SlideShare a Scribd company logo
Program 1:
clear all;close all;clc;clf;
t=0:0.01*pi:4*pi;
x=sin(t);
y=x;
z=x;
n=length(y);
for i=1:n
if (x(i)<0)
y(i)=0;
z(i)=-1*z(i);
end
end
u=figure(1);
set(u,'color','w')
subplot 221
plot(t,x)
title('input:sinusoidal wave')
subplot 222
plot(t,y)
title('half wave rectifier')
subplot 223
plot(t,z)
title('full wave rectifier')
subplot 224
plot(t,z,'--')
hold on
line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)-
0.5)]);
line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)-
0.5)]);
line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)-
0.5)]);
title('smoothed rectifier signal')
Program 2:
clc;close all;clear all;
t=0:0.1*pi:2*pi;
n=length(t);
r=0.5*ones(1,n);
r1=ones(1,n);
[x y]=pol2cart(t,r);
[x1 y1]=pol2cart(t,r1);
x2=x1+1;
e=figure(1)
set(e,'color','w');
subplot 221
plot(x,y)
title('radius=0.5m')
axis([-3 3 -3 3]);
subplot 222
plot(x1,y1)
title('radius=1m')
0 5 10 15
-1
-0.5
0
0.5
1
input:sinusoidal wave
0 5 10 15
0
0.5
1
half wave rectifier
0 5 10 15
0
0.5
1
full wave rectifier
0 5 10 15
0
0.5
1
smoothed rectifier signal
axis([-3 3 -3 3]);
subplot 223
plot(x2,y1)
title('radius=1m,shifted')
axis([-3 3 -3 3]);
for i=1:2:4
for j=1:2:4
x2=x+i;
y2=y+j;
subplot 224
plot(x2,y2)
text(1.7,2,'core')
title('pcf')
hold on;
end
end
-2 0 2
-2
0
2
radius=0.5m
-2 0 2
-2
0
2
radius=1m
-2 0 2
-2
0
2
radius=1m,shifted
0 1 2 3 4
0
1
2
3
4
core
pcf
corecorecore
Program 3:
clear all;close all;clc;
[x,y,z]=cylinder(5);
[x1,y1,z1]=cylinder;
figure(1)
subplot 221
surf(x1,y1,z1)
subplot 222
surf(x,y,z)
subplot 223
axis square
surf(x,y,z)
hold on
surf(x1,y1,z1)
-1
0
1
-1
0
1
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
Program 4:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap gray
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 5:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap spring
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 6:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 321
cylinder(2+sin(t))
subplot 322
cylinder(2+cos(t))
subplot 323
cylinder(t.^4)
subplot 324
cylinder(t.^2)
subplot 325
cylinder(exp(-t)+2)
subplot 326
cylinder(t.^2)
hold on
cylinder(t)
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-2000
0
2000
-2000
0
2000
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
Program 7:
clear all;close all;clc;
syms x;
y=sin(x);
subplot 211
ezplot(y)
grid on
subplot 212
ezplot(y,[0:4*pi])
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
x
sin(x)
0 2 4 6 8 10 12
-1
-0.5
0
0.5
1
x
sin(x)
Program 8:
clear all;close all;clc;
syms t;
y=sin(t);
figure(1)
subplot 221
ezsurf(y,[-pi pi])
subplot 222
ezsurf(y)
z=sin(t)*cos(3*t);
subplot 223
ezpolar(z)
subplot 224
ezpolar(z,[0 pi]);
-2
0
2
-2
0
2
-1
0
1
t
sin(t)
y -5
0
5
-5
0
5
-1
0
1
t
sin(t)
y
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
Program 9:
clear all;close all;clc;
syms t;
y=t^3;
subplot 221
ezplot(y)
y1=diff(y);
y2=diff(y,2);
y3=diff(y,3);
subplot 222
ezplot(y1)
subplot 223
ezplot(y2)
subplot 224
ezplot(y3)
-5 0 5
-200
-100
0
100
200
t
t3
-5 0 5
0
50
100
t
3 t2
-5 0 5
-40
-20
0
20
40
t
6 t
-5 0 5
5
5.5
6
6.5
7
x
6
Program 10:
clear all;close all;clc;
t=1:0.1:5;
y=t.^2;
dy1=diff(y)./diff(t);
td1=t(2:length(t));
figure(1)
subplot 121
plot(t,y)
grid on
title('using numerical')
subplot 122
plot(td1,dy1)
title('numerical diff')
1 2 3 4 5
0
5
10
15
20
25
using numerical
1 2 3 4 5
2
3
4
5
6
7
8
9
10
numerical diff
Program 11:
clear all;close all;clc;
t=1:0.1:5;
y=rand(1,length(t));
dy1=diff(y)./diff(t);
td1=t(2:length(t));
subplot 211
plot(t,y)
title('noise signal over 5 second')
subplot 212
plot(td1,dy1)
title('the rate of change of the noise w.r.t
time')
1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.5
1
noise signal over 5 second
1 1.5 2 2.5 3 3.5 4 4.5 5
-10
-5
0
5
10
the rate of change of the noise w.r.t time
:12Program
clear all;close all;clc;
x=0:0.1:10;
y=0:0.1:10;
[x1 y1]=meshgrid(x,y);
for i=1:length(x)
for j=1:length(y)
if (y1(i,j)>=0 && y1(i,j)<2)
z1(i,j)=0;
elseif (y1(i,j)>=2 && y1(i,j)<4)
z1(i,j)=2;
elseif (y1(i,j)>=4 && y1(i,j)<6)
z1(i,j)=4;
elseif (y1(i,j)>=6 && y1(i,j)<8)
z1(i,j)=6;
else
z1(i,j)=8;
end
end
end
surf(x1,y1,z1)
0
2
4
6
8
10
0
5
10
0
2
4
6
8
:13Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:14Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
hold on
for i=1:length(x)/4;
if (sqrt(x(i).^2+y(i).^2)<=1)
line([ 0 x(i)],[0 y(i)])
end
end
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:15Program
clear all;close all;clc;
a=[50 0;0 50];
b=repmat(a,[3 3]);
e=figure(1)
set(e,'color','m')
image(b)
colormap gray
axis off
Program 16:
clear all;close all;clc;
t=0:0.1*pi:4*pi;
y=sin(t);
n=length(t);
noise=0.1*randn(1,n);
ynoise=y+noise;
r=figure(1);
set(r,'color','g')
subplot 221
plot(t,y,'r')
title('signal')
subplot 222
plot(t,noise,'k')
title('noise')
subplot 223
plot(t,ynoise,'color','b')
title('ynoise')
0 5 10 15
-1
-0.5
0
0.5
1
signal
0 5 10 15
-0.4
-0.2
0
0.2
0.4
noise
0 5 10 15
-2
-1
0
1
2
ynoise
:17Program
clear all;close all;clc;
t=0:0.1*pi:4*pi;
n=length(t);
y1=2*sin(0.5*t);%first input
y2=2*cos(0.5*t);%second input
y3=cos(5*t); %carrier
ya=y1.*y3;
yb=y2.*y3;
subplot 221
plot(t,y1,'-.',t,y2,'-')
subplot 222
plot(t,y3)
title('carrier')
subplot 223
plot(t,ya)
title('carrier * sin')
subplot 224
plot(t,yb)
title('carrier *cos')
0 5 10 15
-2
-1
0
1
2
0 5 10 15
-1
-0.5
0
0.5
1
carrier
0 5 10 15
-2
-1
0
1
2
carrier * sin
0 5 10 15
-2
-1
0
1
2
carrier *cos
Program 18:
clear all;close all;clc;
t=0:0.01*pi:4*pi;
x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t);
fx=fft(x,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 421
plot(t,x)
xlabel('time')
ylabel('amplitude')
subplot 422
plot(w,abs(fx(1:256)))
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
filter=ones(1,256);
filter(1,90:256)=0;
subplot 423
plot(w,filter)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 2])
subplot 424
result=abs(fx(1:256)).*filter;
plot(w,result)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
subplot 413
plot(w,result)
xlabel('frequency')
ylabel('amplitude')
axis([0 16 0 200])
iresult=ifft((fx),length(t));
subplot 414
plot(t,iresult)
xlabel('time')
ylabel('amplitude')
axis([0 14 -2 2])
Program 19:
z=[10 4 6 9 3];
subplot 221
pie(z)
subplot 222
pie(z,[0 0 0 1 0]);
subplot 223
pie(z,[1 1 1 1 1])
subplot 224
pie3(z,[0 0 0 1 0]);
0 2 4 6 8 10 12 14
-2
0
2
4
time
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 5 10 15 20
0
1
2
frequency HZ
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 2 4 6 8 10 12 14 16
0
100
200
frequency
amplitude
0 2 4 6 8 10 12 14
-2
0
2
time
amplitude
Program 20:
clear all ;close all; clc
x=-3:3;
y=x.^2;
bar(x,y)
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
28%
19%
13%
9%
31%
Program 21:
clear all ;close all; clc
y=round(rand(2,3)*10);
subplot 221
bar(y)
subplot 222
barh(y)
subplot 223
bar(y,'stacked')
subplot 224
bar(y,1)
-3 -2 -1 0 1 2 3
0
1
2
3
4
5
6
7
8
9
Program 22:
clear all;close all;clc
t=0:0.1*pi:2*pi;
x=sin(t);
subplot 221
plot(t,x,'*r')
subplot 222
stem(t,x)
subplot 223
stairs(t,x)
subplot 224
fill(t,x,'g')
1 2
0
2
4
6
8
10
0 5 10
1
2
1 2
0
5
10
15
20
25
1 2
0
2
4
6
8
10
Program 23:
clear all ;close all;clc;
syms x t w a
f1=heaviside(x);
f2=heaviside(x-2);
f3=heaviside(x+2);
f4=heaviside(x+2)-heaviside(x-2);
subplot 221
ezplot(f1,[-5 5])
subplot 222
ezplot(f2,[-5 5])
subplot 223
ezplot(f3,[-5 5])
subplot 224
ezplot(f4,[-5 5])
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
Program 24:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
vint=cos(2*pi*4*t);
fvint=fft(vint,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 211
plot(t,vint)
xlabel('time')
ylabel('amplitude')
subplot 212
plot(w,abs(fvint(1:256)))
xlabel('frequency')
ylabel('magnitude')
-5 0 5
0
0.5
1
x
heaviside(x)
-5 0 5
0
0.5
1
x
heaviside(x - 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2) - heaviside(x - 2)
Program 25:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
x=cos(t);
y=sin(t);
plot(t,x,'-r',t,y,'.g')
legend('cos','sin')
title('sinusoidal signals')
xlabel('time')
ylabel('amplitude')
0 2 4 6 8 10 12 14
-1
-0.5
0
0.5
1
time
amplitude
0 2 4 6 8 10 12 14 16
0
50
100
150
200
frequency
magnitude
0 2 4 6 8 10 12 14
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
time
amplitude
sinusoidal signals
cos
sin
Program 26:
z=magic(3);
subplot 221
bar(z)
subplot 222
bar(z,'stacked')
subplot 223
bar(z,'grouped')
subplot 224
barh(z,'stacked')
1 2 3
0
2
4
6
8
10
1 2 3
0
5
10
15
1 2 3
0
2
4
6
8
10
0 5 10 15
1
2
3
Program 27:
z=magic(2);
subplot 221
bar(z)
subplot 222
bar(z,'c')
subplot 223
bar(z,'histic')
subplot 224
barh(z,'histic')
1 2
0
1
2
3
4
1 2
0
1
2
3
4
1 2
0
1
2
3
4
0 1 2 3 4
1
2
Program 28:
z=round(10.*rand(1,10));
figure(4)
subplot 211
hist(z,5)
subplot 212
hist(z,7)
1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
0 2 4 6 8 10 12
0
1
2
3
4
Program 29:
t=0:0.01*pi:2*pi;
y=sin(2*t).*cos(2*t);
figure(8)
subplot 221
polar(t,y,'--g')
subplot 222
polar(t,y,'bs')
subplot 223
polar(t,y,'dr')
subplot 224
f=polar(t,y);
set(f,'color','m')
set(f,'linewidth',2)
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
Program 30:
x=[1:10];
y=2.*rand(1,10);
figure(1)
set(figure(1),'color','yellow');
subplot 221
scatter(x,y)
subplot 222
scatter(x,y,'r')
subplot 223
scatter(x,y,3,'g')
subplot 224
stem(x,y)
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
Program 31:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
scatter3(x1,y1,z1)
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
Program 32:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
subplot 211
scatter3(x1,y1,z1,2,'k')
subplot 212
scatter3(x1,y1,z1,10,'g')
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
Program 32:
x=0:10;
y=0:10;
[xm ym]=meshgrid(x,y);
z=xm.^2/2+ym.^2/4;
figure(1)
subplot 221
mesh(z)
subplot 222
contour(x,y,z)
subplot 223
surf(x,y,z)
subplot 224
surfc(x,y,z)
0
10
20
0
10
20
0
50
100
0 5 10
0
2
4
6
8
10
0
5
10
0
5
10
0
50
100
0
5
10
0
5
10
0
50
100
Program 33:
%system of linear equation
%cramer method
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
d1=a;
d1(:,1)=b;
x(1)=det(d1)/det(a)
d2=a;
d2(:,2)=b;
x(2)=det(d2)/det(a)
d3=a;
d3(:,3)=b;
x(3)=det(d3)/det(a)
command window:
x =
-1.4000 1.8000 0.6000
Program 34:
%system of linear equation
%Gass elimination
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
x=inv(a)*b
x =
-1.4000
1.8000
0.6000
x=ab
x =
-1.4000
1.8000
0.6000
Program 35:
Program 36:
>> y=logspace(1,5);
>> size(y)
ans =
1 50
>> plot(y)
>> z=logspace(1,5,5);
>> area(z)
1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 5 10 15 20 25 30 35 40 45 50
0
1
2
3
4
5
6
7
8
9
10
x 10
4
Program 37:
x=ones(10,10);
x(3,3)=10;
x(3,7)=10;
x(6,5)=10;
x(8,4:6)=10;
image(x)
colormap copper(2)
%colormap spring(2)
%colormap hsv
%colormap summer
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Matlab plotting
Ad

More Related Content

What's hot (20)

Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Santosh V
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Khulna University
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
Benjamin Bengfort
 
database application using SQL DML statements: Insert, Select, Update, Delet...
 database application using SQL DML statements: Insert, Select, Update, Delet... database application using SQL DML statements: Insert, Select, Update, Delet...
database application using SQL DML statements: Insert, Select, Update, Delet...
bhavesh lande
 
Overview of Big data(ppt)
Overview of Big data(ppt)Overview of Big data(ppt)
Overview of Big data(ppt)
Shatavisha Roy Chowdhury
 
Applications of linear algebra in computer science
Applications of linear algebra in computer scienceApplications of linear algebra in computer science
Applications of linear algebra in computer science
Arnob Khan
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Simplilearn
 
Stressen's matrix multiplication
Stressen's matrix multiplicationStressen's matrix multiplication
Stressen's matrix multiplication
Kumar
 
Deep Learning: Chapter 11 Practical Methodology
Deep Learning: Chapter 11 Practical MethodologyDeep Learning: Chapter 11 Practical Methodology
Deep Learning: Chapter 11 Practical Methodology
Jason Tsai
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Anastasia Jakubow
 
Application of interpolation in CSE
Application of interpolation in CSEApplication of interpolation in CSE
Application of interpolation in CSE
Md. Tanvir Hossain
 
Association Rule mining
Association Rule miningAssociation Rule mining
Association Rule mining
Megha Sharma
 
Algorithms explained
Algorithms explainedAlgorithms explained
Algorithms explained
PIYUSH Dubey
 
Semantic net in AI
Semantic net in AISemantic net in AI
Semantic net in AI
ShahDhruv21
 
Prim's algorithm
Prim's algorithmPrim's algorithm
Prim's algorithm
Pankaj Thakur
 
Types of Machine Learning
Types of Machine LearningTypes of Machine Learning
Types of Machine Learning
Samra Shahzadi
 
Machine Learning-Linear regression
Machine Learning-Linear regressionMachine Learning-Linear regression
Machine Learning-Linear regression
kishanthkumaar
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
Oswald Campesato
 
Fuzzy arithmetic
Fuzzy arithmeticFuzzy arithmetic
Fuzzy arithmetic
Mohit Chimankar
 
M2M - Machine to Machine Technology
M2M - Machine to Machine TechnologyM2M - Machine to Machine Technology
M2M - Machine to Machine Technology
Samip jain
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Santosh V
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
Benjamin Bengfort
 
database application using SQL DML statements: Insert, Select, Update, Delet...
 database application using SQL DML statements: Insert, Select, Update, Delet... database application using SQL DML statements: Insert, Select, Update, Delet...
database application using SQL DML statements: Insert, Select, Update, Delet...
bhavesh lande
 
Applications of linear algebra in computer science
Applications of linear algebra in computer scienceApplications of linear algebra in computer science
Applications of linear algebra in computer science
Arnob Khan
 
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Random Forest Algorithm - Random Forest Explained | Random Forest In Machine ...
Simplilearn
 
Stressen's matrix multiplication
Stressen's matrix multiplicationStressen's matrix multiplication
Stressen's matrix multiplication
Kumar
 
Deep Learning: Chapter 11 Practical Methodology
Deep Learning: Chapter 11 Practical MethodologyDeep Learning: Chapter 11 Practical Methodology
Deep Learning: Chapter 11 Practical Methodology
Jason Tsai
 
Application of interpolation in CSE
Application of interpolation in CSEApplication of interpolation in CSE
Application of interpolation in CSE
Md. Tanvir Hossain
 
Association Rule mining
Association Rule miningAssociation Rule mining
Association Rule mining
Megha Sharma
 
Algorithms explained
Algorithms explainedAlgorithms explained
Algorithms explained
PIYUSH Dubey
 
Semantic net in AI
Semantic net in AISemantic net in AI
Semantic net in AI
ShahDhruv21
 
Types of Machine Learning
Types of Machine LearningTypes of Machine Learning
Types of Machine Learning
Samra Shahzadi
 
Machine Learning-Linear regression
Machine Learning-Linear regressionMachine Learning-Linear regression
Machine Learning-Linear regression
kishanthkumaar
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
Oswald Campesato
 
M2M - Machine to Machine Technology
M2M - Machine to Machine TechnologyM2M - Machine to Machine Technology
M2M - Machine to Machine Technology
Samip jain
 

Viewers also liked (6)

Manual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D trussManual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D truss
Mohammaderfan Zandieh
 
solution for 2D truss1
solution for 2D truss1solution for 2D truss1
solution for 2D truss1
Mohammaderfan Zandieh
 
Fem in matlab
Fem in matlabFem in matlab
Fem in matlab
Shince Joseph
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mapping
Linh Tran
 
MATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi SharmaMATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi Sharma
Abee Sharma
 
Matlab Introduction
Matlab IntroductionMatlab Introduction
Matlab Introduction
ideas2ignite
 
Manual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D trussManual for the MATLAB program to solve the 2D truss
Manual for the MATLAB program to solve the 2D truss
Mohammaderfan Zandieh
 
Isoparametric mapping
Isoparametric mappingIsoparametric mapping
Isoparametric mapping
Linh Tran
 
MATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi SharmaMATLAB Programs For Beginners. | Abhi Sharma
MATLAB Programs For Beginners. | Abhi Sharma
Abee Sharma
 
Matlab Introduction
Matlab IntroductionMatlab Introduction
Matlab Introduction
ideas2ignite
 
Ad

Similar to Matlab plotting (20)

DSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docxDSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docx
MUMAR57
 
Gilat_ch05.pdf
Gilat_ch05.pdfGilat_ch05.pdf
Gilat_ch05.pdf
ArhamQadeer
 
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptxVatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
y3yvxxcoyt
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
aj ahmed
 
Newton two Equation method
Newton two Equation  method Newton two Equation  method
Newton two Equation method
shanto017
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
towojixi
 
Dsp iit workshop
Dsp iit workshopDsp iit workshop
Dsp iit workshop
Electronics and Communication Engineering, Institute of Road and Transport Technology
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
Matlab file
Matlab file Matlab file
Matlab file
rampal singh
 
ME_541_HW_04
ME_541_HW_04ME_541_HW_04
ME_541_HW_04
Jared Fertig
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
Hareem Aslam
 
Ecg programa simulado
Ecg programa simuladoEcg programa simulado
Ecg programa simulado
Eduard Stiven Marin Montoya
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Pamelaew
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
International Journal of Power Electronics and Drive Systems
 
Numerical Method Assignment
Numerical Method AssignmentNumerical Method Assignment
Numerical Method Assignment
ashikul akash
 
Matlab fair-record-model
Matlab fair-record-modelMatlab fair-record-model
Matlab fair-record-model
ajaydev1111
 
Matlab programs
Matlab programsMatlab programs
Matlab programs
Prakash Rout
 
DSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docxDSP LAB COMPLETE CODES.docx
DSP LAB COMPLETE CODES.docx
MUMAR57
 
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptxVatwnvrjnavaunwv3h255d36gds4d4644892.pptx
Vatwnvrjnavaunwv3h255d36gds4d4644892.pptx
y3yvxxcoyt
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
aj ahmed
 
Newton two Equation method
Newton two Equation  method Newton two Equation  method
Newton two Equation method
shanto017
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
towojixi
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
Abi finni
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Alexander Litvinenko
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
Hareem Aslam
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Pamelaew
 
Numerical Method Assignment
Numerical Method AssignmentNumerical Method Assignment
Numerical Method Assignment
ashikul akash
 
Matlab fair-record-model
Matlab fair-record-modelMatlab fair-record-model
Matlab fair-record-model
ajaydev1111
 
Ad

More from Amr Rashed (20)

Introduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Deep Learning: Concepts, Architectures, and ApplicationsIntroduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Deep Learning: Concepts, Architectures, and Applications
Amr Rashed
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
Introduction to the Fundamentals of Computer Networks
Introduction to the Fundamentals of Computer NetworksIntroduction to the Fundamentals of Computer Networks
Introduction to the Fundamentals of Computer Networks
Amr Rashed
 
Introduction to analog communication system
Introduction to analog communication systemIntroduction to analog communication system
Introduction to analog communication system
Amr Rashed
 
introduction to embedded system presentation
introduction to embedded system presentationintroduction to embedded system presentation
introduction to embedded system presentation
Amr Rashed
 
Discrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofsDiscrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofs
Amr Rashed
 
Discrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 RelationsDiscrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 Relations
Amr Rashed
 
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and ProofsDiscrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Amr Rashed
 
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Amr Rashed
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
Amr Rashed
 
Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1
Amr Rashed
 
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNNImplementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
Amr Rashed
 
امن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكاتامن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكات
Amr Rashed
 
Machine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining frameworkMachine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining framework
Amr Rashed
 
مقدمة عن الفيجوال بيسك 9-2019
مقدمة عن الفيجوال بيسك  9-2019مقدمة عن الفيجوال بيسك  9-2019
مقدمة عن الفيجوال بيسك 9-2019
Amr Rashed
 
Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Deep learning tutorial 9/2019
Deep learning tutorial 9/2019
Amr Rashed
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning Tutorial
Amr Rashed
 
License Plate Recognition
License Plate RecognitionLicense Plate Recognition
License Plate Recognition
Amr Rashed
 
Introduction to FPGA, VHDL
Introduction to FPGA, VHDL  Introduction to FPGA, VHDL
Introduction to FPGA, VHDL
Amr Rashed
 
Introduction to Matlab
Introduction to MatlabIntroduction to Matlab
Introduction to Matlab
Amr Rashed
 
Introduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Deep Learning: Concepts, Architectures, and ApplicationsIntroduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Deep Learning: Concepts, Architectures, and Applications
Amr Rashed
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
Introduction to the Fundamentals of Computer Networks
Introduction to the Fundamentals of Computer NetworksIntroduction to the Fundamentals of Computer Networks
Introduction to the Fundamentals of Computer Networks
Amr Rashed
 
Introduction to analog communication system
Introduction to analog communication systemIntroduction to analog communication system
Introduction to analog communication system
Amr Rashed
 
introduction to embedded system presentation
introduction to embedded system presentationintroduction to embedded system presentation
introduction to embedded system presentation
Amr Rashed
 
Discrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofsDiscrete Math Ch5 counting + proofs
Discrete Math Ch5 counting + proofs
Amr Rashed
 
Discrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 RelationsDiscrete Math Chapter: 8 Relations
Discrete Math Chapter: 8 Relations
Amr Rashed
 
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and ProofsDiscrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Amr Rashed
 
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Amr Rashed
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
Amr Rashed
 
Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1Discrete Structure Mathematics lecture 1
Discrete Structure Mathematics lecture 1
Amr Rashed
 
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNNImplementation of DNA sequence alignment algorithms  using Fpga ,ML,and CNN
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
Amr Rashed
 
امن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكاتامن نظم المعلومات وامن الشبكات
امن نظم المعلومات وامن الشبكات
Amr Rashed
 
Machine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining frameworkMachine learning workshop using Orange datamining framework
Machine learning workshop using Orange datamining framework
Amr Rashed
 
مقدمة عن الفيجوال بيسك 9-2019
مقدمة عن الفيجوال بيسك  9-2019مقدمة عن الفيجوال بيسك  9-2019
مقدمة عن الفيجوال بيسك 9-2019
Amr Rashed
 
Deep learning tutorial 9/2019
Deep learning tutorial 9/2019Deep learning tutorial 9/2019
Deep learning tutorial 9/2019
Amr Rashed
 
Deep Learning Tutorial
Deep Learning TutorialDeep Learning Tutorial
Deep Learning Tutorial
Amr Rashed
 
License Plate Recognition
License Plate RecognitionLicense Plate Recognition
License Plate Recognition
Amr Rashed
 
Introduction to FPGA, VHDL
Introduction to FPGA, VHDL  Introduction to FPGA, VHDL
Introduction to FPGA, VHDL
Amr Rashed
 
Introduction to Matlab
Introduction to MatlabIntroduction to Matlab
Introduction to Matlab
Amr Rashed
 

Recently uploaded (20)

2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt
rakshaiya16
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control Monthly May 2025
Water Industry Process Automation & Control
 
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning ModelsMode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Mode-Wise Corridor Level Travel-Time Estimation Using Machine Learning Models
Journal of Soft Computing in Civil Engineering
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Generative AI & Large Language Models Agents
Generative AI & Large Language Models AgentsGenerative AI & Large Language Models Agents
Generative AI & Large Language Models Agents
aasgharbee22seecs
 
vtc2018fall_otfs_tutorial_presentation_1.pdf
vtc2018fall_otfs_tutorial_presentation_1.pdfvtc2018fall_otfs_tutorial_presentation_1.pdf
vtc2018fall_otfs_tutorial_presentation_1.pdf
RaghavaGD1
 
Design of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdfDesign of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdf
Kamel Farid
 
Environment .................................
Environment .................................Environment .................................
Environment .................................
shadyozq9
 
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdfIBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
VigneshPalaniappanM
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
introduction technology technology tec.pptx
introduction technology technology tec.pptxintroduction technology technology tec.pptx
introduction technology technology tec.pptx
Iftikhar70
 
Deepfake Phishing: A New Frontier in Cyber Threats
Deepfake Phishing: A New Frontier in Cyber ThreatsDeepfake Phishing: A New Frontier in Cyber Threats
Deepfake Phishing: A New Frontier in Cyber Threats
RaviKumar256934
 
Slide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptxSlide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptx
vvsasane
 
Design Optimization of Reinforced Concrete Waffle Slab Using Genetic Algorithm
Design Optimization of Reinforced Concrete Waffle Slab Using Genetic AlgorithmDesign Optimization of Reinforced Concrete Waffle Slab Using Genetic Algorithm
Design Optimization of Reinforced Concrete Waffle Slab Using Genetic Algorithm
Journal of Soft Computing in Civil Engineering
 
Construction-Chemicals-For-Waterproofing.ppt
Construction-Chemicals-For-Waterproofing.pptConstruction-Chemicals-For-Waterproofing.ppt
Construction-Chemicals-For-Waterproofing.ppt
ssuser2ffcbc
 
2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt2.3 Genetically Modified Organisms (1).ppt
2.3 Genetically Modified Organisms (1).ppt
rakshaiya16
 
acid base ppt and their specific application in food
acid base ppt and their specific application in foodacid base ppt and their specific application in food
acid base ppt and their specific application in food
Fatehatun Noor
 
Machine foundation notes for civil engineering students
Machine foundation notes for civil engineering studentsMachine foundation notes for civil engineering students
Machine foundation notes for civil engineering students
DYPCET
 
Automatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and BeyondAutomatic Quality Assessment for Speech and Beyond
Automatic Quality Assessment for Speech and Beyond
NU_I_TODALAB
 
Artificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptxArtificial intelligence and machine learning.pptx
Artificial intelligence and machine learning.pptx
rakshanatarajan005
 
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdfDavid Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry - Specializes In AWS, Microservices And Python.pdf
David Boutry
 
twin tower attack 2001 new york city
twin  tower  attack  2001 new  york citytwin  tower  attack  2001 new  york city
twin tower attack 2001 new york city
harishreemavs
 
Generative AI & Large Language Models Agents
Generative AI & Large Language Models AgentsGenerative AI & Large Language Models Agents
Generative AI & Large Language Models Agents
aasgharbee22seecs
 
vtc2018fall_otfs_tutorial_presentation_1.pdf
vtc2018fall_otfs_tutorial_presentation_1.pdfvtc2018fall_otfs_tutorial_presentation_1.pdf
vtc2018fall_otfs_tutorial_presentation_1.pdf
RaghavaGD1
 
Design of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdfDesign of Variable Depth Single-Span Post.pdf
Design of Variable Depth Single-Span Post.pdf
Kamel Farid
 
Environment .................................
Environment .................................Environment .................................
Environment .................................
shadyozq9
 
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdfIBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
IBAAS 2023 Series_Lecture 8- Dr. Nandi.pdf
VigneshPalaniappanM
 
Slide share PPT of NOx control technologies.pptx
Slide share PPT of  NOx control technologies.pptxSlide share PPT of  NOx control technologies.pptx
Slide share PPT of NOx control technologies.pptx
vvsasane
 
introduction technology technology tec.pptx
introduction technology technology tec.pptxintroduction technology technology tec.pptx
introduction technology technology tec.pptx
Iftikhar70
 
Deepfake Phishing: A New Frontier in Cyber Threats
Deepfake Phishing: A New Frontier in Cyber ThreatsDeepfake Phishing: A New Frontier in Cyber Threats
Deepfake Phishing: A New Frontier in Cyber Threats
RaviKumar256934
 
Slide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptxSlide share PPT of SOx control technologies.pptx
Slide share PPT of SOx control technologies.pptx
vvsasane
 
Construction-Chemicals-For-Waterproofing.ppt
Construction-Chemicals-For-Waterproofing.pptConstruction-Chemicals-For-Waterproofing.ppt
Construction-Chemicals-For-Waterproofing.ppt
ssuser2ffcbc
 

Matlab plotting

  • 1. Program 1: clear all;close all;clc;clf; t=0:0.01*pi:4*pi; x=sin(t); y=x; z=x; n=length(y); for i=1:n if (x(i)<0) y(i)=0; z(i)=-1*z(i); end end u=figure(1); set(u,'color','w') subplot 221 plot(t,x) title('input:sinusoidal wave') subplot 222 plot(t,y) title('half wave rectifier') subplot 223 plot(t,z) title('full wave rectifier') subplot 224 plot(t,z,'--') hold on line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)- 0.5)]); line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)- 0.5)]); line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)- 0.5)]); title('smoothed rectifier signal')
  • 2. Program 2: clc;close all;clear all; t=0:0.1*pi:2*pi; n=length(t); r=0.5*ones(1,n); r1=ones(1,n); [x y]=pol2cart(t,r); [x1 y1]=pol2cart(t,r1); x2=x1+1; e=figure(1) set(e,'color','w'); subplot 221 plot(x,y) title('radius=0.5m') axis([-3 3 -3 3]); subplot 222 plot(x1,y1) title('radius=1m') 0 5 10 15 -1 -0.5 0 0.5 1 input:sinusoidal wave 0 5 10 15 0 0.5 1 half wave rectifier 0 5 10 15 0 0.5 1 full wave rectifier 0 5 10 15 0 0.5 1 smoothed rectifier signal
  • 3. axis([-3 3 -3 3]); subplot 223 plot(x2,y1) title('radius=1m,shifted') axis([-3 3 -3 3]); for i=1:2:4 for j=1:2:4 x2=x+i; y2=y+j; subplot 224 plot(x2,y2) text(1.7,2,'core') title('pcf') hold on; end end -2 0 2 -2 0 2 radius=0.5m -2 0 2 -2 0 2 radius=1m -2 0 2 -2 0 2 radius=1m,shifted 0 1 2 3 4 0 1 2 3 4 core pcf corecorecore
  • 4. Program 3: clear all;close all;clc; [x,y,z]=cylinder(5); [x1,y1,z1]=cylinder; figure(1) subplot 221 surf(x1,y1,z1) subplot 222 surf(x,y,z) subplot 223 axis square surf(x,y,z) hold on surf(x1,y1,z1) -1 0 1 -1 0 1 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1
  • 5. Program 4: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap gray -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 6. Program 5: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap spring -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 7. Program 6: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 321 cylinder(2+sin(t)) subplot 322 cylinder(2+cos(t)) subplot 323 cylinder(t.^4) subplot 324 cylinder(t.^2) subplot 325 cylinder(exp(-t)+2) subplot 326 cylinder(t.^2) hold on cylinder(t) -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -2000 0 2000 -2000 0 2000 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1
  • 8. Program 7: clear all;close all;clc; syms x; y=sin(x); subplot 211 ezplot(y) grid on subplot 212 ezplot(y,[0:4*pi]) -6 -4 -2 0 2 4 6 -1 -0.5 0 0.5 1 x sin(x) 0 2 4 6 8 10 12 -1 -0.5 0 0.5 1 x sin(x)
  • 9. Program 8: clear all;close all;clc; syms t; y=sin(t); figure(1) subplot 221 ezsurf(y,[-pi pi]) subplot 222 ezsurf(y) z=sin(t)*cos(3*t); subplot 223 ezpolar(z) subplot 224 ezpolar(z,[0 pi]); -2 0 2 -2 0 2 -1 0 1 t sin(t) y -5 0 5 -5 0 5 -1 0 1 t sin(t) y 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t) 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t)
  • 10. Program 9: clear all;close all;clc; syms t; y=t^3; subplot 221 ezplot(y) y1=diff(y); y2=diff(y,2); y3=diff(y,3); subplot 222 ezplot(y1) subplot 223 ezplot(y2) subplot 224 ezplot(y3) -5 0 5 -200 -100 0 100 200 t t3 -5 0 5 0 50 100 t 3 t2 -5 0 5 -40 -20 0 20 40 t 6 t -5 0 5 5 5.5 6 6.5 7 x 6
  • 11. Program 10: clear all;close all;clc; t=1:0.1:5; y=t.^2; dy1=diff(y)./diff(t); td1=t(2:length(t)); figure(1) subplot 121 plot(t,y) grid on title('using numerical') subplot 122 plot(td1,dy1) title('numerical diff') 1 2 3 4 5 0 5 10 15 20 25 using numerical 1 2 3 4 5 2 3 4 5 6 7 8 9 10 numerical diff
  • 12. Program 11: clear all;close all;clc; t=1:0.1:5; y=rand(1,length(t)); dy1=diff(y)./diff(t); td1=t(2:length(t)); subplot 211 plot(t,y) title('noise signal over 5 second') subplot 212 plot(td1,dy1) title('the rate of change of the noise w.r.t time') 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 noise signal over 5 second 1 1.5 2 2.5 3 3.5 4 4.5 5 -10 -5 0 5 10 the rate of change of the noise w.r.t time
  • 13. :12Program clear all;close all;clc; x=0:0.1:10; y=0:0.1:10; [x1 y1]=meshgrid(x,y); for i=1:length(x) for j=1:length(y) if (y1(i,j)>=0 && y1(i,j)<2) z1(i,j)=0; elseif (y1(i,j)>=2 && y1(i,j)<4) z1(i,j)=2; elseif (y1(i,j)>=4 && y1(i,j)<6) z1(i,j)=4; elseif (y1(i,j)>=6 && y1(i,j)<8) z1(i,j)=6; else z1(i,j)=8; end end end surf(x1,y1,z1) 0 2 4 6 8 10 0 5 10 0 2 4 6 8
  • 14. :13Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 15. :14Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') hold on for i=1:length(x)/4; if (sqrt(x(i).^2+y(i).^2)<=1) line([ 0 x(i)],[0 y(i)]) end end 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 16. :15Program clear all;close all;clc; a=[50 0;0 50]; b=repmat(a,[3 3]); e=figure(1) set(e,'color','m') image(b) colormap gray axis off
  • 17. Program 16: clear all;close all;clc; t=0:0.1*pi:4*pi; y=sin(t); n=length(t); noise=0.1*randn(1,n); ynoise=y+noise; r=figure(1); set(r,'color','g') subplot 221 plot(t,y,'r') title('signal') subplot 222 plot(t,noise,'k') title('noise') subplot 223 plot(t,ynoise,'color','b') title('ynoise') 0 5 10 15 -1 -0.5 0 0.5 1 signal 0 5 10 15 -0.4 -0.2 0 0.2 0.4 noise 0 5 10 15 -2 -1 0 1 2 ynoise
  • 18. :17Program clear all;close all;clc; t=0:0.1*pi:4*pi; n=length(t); y1=2*sin(0.5*t);%first input y2=2*cos(0.5*t);%second input y3=cos(5*t); %carrier ya=y1.*y3; yb=y2.*y3; subplot 221 plot(t,y1,'-.',t,y2,'-') subplot 222 plot(t,y3) title('carrier') subplot 223 plot(t,ya) title('carrier * sin') subplot 224 plot(t,yb) title('carrier *cos') 0 5 10 15 -2 -1 0 1 2 0 5 10 15 -1 -0.5 0 0.5 1 carrier 0 5 10 15 -2 -1 0 1 2 carrier * sin 0 5 10 15 -2 -1 0 1 2 carrier *cos
  • 19. Program 18: clear all;close all;clc; t=0:0.01*pi:4*pi; x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t); fx=fft(x,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 421 plot(t,x) xlabel('time') ylabel('amplitude') subplot 422 plot(w,abs(fx(1:256))) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) filter=ones(1,256); filter(1,90:256)=0; subplot 423 plot(w,filter) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 2]) subplot 424 result=abs(fx(1:256)).*filter; plot(w,result) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) subplot 413 plot(w,result) xlabel('frequency') ylabel('amplitude') axis([0 16 0 200]) iresult=ifft((fx),length(t)); subplot 414
  • 20. plot(t,iresult) xlabel('time') ylabel('amplitude') axis([0 14 -2 2]) Program 19: z=[10 4 6 9 3]; subplot 221 pie(z) subplot 222 pie(z,[0 0 0 1 0]); subplot 223 pie(z,[1 1 1 1 1]) subplot 224 pie3(z,[0 0 0 1 0]); 0 2 4 6 8 10 12 14 -2 0 2 4 time amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 5 10 15 20 0 1 2 frequency HZ amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 2 4 6 8 10 12 14 16 0 100 200 frequency amplitude 0 2 4 6 8 10 12 14 -2 0 2 time amplitude
  • 21. Program 20: clear all ;close all; clc x=-3:3; y=x.^2; bar(x,y) 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 28% 19% 13% 9% 31%
  • 22. Program 21: clear all ;close all; clc y=round(rand(2,3)*10); subplot 221 bar(y) subplot 222 barh(y) subplot 223 bar(y,'stacked') subplot 224 bar(y,1) -3 -2 -1 0 1 2 3 0 1 2 3 4 5 6 7 8 9
  • 23. Program 22: clear all;close all;clc t=0:0.1*pi:2*pi; x=sin(t); subplot 221 plot(t,x,'*r') subplot 222 stem(t,x) subplot 223 stairs(t,x) subplot 224 fill(t,x,'g') 1 2 0 2 4 6 8 10 0 5 10 1 2 1 2 0 5 10 15 20 25 1 2 0 2 4 6 8 10
  • 24. Program 23: clear all ;close all;clc; syms x t w a f1=heaviside(x); f2=heaviside(x-2); f3=heaviside(x+2); f4=heaviside(x+2)-heaviside(x-2); subplot 221 ezplot(f1,[-5 5]) subplot 222 ezplot(f2,[-5 5]) subplot 223 ezplot(f3,[-5 5]) subplot 224 ezplot(f4,[-5 5]) 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1
  • 25. Program 24: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; vint=cos(2*pi*4*t); fvint=fft(vint,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 211 plot(t,vint) xlabel('time') ylabel('amplitude') subplot 212 plot(w,abs(fvint(1:256))) xlabel('frequency') ylabel('magnitude') -5 0 5 0 0.5 1 x heaviside(x) -5 0 5 0 0.5 1 x heaviside(x - 2) -5 0 5 0 0.5 1 x heaviside(x + 2) -5 0 5 0 0.5 1 x heaviside(x + 2) - heaviside(x - 2)
  • 26. Program 25: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; x=cos(t); y=sin(t); plot(t,x,'-r',t,y,'.g') legend('cos','sin') title('sinusoidal signals') xlabel('time') ylabel('amplitude') 0 2 4 6 8 10 12 14 -1 -0.5 0 0.5 1 time amplitude 0 2 4 6 8 10 12 14 16 0 50 100 150 200 frequency magnitude
  • 27. 0 2 4 6 8 10 12 14 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 time amplitude sinusoidal signals cos sin
  • 28. Program 26: z=magic(3); subplot 221 bar(z) subplot 222 bar(z,'stacked') subplot 223 bar(z,'grouped') subplot 224 barh(z,'stacked') 1 2 3 0 2 4 6 8 10 1 2 3 0 5 10 15 1 2 3 0 2 4 6 8 10 0 5 10 15 1 2 3
  • 29. Program 27: z=magic(2); subplot 221 bar(z) subplot 222 bar(z,'c') subplot 223 bar(z,'histic') subplot 224 barh(z,'histic') 1 2 0 1 2 3 4 1 2 0 1 2 3 4 1 2 0 1 2 3 4 0 1 2 3 4 1 2
  • 30. Program 28: z=round(10.*rand(1,10)); figure(4) subplot 211 hist(z,5) subplot 212 hist(z,7) 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 0 2 4 6 8 10 12 0 1 2 3 4
  • 31. Program 29: t=0:0.01*pi:2*pi; y=sin(2*t).*cos(2*t); figure(8) subplot 221 polar(t,y,'--g') subplot 222 polar(t,y,'bs') subplot 223 polar(t,y,'dr') subplot 224 f=polar(t,y); set(f,'color','m') set(f,'linewidth',2) 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0
  • 32. Program 30: x=[1:10]; y=2.*rand(1,10); figure(1) set(figure(1),'color','yellow'); subplot 221 scatter(x,y) subplot 222 scatter(x,y,'r') subplot 223 scatter(x,y,3,'g') subplot 224 stem(x,y) 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2
  • 33. Program 31: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') scatter3(x1,y1,z1) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
  • 34. Program 32: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') subplot 211 scatter3(x1,y1,z1,2,'k') subplot 212 scatter3(x1,y1,z1,10,'g') -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1
  • 35. Program 32: x=0:10; y=0:10; [xm ym]=meshgrid(x,y); z=xm.^2/2+ym.^2/4; figure(1) subplot 221 mesh(z) subplot 222 contour(x,y,z) subplot 223 surf(x,y,z) subplot 224 surfc(x,y,z) 0 10 20 0 10 20 0 50 100 0 5 10 0 2 4 6 8 10 0 5 10 0 5 10 0 50 100 0 5 10 0 5 10 0 50 100
  • 36. Program 33: %system of linear equation %cramer method a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; d1=a; d1(:,1)=b; x(1)=det(d1)/det(a) d2=a; d2(:,2)=b; x(2)=det(d2)/det(a) d3=a; d3(:,3)=b; x(3)=det(d3)/det(a) command window: x = -1.4000 1.8000 0.6000 Program 34: %system of linear equation %Gass elimination a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; x=inv(a)*b x = -1.4000 1.8000 0.6000
  • 38. Program 36: >> y=logspace(1,5); >> size(y) ans = 1 50 >> plot(y) >> z=logspace(1,5,5); >> area(z) 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 8 9 10 x 10 4
  • 39. Program 37: x=ones(10,10); x(3,3)=10; x(3,7)=10; x(6,5)=10; x(8,4:6)=10; image(x) colormap copper(2) %colormap spring(2) %colormap hsv %colormap summer 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
  翻译: