SlideShare a Scribd company logo
Lecture'1
Maths&for&Machine&Learning
Dahua%Lin
The$Chinese$University$of$Hong$Kong
1
Roadmap
Mathema'cs!lies!at!the!heart!of!machine!learning!
research.!
Complete(coverage(of(all(these(subjects(is(obviously(
beyond(the(scope(of(this(course.(This(lecture(aims(to(give(
an(overview(of(several(useful(math(concepts.
2
Concepts)to)Be)Covered
• Basics'of'topology
• metrics
• open'and'closed-sets
• con.nuous-func.on
• compact-space
3
Concepts)to)Be)Covered)(cont'd)
• Basics'of'func,onal'analysis
• norm,'inner'product
• Banach'space,'Hilbert'space
• func5onal,'operator
• bilinear'form
4
Concepts)to)Be)Covered)(cont'd)
• Basics'of'modern'probability'theory:'
• measure'space
• Lebesgue'integra0on
• random'variables
• expecta0on
• convergence'of'laws
5
Metrics
Measurement*of*distances*or*devia*on*lies*at*the*
heart*of*many*learning*problems.*
6
Metrics((Defini-on)
• "is"called"a"metric,"if"it"sa-sfies:
• (non*nega-vity)"
• (coincidence2axiom)"
• (symmetry)"
• (triangle2inequality)"
7
Metrics((Proper-es)
• The%triangle)inequality%can%be%further%generalized:
!
• A#set# #together#with#a#metric# #defined#thereon#is#
called#a#metric'space,#denoted#by# .
8
Examples)of)Metrics
• Euclidean*metric:
• Rec$linear*metric:
!
9
Metrics(Induced(by(Transform
• One%can%define%a%metric%over%an%arbitrary%set%$S$%
through%an%injec&ve(map% %to%a%metric%
space% :
• It$can$be$easily$verified$that$ $is$a$metric$on$ .
10
Topology'Defined'by'Metrics
• Topological)space"is"a"more"general"concept"than"
metric)space
• With"metrics,"topological)concepts"can"be"defined"
in"a"more"intui7ve"way
11
Interior
• Open%ball"of"radius" :"
• "is"an"interior'point"of" "iff" ."
• The"interior"of" ,"denoted"by" "or" ,"is"the"
set"of"all"interior"points"of" .
12
Boundary
• "is"a"boundary)point"of" ,"iff"for"any" ," "
overlaps"with"both" "and" ."
• The"boundary"of" ,"denoted"by" ,"is"the"set"of"
all"boundary)points"of" .
13
Open%and%Closed%Sets
• Consider*a*metric*space* ,*and*a*subset*
:
• *is*called*an*open%set,*if*
• *is*called*a*closed%set,*if* *is*open
• *is*open*iff* .
• *is*closed*iff* .
14
Proper&es(of(Open(and(Closed(Sets
• The%union%of%arbitrary%collec-ons%of%open%sets%is%
open.
• The%intersec-on%of%finitely+many%open%sets%is%open.%
• The%intersec-on%of%arbitrary%collec-ons%of%closed%
sets%is%closed.
• The%union%of%finitely+many%closed%sets%is%closed.
15
Ques%ons
• Consider*an*arbitrary*metric*space* ,*are* *and*
*open*or*closed?
• Let* *be*a*finite*metric*space*and* ,*is* *
open*or*closed?
• Consider*Euclidean*space* *and* ,*
is* *open*or*closed?*what*is* ?
16
Closure
Let$ $be$a$subset$of$a$metric$space$ :
• The%closure%of% ,%denoted%by% %or% ,%is%defined%
to%be%the%intersec3on%of%all%closed%sets%that%contain%
.
• %is%closed%if%and%only%if% .
• .%
• .
17
Closure((Examples)
• .
• .
18
Convergence
• Let% %be%a%sequence%in%a%metric%space%
,%then% %is%called%a%limit%of%this%sequence%
if
• A#sequence#is#said#to#be#convergent#if#it#has#a#limit.
• The#limit#of#a#convergent#sequence#is#unique.
19
Cauchy'Sequence
• A#sequence# #is#called#a#Cauchy'sequence#if#
!
• A#convergent)sequence#must#be#a#Cauchy)sequence
• Ques%on:#Is#a#Cauchy)sequence#always#convergent?
20
Mo#va#ng(Example
• Consider*a*real*valued*sequence*
• We$have$learned$in$Calculus$that$ $as$
.
• Note$that$ $is$a$ra5onal$sequence.$Is$this$
sequence$convergent$in$the$ra#onal'space$ ?
21
Complete(Metric(Space
• Convergence)is)not)an)intrinsic)property)of)a)sequence,)
which)also)depends)on)the)space)in)which)the)
sequence)lies.
• A#metric#space# #is#called#a#complete)metric)
space#if#every)Cauchy)sequence)converges.
• #is#complete,#but# #is#not.
• #can#be#constructed#by#comple:ng# .
• Ques%on:#Is#the#integer#space# #complete?#
22
Closedness(and(Completeness
Let$ $be$a$subset$of$a$complete$metric$space$ :
• Being'closed'means'"containing-all-the-limits":
• Let' 'be'a'sequence'in' 'and' ,'then'
• 'is'closed'if'and'only'if' 'is'complete,'meaning'all-
convergent-sequences-in- -converge-within- .'
23
Bounded
• The%diameter%of% ,%denoted%by% ,%is%defined%to%
be%the%largest%distance%between%points%in% ,%as
• "is"said"to"be"bounded"if" .
24
Compactness
• In$elementary$Calculus,$we$learned$that$"every&
bounded&sequence&in& &has&a&convergent&
subsequence".$
• Does$this$hold$in$general$metric$spaces?
25
Compactness+(cont'd)
Consider)a)metric)space) :
• "is"called"compact"iff"either"of"the"following"holds:
• Any"open"cover"of" "has"a"finite"subcover.
• "is"complete"and"totally*bounded,"namely,"for"
every" ,"there"is"a"finite"cover"of" "by" >balls.
• "is"sequen1ally*compact,"namely,"every"
sequence"in" "has"a"convergent"subsequence.
26
Compactness+(cont'd)
• Compact)sets)are)always)closed'and'bounded.
• But,)the)converse)is)generally'false.
• )is)compact)if'and'only'if) )is)bounded)
and)closed.
27
Con$nuous'Func$on
• "is"called"con$nuous,"iff"either"of"the"
following"holds:"
• (Topological)" "is"
open"whenever" "is"open.
• (Weierstrass)"Given"any" "and" ,"
• (Sequen$al3con$nuity)" "whenever"
.
28
Con$nui$es)of)Various)Levels
• "is"called"uniformly*con,nuous,"if"
• "is"called"Lipschitz)con,nuous,"if"
!
• Lipschitz)con,nuous" "Uniform)con,nuous" "
Con,nuous."
29
Con$nuous'Funcs'on'Compact'Set
• Let% %be%a%con+nuous%func+on,%then%
%is%compact%whenever% %is%
compact.
• Let% ,%then% %assumes%maximum%and%
minimum%within% %when% %is%compact.
• A%con)nuous+func)on%is%uniformly+con)nuous%over%a%
compact%domain.%A%con)nuously+differen)able+
func)on%is%Lipschitz+con)nuous%over%a%compact%
domain.
30
Dense%Sets
• A#subset# #is#said#to#be#dense%in% ,#if# .
• A#subset# #is#dense%in% ,#iff#either#of#the#following#
holds:
• Each#open#subset#of# #contains#at#least#one#
element#in# .
• Each# #is#a#limit#of#some#sequence#in# .
• #is#dense#in# ,# #is#dense#in# .
31
Separable(Space
• "is"called"a"separable(space,"if" "contains"a"
countable"dense"subset.
• Let" "be"a"con3nuous"func3on"on" ,"and" "is"
dense,"then" "is"uniquely"determined"by" .
• Ques%on:"Let" "be"con3nuous,"and"it"has"
"and" ."
• Is" "determined"by"these"condi3ons?"If"so,"what"
is" ?"
32
Things'become'much'more'
interes0ng'when'vector'spaces'meet'
with'metrics.
33
Norms
• Consider*a*vector'space* ,*a*func0on* *
is*called*a*norm*if:
•
• *iff* *
• .
• .
34
Banach&Spaces
• A#vector#space#together#with#a#norm,#as# ,#
is#called#a#normed'space.#
• A#normed'space#is#always#a#metric'space,#where#
the#norm#induces#a#metric#as# .
• A#complete'normed'space#is#called#a#Banach'space.
35
Proper&es(of(Norms
• The%norm%func*on% %is%Lipschitz%
con*nuous:
• The%metric% %induced%by%the%norm%has:
• transla'on)invariance:%
•
36
!Norm
Consider)a)real)vector)space) .)For)each) ,)we)
can)define) 6norm)as:
It#can#be#easily#verified#that# #is#a#norm.#
37
!Norm
When% ,% 'norm%is%s-ll%a%norm,%defined%as
We#will#extend#these#norms#to#the#space&of&func+ons.
38
Convergence)of)Vector)Sequences
• Let% %be%a%sequence%of%vectors%in%a%Banach%
space,%we%say% %converges%to% %if% %
as% .
• This%is%some9mes%called%convergence+in+norm.
39
Convergence)of)Series
• Consider*an*infinite*series* *
• Let* .*The*series* *is*said*to*be*
convergent*if*the*sequence* *converges.
• *is*said*to*be*absolutely1convergent*if*the*series*
*converges.
• Absolute1convergence*implies*convergence1(in1norm).
40
Basis
• In$elementary$linear$algebra,$we$learned$that$a$basis$
of$a$vector$space$is$a$linearly*independent$set$of$
vectors$that$spans$the$space.
• If$a$vector$space$has$a$finite$basis,$it$is$called$finite/
dimensional.$
• The$cardinali<es$of$all$bases$of$a$finite/
dimensional$space$are$the$same,$called$the$
dimension$of$the$space.
41
Basis%of%Banach%Space
• Let% %be%a%sequence%in%a%Banach%space% ,%it%is%
called%a%(Schauder)+basis%of% %if%for%each% ,%
there%exists%a%unique%sequence%of%real%values% %
such%that%
!
• A#Banach#space# #with#a#Schauder#basis#must#be#
separable.
• Is#the#converse#true?#
42
Basis%of%Banach%Space%(cont'd)
• It$took$about$forty$years$to$get$the$answer$33$No.$
• Enflo$constructed$a$separable$Banach$space$with$
no$Schauder$basis$in$1973.
43
Inner%Products
• An$inner$product$on$a$real$vector$space$ $is$a$
mapping$ $that$sa5sfies:
•
• $iff$
• (symmetry)$
• (bilinearity)$
44
Hilbert(Spaces
• A#vector#space#together#with#an#inner#product#is#
called#an#inner%product%space.
• An#inner%product%space#is#always#a#normed%space,#
where#the#norm#is#induced#by#the#inner%product,#as#
.
• A#complete%inner%product%space#is#called#a#Hilbert%
space.
• A#Hilbert%space#is#always#a#Banach%space.
45
Euclidean*Space
• "is"a"Hilbert(space"with"the"inner"product"defined"
by" ,"which"induces"the" 5norm"
and"Euclidean(metric.
46
Proper&es(of(Inner(Products
• (Parallelogram*equality)"
"##"this"only"
holds"for"norms"induced"by"inner"products.
• (Cauchy–Schwarz*inequality)" ,"or"
equivalently," .
• (Con9nuity)"if" "and" ,"then"
.
47
Orthogonality
• "are"said"to"be"orthogonal"to"each"other,"
denoted"by" ,"if" .
• A"subset" "is"called"an"orthogonal)set"if"
elements"of" "are"mutually"orthogonal."Moreover,"
if"each"element"has"a"unit"norm,"then" "is"called"
an"orthonormal)set.
• (Pythagorean)theorem)"
.
48
Projec'on
• Let% %and% ,%then%the%distance%between% %
and% %is%defined%to%be% .
• Let% %be%a%non2empty%convex%closed%subset%of% .%
Then%there%exists%a%unique%element% %such%that%
.%This%element% %is%called%the%
projec/on%of% %onto% ,%denoted%by% .
• Ques%on:%Why%does% %need%to%be%closed%and%
convex?
49
Projec'on)(cont'd)
Let$ $be$a$Hilbert$space$and$ $be$a$closed$subspace:
• Given' 'and' ,'then' ,'
meaning'that' .
Let$ $be$a$projec,on,$where$ $is$non3empty:
•
• "is"idempotent,"namely," ,"i.e."
.
50
Orthogonal*Complement
• A#vector#space# #is#called#the#direct'sum#of#two#
subspaces# #and# ,#denoted#by# ,#if#each#
#can#be#expressed#uniquely#as# #with#
#and# .#
• The#orthogonal'complement#of# ,#denoted#by#
,#is#defined#to#be# .#
• #is#a#closed#subspace#of# .
• ,# .
51
Orthonormal*Basis*of*Hilbert*Space
• Let% %be%a%Hilbert%space,%a%subset% %is%called%a%
total%subset%of% %if% %is%dense.
• %is%a%total%subset%of% %if%and%only%if%
.
• Ques%on:%Why%do%we%only%require% %to%
be%dense%instead%of% ?
• A%total%orthonormal%set%is%called%an%orthonormal%
basis.
52
Orthonormal*Basis*of*Hilbert*Space
• (Parseval)theorem)"An"orthonormal"sequence" "is"
total"if"and"only"if
• In$this$case,$each$ $can$be$uniquely$expressed$
as$
53
Orthonormal*Basis*of*Hilbert*Space*
(cont'd)
• Every'Hilbert'space'has'a'total%orthonormal%set.'
• Every'separable'Hilbert'space'has'a'total%
orthonormal%sequence.
54
Spaces
55
Linear'Operators'and'Func1onals
• Let% %and% %be%two%linear%spaces,%a%func5on:%
%is%called%a%linear'operator%if%it%preserves%
linear'dependency,%that%is,%
• In$par(cular,$when$ $is$ ,$ $is$called$a$linear'
func+onal.
• The$set$ $is$a$subspace$of$
,$called$the$null'space$of$ .
56
Bounded'Operators
Let$ $be$a$linear$operator$on$Banach$spaces:
• "is"said"to"be"bounded,"if"
.
• The"(operator)-norm"of" "is"defined"as
!
• "always"holds.
57
Bounded'Operators'(cont'd)
• Given'a'linear'operator' ,'the'following'statements'
are'equivalent:
• 'is'bounded
• 'is'con;nuous
• 'is'finite'
• All'linear'operators'with'finite'dimensional'domain'
are'bounded.
58
Space&of&Bounded&Operators
• All$bounded$operators$ $form$a$normed)
space,$denoted$by$ .$
• When$ $is$a$Banach$space,$ $is$a$Banach$
space.
59
Dual%Spaces
• All$bounded$func)onals$ $form$a$normed)
space,$called$the$dual)space$of$ ,$denoted$by$ ,$
where$the$norm$is$called$the$dual)norm,$defined$as:
• "is"always"a"Banach"space,"no"ma2er"whether" "
is"or"not.
• "is"generally"not"isomorphic"to"the" .
60
Func%on'Space'and'Uniform'Norm
• The%set%of%all%con$nuous%real%valued%func2ons%
defined%on%a%compact+space% %forms%a%normed%
vector%space,%denoted%by% ,%where%the%norm%is%
defined%by% ,%which%is%called%the%
uniform+norm%(or%Chebyshev+norm).
• When% %is%compact,% %is%a%Banach+space.
• There%are%other%ways%to%define%norms%of%func2ons,%
which%we%will%discuss%later.
61
Ques%ons
• Let% %be%a%subspace%of% %that%
comprises%all%con$nuously)differen$able)func$ons%on%
.%Let% .%We%define%a%func8onal%as%
%which%takes%the%deriva8ve%at% .%
• Is% %a%linear%func8onal?
• Is% %bounded?
62
Representa)on+of+Func)onals
• Every'Hilbert'space'is'isomorphic'to'its'dual%space.
• (Riesz's%theorem)'Every'bounded'linear'func8onal' '
on'a'Hilbert'space' 'can'be'represented'in'terms'of'
inner'product,'namely,' ,'where' 'is'
uniquely'determined'by' 'and'has' .'
• Ques%on:'How'can'you'find' 'given' ?
63
Representa)on+of+Func)onals+
(cont'd)
• In$a$separable$Hilbert$space,$ $can$be$expressed$as$
a$series:
64
Measure'Theory
• Measure'theory"studies"assigning'values'to'subsets.
• Measure"theory"is"the"corner"stone"of"many"math"
subjects
• Modern"approach"to"integra8on"is"based"on"
measure"theory.
• Modern"probability"theory"is"based"en8rely"on"
measure"theory.
65
Lengths(of(Real(Subsets
• Intui'vely,-the-measure-of-a-set-can-be-intepreted-
as-the-size,-e.g.-the-length-of-an-interval.
• How-long-are-these-subsets:- ,- ,-and- ?
• What-is-the-length-of- ?
• Now-let's-try-to-compute-the-length-of- -by-
decomposing0it0into0infinitely0many0points:
66
Lengths(of(Real(Subsets((cont'd)
• Sizes'(e.g.'lengths,'areas,'and'volumes)'are'countably-
addi0ve.
• Let' 'be'a'collec;on'of'subsets'of' ,'then'a'
func;on' 'is'said'to'be'countably-addi0ve,'
if'for'any'finite'or'countable'sequence'of'disjoint'
subsets' ,'it'has
67
The$Vitali$Set
• Let's'consider'a'very'interes1ng'subset'of' ,'
called'Vitali&set:
• We'say' 'and' 'are'equivalent,'if' .
• 'can'then'be'par11oned'into'mul1ple'
equivalent'classes.
• We'have'incountably&infinite'such'classes
• By'axiom&of&choices,'we'can'form'a'set' ,'which'
contains'one'representa1ve'from'each'class.
68
The$length$of$Vitali$Set
• Enumerate*all*ra,onal*numbers*within* *as*
,*and*let* .*Obviously,*
*are*disjoint
• Let* ,*then* ,*and*
therefore* .
• However,*if* ,*then* ,*or*if*
,*then* *...
69
Ring%of%Sets
• ,#a#nonempty#collec.on#of#subsets#of# ,#is#called#a#
ring,#if#it#is#closed#under#union#and#set*difference.
• A#ring#must#contain# .
• A#ring#is#closed#under#intersec.on.
• Overall,#we#have:
70
!algebra
• A#ring# #is#called#a#algebra,#if#it#is#also#closed#under#
complement.
• An#algebra#must#contain# .
• An#algebra#is#called#a# 5algebra,#if#it#is#also#closed#
under#countable.union.
• A# 5algebra#is#closed#under#countable#fold#of#any#
elementary#set#opera9ons.
71
Measure'and'Measure'Space
• A#countably#addi/ve#func/on# #from#a# 5algebra# #
into# #is#called#a#measure.#
• The#triple# #is#called#a#measure'space.#All#the#
elements#of# #are#called#measurable'sets.
72
Proper&es(of(Measures
Consider)a)measure'space) :
• .
• .
• Let& &be&disjoint,&then&
.
73
Con$nuity)of)Measures
.
.
74
Finite&and& )finite&Measures
• "is"called"a"finite&measure"if" .
• "is"called"a" ,finite&measure"if" "is"covered"by"
countably"many"subsets"of"finite"measure.
75
Lengths(of(Open(Intervals
• The%length%of%an%open%interval%is%defined%as%
.
• The%the%length%of%a%finite%union%of%disjoint%open%
intervals%is%defined%to%be%the%sum%of%the%lengths%of%
individual%intervals.
76
Lengths(of(Open(Intervals((cont'd)
• The%collec)on%of%all%finite%unions%of%disjoint%open%
intervals%cons)tutes%a%ring.
• The%length%is%well%defined%over%this%ring,%and%it%
sa)sfies%finite%addi)vity.%
• Hence,%it%is%called%a%pre'measure.
• We%want%to%extend%the%length%to%as%many%subsets%
as%possible.
77
Generated( )algebra
• Let% %be%a%collec+on%of%subsets.%Then%the%smallest%
4algebra%that%contains% %is%called%the% !algebra(
generated(by( ,%denoted%by%
• ,%
• countable%intersec+on%of%unions%of%sets%in% %are%
in% .
78
Borel& 'algebra
• Let% %be%a%metric'space.%The% +algebra%generated%by%
the%open%subsets%of% %is%called%the%Borel' .algebra%
of% ,%denoted%by%
• Elements%of%the%Borel% +algebra%are%called%Borel'
sets.
• All%the%open%sets,%closed%sets,%and%their%finite%and%
countable%unions%and%intersec?ons%are%all%Borel'
sets.
• Finite%or%countable%sets%are%all%Borel'sets.
79
Measure'Extension
• (Hahn–Kolmogorov.theorem):"Let" "be"a"ring"that"
covers" ," "be"a"pre4measure,"then" "
can"be"extended"to"a"measure" ."If"
"is" 9finite,"then"the"extension"is"unique.
• The"length"func>on"over"the"open"interval"ring"can"
be"uniquely.extended"to"a"measure"over"the"Borel" 9
algebra"over" ,"called"Borel.measure.
80
Complete(Measure(Space
We#are#not#done#yet.#Given#a#measure#space#
:
• A#subset# #is#called#a#null$set#if#it#is#contained#
in#a#measurable#set#of#zero#measure.
• This#measure$space#is#called#a#complete$measure$
space#if#every#null#set#is#measurable.
• Let# #denote#the#collec:on#of#all#the#null$sets.#
Then# #is#complete.#
81
Lebesgue'Measure
• The%Borel&measure&space%is%generally%not%complete.%
• The%comple.on%of%the%Borel&measure&space%is%called%
the%Lebesgue&measure&space,%and%the%extended%
measure%is%called%Lebesgue&measure.
82
Lebesgue'Integral'.'Indicator'
Func4ons
To#derive#the#Lebesgue'integral,#we#begin#with#simple#
func7ons#and#then#extend#the#defini7on#to#more#
general#func7ons.#Let# #be#a#measure#space:
• Indicator+func.ons+00+the+integral+of+an+indicator+
func.on+ +of+a+measurable+set+ +is+defined+to+
be+the+measure+of+ ,+as
83
Lebesgue'Integral'.'Simple'Func5ons
• Simple(func-ons(00(linear(combina-ons(of(indicator(
func-ons:
84
Lebesgue'Integral'.'Nonnega1ve'
Func1ons
• Let% %be%a%non#nega've%func,on%on% ,%then%we%
define
85
Lebesgue'Integral'.'Signed'Func4ons
• Signed(func,on:(decompose( (as( ,(
with( (and( ,(then
• When&both& &and& &are&infinite,&
&is&undefined.
86
Proper&es(of(Lebesgue(Integral
• "is"a"linear"func-onal.
• If" "then" "
• a"predicate"holds"almost'everywhere"means"that"it"
holds"over" ,"except"for"a"null"set.
• (Monotonicity)" .
87
Monotone&Convergence&Theorem
Let$ $be$a$sequence$of$non#nega've$func.ons,$and$
$pointwisely,$then$
88
Dominated*Convergence*Theorem
If# #pointwisely,# #is#dominated#by# ,#i.e.#
,#and# ,#then#
89
Integral)with)Coun0ng)Measure
• The%coun%ng'measure%over%a%finite%or%countable%
space% %is%defined%as%the%cardinality%of%subsets.%
• Let% %be%a%coun%ng'measure%over%a%countable%space%
,%then%
!
90
Integral)with)Lebesgue)Measure
• Let% %be%a%func,on%over% ,%then%when% %is%
Riemann'integrable,% %must%be%Lebesgue'integrable%
(w.r.t.%the%Lebesgue'measure),%and%in%such%a%case,%the%
Lebesgue'integral%is%equal%to%the%Riemann'integral.%
• Ques%on:%Consider% :
• Is%it%Riemann'integrable?
• Compute%the%Lebesgue'integral%of% %with%respect%
to%the%Lebesgue'measure.
91
!space
• For%any% ,%the% %space%of% ,%denoted%by%
,%is%the%vector%space%comprised%of%all%
measurable%func8ons%on% %such%that%
,%where%the% )norm%is%defined%by
• Ques%on:"Is"it"actually"a"norm?
92
!space!(cont'd)
• Func&ons)that)are)equal)almost'everywhere)are)
indis&nguishable)by)integra&on.)Let) )denotes)
the)vector)space)with)all)essen/ally'equivalent)
func&ons)merged)into)an)element.)
• Then) )is)a)Banach'space)with)the) >norm.
• The) )norm)is)defined)as)the)essen/al'supreme)of)
,)as
93
!Space!and!Dual
• The%dual%space%of% %is%isomorphic%to% %with%
.%
• For%each%bounded%func8onal%on% ,%there%
exists% :%
94
!Hilbert!Space
• "is"a"Hilbert"space,"where"the"inner"product"is"
defined"as
• The%dual%space%of% %is% .
95
Absolute)Con,nuity
Let$ $and$ $be$two$measures$over$ :
• "is"said"to"be"absolutely*con-nuous"with"respect"to"
,"denoted"by" ,"if" "whenever"
.
• "and" "are"said"to"be"singular,"denoted"by" ,"if"
there"exists" "such"that" "and"
.
96
Lebesgue'Decomposi.on
Let$ $and$ $be$two$measures$over$ :
There%exists%a%unique%decomposi3on%of% %as%
!
such%that% %and% .
97
Radon&Nikodym,Theorem
Let$ $be$a$finite$measure$that$is$absolutely*con-nuous$
with$respect$to$ .$Then$there$exists$an$essen-ally$
unique$ :$
Here,% %is%called%the%Radon&Nikodym,density%of% %with%
respect%to% .%In%this%case,%we%also%have
98
Event&Spaces
• The% &algebra% %can%be%interpreted%as%an%event%
space.%Each%element% %is%an%event.
• % %both% %and% %happen
• % %either% %or% %happens
• % % %does%not%happen
• % % %and% %are%mutually%exclusive.
99
Probability*Measure
• A#probability*measure# #is#a#measure#on# #with#
.
• #can#be#considered#as#the#probability#of#the#
event# .
• Obviously,# #sa:sfies#all#the#requirement#of#
probability#func:ons#in#classical#probability#theory.
100
Independence
• Two%events% %and% %are%said%to%be%independent%if%
• We$say$two$collec-ons$of$events$ $and$ $are$
independent$when$
101
Random'Variables
• A#(real&valued)+random+variable# #is#defined#to#be#a#
measurable+func4on# .
• Each#random#variable# #induces#a#sub7 7algebra,#
denoted#by# ,#where# #is#the#Borel# 7algebra#
of# .
• Two#random#variables# #and# #are#said#to#be#
independent#if# #and# #are#
independent.
102
Expecta(on
• The%expecta'on%of%a%random%variable% %is%defined%
to%be
!
• The%expecta'on%is%a%bounded-linear-func'onal.
103
Probability*and*Law
• The%probability%that%the%value%of% %falling%in% %is%
then%given%by%
."
• The%func*on% ,%which%maps%each%Borel%set%
%to%a%probability*value,%is%itself%a%probability*
measure%over% ,%which%is%called%the%law%of% ,%
denoted%by% .
104
Probability*Density
• The%Radon+Nikodym%density%of% %with%respect%
to%the%Lebesgue%measure%over% ,%denoted%by% ,%is%
called%the%probability*density%of% .%So%we%have%
.
105
(Seman'c)*Correspondence
• "algebra) )event)space
• sub" "algebra) )a)family)of)events
• measure) ) )probability)func6on
• measurable)func6on) ) )random)variable
• ) )law)of)
• integra6on) )expecta6on
• Radon"Nikodym)density) )probability)density
106
Convex'Analysis
• Convex(op*miza*on(plays(a(crucial(role(in(many(
machine(learning(problems
• Prof.(Stephen'Boyd(has(a(very(famous(book("Convex'
Op1miza1on",(which(provides(an(excellent(
treatment(of(this(subject
• The(PDF(version(is(available(for(download(in(
Prof.(Boyd's(website
• You(should(at(least(read(the(first(five(chapters
107
Convex'Analysis'(cont'd)
• Important*concepts
• convex'set
• convex'func,on
• conjugate'func,on
• Lagrange'dual
• strong'duality'and'weak'duality
• We*will*begin*to*use*these*concepts*in*Lecture*3.
108
Ad

More Related Content

Similar to MLPI Lecture 1: Maths for Machine Learning (20)

Mastering Python lesson3b_for_loops
Mastering Python lesson3b_for_loopsMastering Python lesson3b_for_loops
Mastering Python lesson3b_for_loops
Ruth Marvin
 
SPATIAL POINT PATTERNS
SPATIAL POINT PATTERNSSPATIAL POINT PATTERNS
SPATIAL POINT PATTERNS
LiemNguyenDuy
 
OpenRepGrid and Friends
OpenRepGrid and FriendsOpenRepGrid and Friends
OpenRepGrid and Friends
Mark Heckmann
 
Machine learning on Go Code
Machine learning on Go CodeMachine learning on Go Code
Machine learning on Go Code
source{d}
 
Talk Norway Aug2016
Talk Norway Aug2016Talk Norway Aug2016
Talk Norway Aug2016
xavierbresson
 
tutorial.ppt
tutorial.ppttutorial.ppt
tutorial.ppt
GuioGonza2
 
A brief introduction to C Language
A brief introduction to C LanguageA brief introduction to C Language
A brief introduction to C Language
Mohamed Elsayed
 
Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Speaking 'Development Language' (Or, how to get your hands dirty with technic...Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Julie Meloni
 
Ramping up your Devops Fu for Big Data developers
Ramping up your Devops Fu for Big Data developersRamping up your Devops Fu for Big Data developers
Ramping up your Devops Fu for Big Data developers
François Garillot
 
A Scala Corrections Library
A Scala Corrections LibraryA Scala Corrections Library
A Scala Corrections Library
Paul Phillips
 
Introduction to functional programming (In Arabic)
Introduction to functional programming (In Arabic)Introduction to functional programming (In Arabic)
Introduction to functional programming (In Arabic)
Omar Abdelhafith
 
The OpenRepGrid project – Software tools for the analysis and administration...
The OpenRepGrid project – Software tools  for the analysis and administration...The OpenRepGrid project – Software tools  for the analysis and administration...
The OpenRepGrid project – Software tools for the analysis and administration...
Mark Heckmann
 
Erik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better MortgageErik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better Mortgage
MLconf
 
From Lisp to Clojure/Incanter and RAn Introduction
From Lisp to Clojure/Incanter and RAn IntroductionFrom Lisp to Clojure/Incanter and RAn Introduction
From Lisp to Clojure/Incanter and RAn Introduction
elliando dias
 
Locality sensitive hashing
Locality sensitive hashingLocality sensitive hashing
Locality sensitive hashing
SEMINARGROOT
 
Python: The Dynamic!
Python: The Dynamic!Python: The Dynamic!
Python: The Dynamic!
Omid Mogharian
 
Exception+Logging=Diagnostics 2011
Exception+Logging=Diagnostics 2011Exception+Logging=Diagnostics 2011
Exception+Logging=Diagnostics 2011
Paulo Gaspar
 
The best system for object-oriented thinking
The best system for object-oriented thinkingThe best system for object-oriented thinking
The best system for object-oriented thinking
Pharo
 
Some Information Retrieval Models and Our Experiments for TREC KBA
Some Information Retrieval Models and Our Experiments for TREC KBASome Information Retrieval Models and Our Experiments for TREC KBA
Some Information Retrieval Models and Our Experiments for TREC KBA
Patrice Bellot - Aix-Marseille Université / CNRS (LIS, INS2I)
 
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptxPPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
RaviKiranVarma4
 
Mastering Python lesson3b_for_loops
Mastering Python lesson3b_for_loopsMastering Python lesson3b_for_loops
Mastering Python lesson3b_for_loops
Ruth Marvin
 
SPATIAL POINT PATTERNS
SPATIAL POINT PATTERNSSPATIAL POINT PATTERNS
SPATIAL POINT PATTERNS
LiemNguyenDuy
 
OpenRepGrid and Friends
OpenRepGrid and FriendsOpenRepGrid and Friends
OpenRepGrid and Friends
Mark Heckmann
 
Machine learning on Go Code
Machine learning on Go CodeMachine learning on Go Code
Machine learning on Go Code
source{d}
 
A brief introduction to C Language
A brief introduction to C LanguageA brief introduction to C Language
A brief introduction to C Language
Mohamed Elsayed
 
Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Speaking 'Development Language' (Or, how to get your hands dirty with technic...Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Speaking 'Development Language' (Or, how to get your hands dirty with technic...
Julie Meloni
 
Ramping up your Devops Fu for Big Data developers
Ramping up your Devops Fu for Big Data developersRamping up your Devops Fu for Big Data developers
Ramping up your Devops Fu for Big Data developers
François Garillot
 
A Scala Corrections Library
A Scala Corrections LibraryA Scala Corrections Library
A Scala Corrections Library
Paul Phillips
 
Introduction to functional programming (In Arabic)
Introduction to functional programming (In Arabic)Introduction to functional programming (In Arabic)
Introduction to functional programming (In Arabic)
Omar Abdelhafith
 
The OpenRepGrid project – Software tools for the analysis and administration...
The OpenRepGrid project – Software tools  for the analysis and administration...The OpenRepGrid project – Software tools  for the analysis and administration...
The OpenRepGrid project – Software tools for the analysis and administration...
Mark Heckmann
 
Erik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better MortgageErik Bernhardsson, CTO, Better Mortgage
Erik Bernhardsson, CTO, Better Mortgage
MLconf
 
From Lisp to Clojure/Incanter and RAn Introduction
From Lisp to Clojure/Incanter and RAn IntroductionFrom Lisp to Clojure/Incanter and RAn Introduction
From Lisp to Clojure/Incanter and RAn Introduction
elliando dias
 
Locality sensitive hashing
Locality sensitive hashingLocality sensitive hashing
Locality sensitive hashing
SEMINARGROOT
 
Exception+Logging=Diagnostics 2011
Exception+Logging=Diagnostics 2011Exception+Logging=Diagnostics 2011
Exception+Logging=Diagnostics 2011
Paulo Gaspar
 
The best system for object-oriented thinking
The best system for object-oriented thinkingThe best system for object-oriented thinking
The best system for object-oriented thinking
Pharo
 
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptxPPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
PPT ON INTRODUCTION TO AI- UNIT-1-PART-2.pptx
RaviKiranVarma4
 

Recently uploaded (20)

Brief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdfBrief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdf
BharathKumar556689
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
CORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptxCORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptx
DharaniJajula
 
Astrobiological implications of the stability andreactivity of peptide nuclei...
Astrobiological implications of the stability andreactivity of peptide nuclei...Astrobiological implications of the stability andreactivity of peptide nuclei...
Astrobiological implications of the stability andreactivity of peptide nuclei...
Sérgio Sacani
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Transgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative BiolabsTransgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative Biolabs
Creative-Biolabs
 
The Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infectionsThe Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infections
NABIHANAEEM2
 
What Are Dendritic Cells and Their Role in Immunobiology?
What Are Dendritic Cells and Their Role in Immunobiology?What Are Dendritic Cells and Their Role in Immunobiology?
What Are Dendritic Cells and Their Role in Immunobiology?
Kosheeka : Primary Cells for Research
 
Proprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendonProprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendon
klynct
 
Carboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentationCarboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentation
GLAEXISAJULGA
 
Top 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptxTop 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptx
alexbagheriam
 
Reticular formation_groups_organization_
Reticular formation_groups_organization_Reticular formation_groups_organization_
Reticular formation_groups_organization_
klynct
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
Hypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptxHypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptx
klynct
 
Brief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdfBrief Presentation on Garment Washing.pdf
Brief Presentation on Garment Washing.pdf
BharathKumar556689
 
Somato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptxSomato_Sensory _ somatomotor_Nervous_System.pptx
Somato_Sensory _ somatomotor_Nervous_System.pptx
klynct
 
AP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of LifeAP 2024 Unit 1 Updated Chemistry of Life
AP 2024 Unit 1 Updated Chemistry of Life
mseileenlinden
 
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...An upper limit to the lifetime of stellar remnants from gravitational pair pr...
An upper limit to the lifetime of stellar remnants from gravitational pair pr...
Sérgio Sacani
 
Eric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptxEric Schott- Environment, Animal and Human Health (3).pptx
Eric Schott- Environment, Animal and Human Health (3).pptx
ttalbert1
 
Controls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene ExpressionControls over genes.ppt. Gene Expression
Controls over genes.ppt. Gene Expression
NABIHANAEEM2
 
CORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptxCORONARY ARTERY BYPASS GRAFTING (1).pptx
CORONARY ARTERY BYPASS GRAFTING (1).pptx
DharaniJajula
 
Astrobiological implications of the stability andreactivity of peptide nuclei...
Astrobiological implications of the stability andreactivity of peptide nuclei...Astrobiological implications of the stability andreactivity of peptide nuclei...
Astrobiological implications of the stability andreactivity of peptide nuclei...
Sérgio Sacani
 
Funakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalogFunakoshi_ZymoResearch_2024-2025_catalog
Funakoshi_ZymoResearch_2024-2025_catalog
fu7koshi
 
Anti fungal agents Medicinal Chemistry III
Anti fungal agents Medicinal Chemistry  IIIAnti fungal agents Medicinal Chemistry  III
Anti fungal agents Medicinal Chemistry III
HRUTUJA WAGH
 
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Discrete choice experiments: Environmental Improvements to Airthrey Loch Lake...
Professional Content Writing's
 
Transgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative BiolabsTransgenic Mice in Cancer Research - Creative Biolabs
Transgenic Mice in Cancer Research - Creative Biolabs
Creative-Biolabs
 
The Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infectionsThe Microbial World. Microbiology , Microbes, infections
The Microbial World. Microbiology , Microbes, infections
NABIHANAEEM2
 
Proprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendonProprioceptors_ receptors of muscle_tendon
Proprioceptors_ receptors of muscle_tendon
klynct
 
Carboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentationCarboxylic-Acid-Derivatives.lecture.presentation
Carboxylic-Acid-Derivatives.lecture.presentation
GLAEXISAJULGA
 
Top 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptxTop 10 Biotech Startups for Beginners.pptx
Top 10 Biotech Startups for Beginners.pptx
alexbagheriam
 
Reticular formation_groups_organization_
Reticular formation_groups_organization_Reticular formation_groups_organization_
Reticular formation_groups_organization_
klynct
 
Introduction to Black Hole and how its formed
Introduction to Black Hole and how its formedIntroduction to Black Hole and how its formed
Introduction to Black Hole and how its formed
MSafiullahALawi
 
Hypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptxHypothalamus_structure_nuclei_ functions.pptx
Hypothalamus_structure_nuclei_ functions.pptx
klynct
 
Ad

MLPI Lecture 1: Maths for Machine Learning

  翻译: