This document discusses using artificial intelligence techniques like machine learning algorithms to improve cyber security. It proposes a methodology that uses Splunk to extract relevant fields from cybersecurity data, feeds that into a K-means clustering algorithm to form attack clusters, then sends those clusters to individual artificial neural networks (ANNs). The aggregated ANN results are then fed into a support vector machine (SVM) which classifies attacks as malicious, non-malicious, or benign. Testing this approach on a dataset achieved a classification accuracy of over 92% when using Splunk, K-means, ANNs, and SVM together.