - Bigdata meetup 5-06-2019
Productionizing Machine Learning - Bigdata meetup 5-06-2019
Iulian Pintoiu
 
Data science for infrastructure dev week 2022
Data science for infrastructure   dev week 2022Data science for infrastructure   dev week 2022
Data science for infrastructure dev week 2022
ZainAsgar1
 
Machine Learning Infrastructure
Machine Learning InfrastructureMachine Learning Infrastructure
Machine Learning Infrastructure
SigOpt
 
Machine learning model to production
Machine learning model to productionMachine learning model to production
Machine learning model to production
Georg Heiler
 
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning ModelsApache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Apache ® Spark™ MLlib 2.x: How to Productionize your Machine Learning Models
Anyscale
 
Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要Spark + AI Summit 2020 イベント概要
Spark + AI Summit 2020 イベント概要
Paulo Gutierrez
 
Exploring SharePoint with F#
Exploring SharePoint with F#Exploring SharePoint with F#
Exploring SharePoint with F#
Talbott Crowell
 
Building and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache AirflowBuilding and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache Airflow
Kaxil Naik
 
Building Continuous Application with Structured Streaming and Real-Time Data ...
Building Continuous Application with Structured Streaming and Real-Time Data ...Building Continuous Application with Structured Streaming and Real-Time Data ...
Building Continuous Application with Structured Streaming and Real-Time Data ...
Databricks
 
Professional JavaScript: AntiPatterns
Professional JavaScript: AntiPatternsProfessional JavaScript: AntiPatterns
Professional JavaScript: AntiPatterns
Mike Wilcox
 
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
HostedbyConfluent
 
Serverless machine learning architectures at Helixa
Serverless machine learning architectures at HelixaServerless machine learning architectures at Helixa
Serverless machine learning architectures at Helixa
Data Science Milan
 
Making Data Science Scalable - 5 Lessons Learned
Making Data Science Scalable - 5 Lessons LearnedMaking Data Science Scalable - 5 Lessons Learned
Making Data Science Scalable - 5 Lessons Learned
Laurenz Wuttke
 
Ad

Recently uploaded (20)

Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
Chapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptxChapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptx
PermissionTafadzwaCh
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Controlling Financial Processes at a Municipality
Controlling Financial Processes at a MunicipalityControlling Financial Processes at a Municipality
Controlling Financial Processes at a Municipality
Process mining Evangelist
 
Mining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - MicrosoftMining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - Microsoft
Process mining Evangelist
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Process Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - JourneyProcess Mining at Deutsche Bank - Journey
Process Mining at Deutsche Bank - Journey
Process mining Evangelist
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Z14_IBM__APL_by_Christian_Demmer_IBM.pdf
Z14_IBM__APL_by_Christian_Demmer_IBM.pdfZ14_IBM__APL_by_Christian_Demmer_IBM.pdf
Z14_IBM__APL_by_Christian_Demmer_IBM.pdf
Fariborz Seyedloo
 
Transforming health care with ai powered
Transforming health care with ai poweredTransforming health care with ai powered
Transforming health care with ai powered
gowthamarvj
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
problem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursingproblem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursing
vishnudathas123
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Automated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptxAutomated Melanoma Detection via Image Processing.pptx
Automated Melanoma Detection via Image Processing.pptx
handrymaharjan23
 
Chapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptxChapter 6-3 Introducingthe Concepts .pptx
Chapter 6-3 Introducingthe Concepts .pptx
PermissionTafadzwaCh
 
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
indonesia-gen-z-report-2024 Gen Z (born between 1997 and 2012) is currently t...
disnakertransjabarda
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
Controlling Financial Processes at a Municipality
Controlling Financial Processes at a MunicipalityControlling Financial Processes at a Municipality
Controlling Financial Processes at a Municipality
Process mining Evangelist
 
Mining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - MicrosoftMining a Global Trade Process with Data Science - Microsoft
Mining a Global Trade Process with Data Science - Microsoft
Process mining Evangelist
 
Process Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulenProcess Mining at Dimension Data - Jan vermeulen
Process Mining at Dimension Data - Jan vermeulen
Process mining Evangelist
 
Adopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use caseAdopting Process Mining at the Rabobank - use case
Adopting Process Mining at the Rabobank - use case
Process mining Evangelist
 
AWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdfAWS Certified Machine Learning Slides.pdf
AWS Certified Machine Learning Slides.pdf
philsparkshome
 
Multi-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline OrchestrationMulti-tenant Data Pipeline Orchestration
Multi-tenant Data Pipeline Orchestration
Romi Kuntsman
 
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
新西兰文凭奥克兰理工大学毕业证书AUT成绩单补办
Taqyea
 
Z14_IBM__APL_by_Christian_Demmer_IBM.pdf
Z14_IBM__APL_by_Christian_Demmer_IBM.pdfZ14_IBM__APL_by_Christian_Demmer_IBM.pdf
Z14_IBM__APL_by_Christian_Demmer_IBM.pdf
Fariborz Seyedloo
 
Transforming health care with ai powered
Transforming health care with ai poweredTransforming health care with ai powered
Transforming health care with ai powered
gowthamarvj
 
Automation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success storyAutomation Platforms and Process Mining - success story
Automation Platforms and Process Mining - success story
Process mining Evangelist
 
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
文凭证书美国SDSU文凭圣地亚哥州立大学学生证学历认证查询
Taqyea
 
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
CERTIFIED BUSINESS ANALYSIS PROFESSIONAL™
muhammed84essa
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
problem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursingproblem solving.presentation slideshow bsc nursing
problem solving.presentation slideshow bsc nursing
vishnudathas123
 
AI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptxAI ------------------------------ W1L2.pptx
AI ------------------------------ W1L2.pptx
AyeshaJalil6
 
Ad

More Data Science with Less Engineering: Machine Learning Infrastructure at Netflix

  翻译: