SlideShare a Scribd company logo
HBase and Batch Processing
Molly O’Connor
Factual
HBase at Factual
Support API for global location queries and accept live
writes of new supporting data
Batch updates: ingesting large amounts of new data,
pushing out new versions of the data (improvements in
algorithms for data cleaning, verification, clustering)
Overview
1. HBase Architecture
2. Batch Workflow
3. Lessons/Challenges
HBase Intro -- Data Model
● Column families for HBase table are specified at
creation time
● Arbitrary byte sequences for column qualifiers (unlimited
and created as data is written)
● Data organized by column families and sorted by key
HBase Intro -- HFile Format
● Sorted lexicographically with secondary indices inline
with data
● Block size: memory tradeoffs. Choose based on
expected read access
● Compression: experiment: lzo, snappy, gz
● Index Size: don’t make keys and column names longer
than needed.
HBase Intro -- Region Servers
HBase Intro -- Locality
● Region servers write new data locally
● Compaction further promotes data locality
● Metrics: at the region server level. In 1.0, “Block
Locality”, in 0.94, “hdfsBlocksLocalityIndex”
● Enable short circuit reads for additional benefits
HBase Intro -- Consistency
● Single row atomicity across column families guaranteed
● checkAndPut -- single row, checks on the value of a
single column only
● mutateRowsWithLocks --via coprocessor
○ within a region: need clever row key design, region
split policy
Overview
1. HBase Architecture
2. Batch Workflow
3. Lessons/Challenges
● Better performance for large scale updates
● Quality analysis and metrics on all data before adopting
● Perform computations that are not possible or
prohibitively expensive in a live hbase setting
● Data is already on HDFS
HBase and Batch
Batch Workflow
1. Snapshot
2. MapReduce
3. Bulkloading
HBase Snapshots
● Copy on write (HFile links)
● Per table
● Rolling
○ HBase’s guarantee of consistency within a row
● Use cases: backup/recovery, export, mapreduce
Snapshots and MapReduce
● Definitely use Mapreduce over snapshots, if possible
(HBASE-8369)
○ before this feature, issues with reading HFiles
directly because of compaction
○ Advantages: Job is faster and puts less pressure on
region servers
○ Caveat: Not reading live data
Locality and Mapreduce
Tradeoffs: want to colocate computation with data. But, this
causes contention with HBase
○ Don’t run mapreduce on HBase nodes?
○ Mitigated somewhat with Yarn?
Federated Namespaces for Multi-Purpose Cluster
Bulkloading
● Additional path to ingesting data with HBase. Create
HFiles directly, and HBase adopts the files
● Bulkload is atomic at the region level
○ single row consistency (across CF) guaranteed
Locality after Bulkloading
● Look at current region locations, and try to produce new
HFiles on those nodes
● Compaction after bulkloading: needs to be timed well,
but can eventually lead to locality
● New data will not be in the block cache!
● HBASE-11195 can promote compaction in cases where
locality is low
● HBASE-8329 throttling compaction speed
Overview
1. HBase Architecture
2. Batch Workflow
3. Lessons/Challenges
Challenges
● Does bulkloading fit your data model?
○ Replay--do you need a catchup phase after data
ingestion?
● Consistency beyond row level (using a library to
manage a secondary index or other transactional
writes)?
● Maybe use Mapreduce over live tables but throttle
requests? HBASE-11598
Summary
1. Ability to do bulk updates can be hugely important for
performance
2. HDFS integration and strong feature set make HBase a
good choice for batch processing
3. More features coming (today highlighted many
introduced in the new version 1.0)
Questions?

More Related Content

What's hot (20)

Apache HBase
Apache HBase  Apache HBase
Apache HBase
Vishnupriya T H
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Improve Presto Architectural Decisions with Shadow Cache
 Improve Presto Architectural Decisions with Shadow Cache Improve Presto Architectural Decisions with Shadow Cache
Improve Presto Architectural Decisions with Shadow Cache
Alluxio, Inc.
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
Incremental backups
Incremental backupsIncremental backups
Incremental backups
Vlad Lesin
 
TriHUG 3/14: HBase in Production
TriHUG 3/14: HBase in ProductionTriHUG 3/14: HBase in Production
TriHUG 3/14: HBase in Production
trihug
 
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDBThe Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive
 
The Google Bigtable
The Google BigtableThe Google Bigtable
The Google Bigtable
Romain Jacotin
 
Web scale monitoring
Web scale monitoringWeb scale monitoring
Web scale monitoring
Dobrica Pavlinušić
 
RTree Spatial Indexing with MongoDB - MongoDC
RTree Spatial Indexing with MongoDB - MongoDC RTree Spatial Indexing with MongoDB - MongoDC
RTree Spatial Indexing with MongoDB - MongoDC
Nicholas Knize, Ph.D., GISP
 
HBase, crazy dances on the elephant back.
HBase, crazy dances on the elephant back.HBase, crazy dances on the elephant back.
HBase, crazy dances on the elephant back.
Roman Nikitchenko
 
Storage in hadoop
Storage in hadoopStorage in hadoop
Storage in hadoop
Puneet Tripathi
 
Optimizing columnar stores
Optimizing columnar storesOptimizing columnar stores
Optimizing columnar stores
Istvan Szukacs
 
RocksDB storage engine for MySQL and MongoDB
RocksDB storage engine for MySQL and MongoDBRocksDB storage engine for MySQL and MongoDB
RocksDB storage engine for MySQL and MongoDB
Igor Canadi
 
Gfs vs hdfs
Gfs vs hdfsGfs vs hdfs
Gfs vs hdfs
Yuval Carmel
 
HBase Incremental Backup
HBase Incremental BackupHBase Incremental Backup
HBase Incremental Backup
Lee neal
 
Apache hadoop, hdfs and map reduce Overview
Apache hadoop, hdfs and map reduce OverviewApache hadoop, hdfs and map reduce Overview
Apache hadoop, hdfs and map reduce Overview
Nisanth Simon
 
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay RadiaApache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Yahoo Developer Network
 
Ceph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Day Berlin: Measuring and predicting performance of Ceph clustersCeph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Community
 
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science  Bon Secours...Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science  Bon Secours...
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
AyeeshaParveen
 
RocksDB detail
RocksDB detailRocksDB detail
RocksDB detail
MIJIN AN
 
Improve Presto Architectural Decisions with Shadow Cache
 Improve Presto Architectural Decisions with Shadow Cache Improve Presto Architectural Decisions with Shadow Cache
Improve Presto Architectural Decisions with Shadow Cache
Alluxio, Inc.
 
RocksDB compaction
RocksDB compactionRocksDB compaction
RocksDB compaction
MIJIN AN
 
Incremental backups
Incremental backupsIncremental backups
Incremental backups
Vlad Lesin
 
TriHUG 3/14: HBase in Production
TriHUG 3/14: HBase in ProductionTriHUG 3/14: HBase in Production
TriHUG 3/14: HBase in Production
trihug
 
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDBThe Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive
 
HBase, crazy dances on the elephant back.
HBase, crazy dances on the elephant back.HBase, crazy dances on the elephant back.
HBase, crazy dances on the elephant back.
Roman Nikitchenko
 
Optimizing columnar stores
Optimizing columnar storesOptimizing columnar stores
Optimizing columnar stores
Istvan Szukacs
 
RocksDB storage engine for MySQL and MongoDB
RocksDB storage engine for MySQL and MongoDBRocksDB storage engine for MySQL and MongoDB
RocksDB storage engine for MySQL and MongoDB
Igor Canadi
 
HBase Incremental Backup
HBase Incremental BackupHBase Incremental Backup
HBase Incremental Backup
Lee neal
 
Apache hadoop, hdfs and map reduce Overview
Apache hadoop, hdfs and map reduce OverviewApache hadoop, hdfs and map reduce Overview
Apache hadoop, hdfs and map reduce Overview
Nisanth Simon
 
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay RadiaApache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Apache Hadoop India Summit 2011 Keynote talk "HDFS Federation" by Sanjay Radia
Yahoo Developer Network
 
Ceph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Day Berlin: Measuring and predicting performance of Ceph clustersCeph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Day Berlin: Measuring and predicting performance of Ceph clusters
Ceph Community
 
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science  Bon Secours...Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science  Bon Secours...
Hadoop ecosystem; J.Ayeesha parveen 2 nd M.sc., computer science Bon Secours...
AyeeshaParveen
 

Viewers also liked (20)

Big datacamp june14_alex_liu
Big datacamp june14_alex_liuBig datacamp june14_alex_liu
Big datacamp june14_alex_liu
Data Con LA
 
Aziksa hadoop for buisness users2 santosh jha
Aziksa hadoop for buisness users2 santosh jhaAziksa hadoop for buisness users2 santosh jha
Aziksa hadoop for buisness users2 santosh jha
Data Con LA
 
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Data Con LA
 
La big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixitLa big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixit
Data Con LA
 
Kiji cassandra la june 2014 - v02 clint-kelly
Kiji cassandra la   june 2014 - v02 clint-kellyKiji cassandra la   june 2014 - v02 clint-kelly
Kiji cassandra la june 2014 - v02 clint-kelly
Data Con LA
 
Summit v4 dave wolcott
Summit v4 dave wolcottSummit v4 dave wolcott
Summit v4 dave wolcott
Data Con LA
 
20140614 introduction to spark-ben white
20140614 introduction to spark-ben white20140614 introduction to spark-ben white
20140614 introduction to spark-ben white
Data Con LA
 
140614 bigdatacamp-la-keynote-jon hsieh
140614 bigdatacamp-la-keynote-jon hsieh140614 bigdatacamp-la-keynote-jon hsieh
140614 bigdatacamp-la-keynote-jon hsieh
Data Con LA
 
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Data Con LA
 
Yarn cloudera-kathleenting061414 kate-ting
Yarn cloudera-kathleenting061414 kate-tingYarn cloudera-kathleenting061414 kate-ting
Yarn cloudera-kathleenting061414 kate-ting
Data Con LA
 
2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky
Data Con LA
 
Ag big datacampla-06-14-2014-ajay_gopal
Ag big datacampla-06-14-2014-ajay_gopalAg big datacampla-06-14-2014-ajay_gopal
Ag big datacampla-06-14-2014-ajay_gopal
Data Con LA
 
Hadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapRHadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapR
Data Con LA
 
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Data Con LA
 
Hadoop Innovation Summit 2014
Hadoop Innovation Summit 2014Hadoop Innovation Summit 2014
Hadoop Innovation Summit 2014
Data Con LA
 
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Data Con LA
 
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Data Con LA
 
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Data Con LA
 
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Data Con LA
 
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Data Con LA
 
Big datacamp june14_alex_liu
Big datacamp june14_alex_liuBig datacamp june14_alex_liu
Big datacamp june14_alex_liu
Data Con LA
 
Aziksa hadoop for buisness users2 santosh jha
Aziksa hadoop for buisness users2 santosh jhaAziksa hadoop for buisness users2 santosh jha
Aziksa hadoop for buisness users2 santosh jha
Data Con LA
 
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Big Data Day LA 2015 - NoSQL: Doing it wrong before getting it right by Lawre...
Data Con LA
 
La big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixitLa big datacamp2014_vikram_dixit
La big datacamp2014_vikram_dixit
Data Con LA
 
Kiji cassandra la june 2014 - v02 clint-kelly
Kiji cassandra la   june 2014 - v02 clint-kellyKiji cassandra la   june 2014 - v02 clint-kelly
Kiji cassandra la june 2014 - v02 clint-kelly
Data Con LA
 
Summit v4 dave wolcott
Summit v4 dave wolcottSummit v4 dave wolcott
Summit v4 dave wolcott
Data Con LA
 
20140614 introduction to spark-ben white
20140614 introduction to spark-ben white20140614 introduction to spark-ben white
20140614 introduction to spark-ben white
Data Con LA
 
140614 bigdatacamp-la-keynote-jon hsieh
140614 bigdatacamp-la-keynote-jon hsieh140614 bigdatacamp-la-keynote-jon hsieh
140614 bigdatacamp-la-keynote-jon hsieh
Data Con LA
 
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Big Data Day LA 2015 - Solr Search with Spark for Big Data Analytics in Actio...
Data Con LA
 
Yarn cloudera-kathleenting061414 kate-ting
Yarn cloudera-kathleenting061414 kate-tingYarn cloudera-kathleenting061414 kate-ting
Yarn cloudera-kathleenting061414 kate-ting
Data Con LA
 
2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky2014 bigdatacamp asya_kamsky
2014 bigdatacamp asya_kamsky
Data Con LA
 
Ag big datacampla-06-14-2014-ajay_gopal
Ag big datacampla-06-14-2014-ajay_gopalAg big datacampla-06-14-2014-ajay_gopal
Ag big datacampla-06-14-2014-ajay_gopal
Data Con LA
 
Hadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapRHadoop and NoSQL joining forces by Dale Kim of MapR
Hadoop and NoSQL joining forces by Dale Kim of MapR
Data Con LA
 
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Big Data Day LA 2015 - Lessons Learned from Designing Data Ingest Systems by ...
Data Con LA
 
Hadoop Innovation Summit 2014
Hadoop Innovation Summit 2014Hadoop Innovation Summit 2014
Hadoop Innovation Summit 2014
Data Con LA
 
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Big Data Day LA 2015 - Introducing N1QL: SQL for Documents by Jeff Morris of ...
Data Con LA
 
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Big Data Day LA 2015 - Deep Learning Human Vocalized Animal Sounds by Sabri S...
Data Con LA
 
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Big Data Day LA 2016/ Data Science Track - Decision Making and Lambda Archite...
Data Con LA
 
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Big Data Day LA 2016/ Hadoop/ Spark/ Kafka track - Introduction to Kafka - Je...
Data Con LA
 
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Big Data Day LA 2016/ Big Data Track - Twitter Heron @ Scale - Karthik Ramasa...
Data Con LA
 

Similar to Big Data Day LA 2015 - HBase at Factual: Real time and Batch Uses by Molly O'Connor of Factual (20)

Hbase 20141003
Hbase 20141003Hbase 20141003
Hbase 20141003
Jean-Baptiste Poullet
 
Hbase: an introduction
Hbase: an introductionHbase: an introduction
Hbase: an introduction
Jean-Baptiste Poullet
 
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Yahoo Developer Network
 
支撑Facebook消息处理的h base存储系统
支撑Facebook消息处理的h base存储系统支撑Facebook消息处理的h base存储系统
支撑Facebook消息处理的h base存储系统
yongboy
 
Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase
强 王
 
Facebook keynote-nicolas-qcon
Facebook keynote-nicolas-qconFacebook keynote-nicolas-qcon
Facebook keynote-nicolas-qcon
Yiwei Ma
 
Apache hadoop hbase
Apache hadoop hbaseApache hadoop hbase
Apache hadoop hbase
sheetal sharma
 
Hadoop - Apache Hbase
Hadoop - Apache HbaseHadoop - Apache Hbase
Hadoop - Apache Hbase
Vibrant Technologies & Computers
 
Apache HBase™
Apache HBase™Apache HBase™
Apache HBase™
Prashant Gupta
 
Hw09 Practical HBase Getting The Most From Your H Base Install
Hw09   Practical HBase  Getting The Most From Your H Base InstallHw09   Practical HBase  Getting The Most From Your H Base Install
Hw09 Practical HBase Getting The Most From Your H Base Install
Cloudera, Inc.
 
Meet Apache HBase - 2.0
Meet Apache HBase - 2.0Meet Apache HBase - 2.0
Meet Apache HBase - 2.0
DataWorks Summit
 
Meet HBase 2.0
Meet HBase 2.0Meet HBase 2.0
Meet HBase 2.0
enissoz
 
Meet hbase 2.0
Meet hbase 2.0Meet hbase 2.0
Meet hbase 2.0
enissoz
 
Hbase Quick Review Guide for Interviews
Hbase Quick Review Guide for InterviewsHbase Quick Review Guide for Interviews
Hbase Quick Review Guide for Interviews
Ravindra kumar
 
Apache HBase 1.0 Release
Apache HBase 1.0 ReleaseApache HBase 1.0 Release
Apache HBase 1.0 Release
Nick Dimiduk
 
01 hbase
01 hbase01 hbase
01 hbase
Subhas Kumar Ghosh
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBaseCon
 
Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010
Yahoo Developer Network
 
HBase Applications - Atlanta HUG - May 2014
HBase Applications - Atlanta HUG - May 2014HBase Applications - Atlanta HUG - May 2014
HBase Applications - Atlanta HUG - May 2014
larsgeorge
 
CCS334 BIG DATA ANALYTICS UNIT 5 PPT ELECTIVE PAPER
CCS334 BIG DATA ANALYTICS UNIT 5 PPT  ELECTIVE PAPERCCS334 BIG DATA ANALYTICS UNIT 5 PPT  ELECTIVE PAPER
CCS334 BIG DATA ANALYTICS UNIT 5 PPT ELECTIVE PAPER
KrishnaVeni451953
 
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Apache Hadoop India Summit 2011 talk "Searching Information Inside Hadoop Pla...
Yahoo Developer Network
 
支撑Facebook消息处理的h base存储系统
支撑Facebook消息处理的h base存储系统支撑Facebook消息处理的h base存储系统
支撑Facebook消息处理的h base存储系统
yongboy
 
Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase
强 王
 
Facebook keynote-nicolas-qcon
Facebook keynote-nicolas-qconFacebook keynote-nicolas-qcon
Facebook keynote-nicolas-qcon
Yiwei Ma
 
Hw09 Practical HBase Getting The Most From Your H Base Install
Hw09   Practical HBase  Getting The Most From Your H Base InstallHw09   Practical HBase  Getting The Most From Your H Base Install
Hw09 Practical HBase Getting The Most From Your H Base Install
Cloudera, Inc.
 
Meet HBase 2.0
Meet HBase 2.0Meet HBase 2.0
Meet HBase 2.0
enissoz
 
Meet hbase 2.0
Meet hbase 2.0Meet hbase 2.0
Meet hbase 2.0
enissoz
 
Hbase Quick Review Guide for Interviews
Hbase Quick Review Guide for InterviewsHbase Quick Review Guide for Interviews
Hbase Quick Review Guide for Interviews
Ravindra kumar
 
Apache HBase 1.0 Release
Apache HBase 1.0 ReleaseApache HBase 1.0 Release
Apache HBase 1.0 Release
Nick Dimiduk
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBaseCon
 
Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010
Yahoo Developer Network
 
HBase Applications - Atlanta HUG - May 2014
HBase Applications - Atlanta HUG - May 2014HBase Applications - Atlanta HUG - May 2014
HBase Applications - Atlanta HUG - May 2014
larsgeorge
 
CCS334 BIG DATA ANALYTICS UNIT 5 PPT ELECTIVE PAPER
CCS334 BIG DATA ANALYTICS UNIT 5 PPT  ELECTIVE PAPERCCS334 BIG DATA ANALYTICS UNIT 5 PPT  ELECTIVE PAPER
CCS334 BIG DATA ANALYTICS UNIT 5 PPT ELECTIVE PAPER
KrishnaVeni451953
 

More from Data Con LA (20)

Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendationsData Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and AtlasData Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynotes
Data Con LA 2022 KeynotesData Con LA 2022 Keynotes
Data Con LA 2022 Keynotes
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup ShowcaseData Con LA 2022 - Startup Showcase
Data Con LA 2022 - Startup Showcase
Data Con LA
 
Data Con LA 2022 Keynote
Data Con LA 2022 KeynoteData Con LA 2022 Keynote
Data Con LA 2022 Keynote
Data Con LA
 
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendationsData Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA 2022 - Using Google trends data to build product recommendations
Data Con LA
 
Data Con LA 2022 - AI Ethics
Data Con LA 2022 - AI EthicsData Con LA 2022 - AI Ethics
Data Con LA 2022 - AI Ethics
Data Con LA
 
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learningData Con LA 2022 - Improving disaster response with machine learning
Data Con LA 2022 - Improving disaster response with machine learning
Data Con LA
 
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and AtlasData Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA 2022 - What's new with MongoDB 6.0 and Atlas
Data Con LA
 
Data Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentationData Con LA 2022 - Real world consumer segmentation
Data Con LA 2022 - Real world consumer segmentation
Data Con LA
 
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA 2022 - Modernizing Analytics & AI for today's needs: Intuit Turbo...
Data Con LA
 
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWSData Con LA 2022 - Moving Data at Scale to AWS
Data Con LA 2022 - Moving Data at Scale to AWS
Data Con LA
 
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AIData Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA 2022 - Collaborative Data Exploration using Conversational AI
Data Con LA
 
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA 2022 - Why Database Modernization Makes Your Data Decisions More ...
Data Con LA
 
Data Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data ScienceData Con LA 2022 - Intro to Data Science
Data Con LA 2022 - Intro to Data Science
Data Con LA
 
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing EntertainmentData Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA 2022 - How are NFTs and DeFi Changing Entertainment
Data Con LA
 
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA 2022 - Why Data Quality vigilance requires an End-to-End, Automat...
Data Con LA
 
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA 2022-Perfect Viral Ad prediction of Superbowl 2022 using Tease, T...
Data Con LA
 
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA 2022- Embedding medical journeys with machine learning to improve...
Data Con LA
 
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with KafkaData Con LA 2022 - Data Streaming with Kafka
Data Con LA 2022 - Data Streaming with Kafka
Data Con LA
 

Recently uploaded (20)

AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Agentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community MeetupAgentic Automation - Delhi UiPath Community Meetup
Agentic Automation - Delhi UiPath Community Meetup
Manoj Batra (1600 + Connections)
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
Mastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B LandscapeMastering Testing in the Modern F&B Landscape
Mastering Testing in the Modern F&B Landscape
marketing943205
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
IT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information TechnologyIT484 Cyber Forensics_Information Technology
IT484 Cyber Forensics_Information Technology
SHEHABALYAMANI
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
RTP Over QUIC: An Interesting Opportunity Or Wasted Time?
Lorenzo Miniero
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
On-Device or Remote? On the Energy Efficiency of Fetching LLM-Generated Conte...
Ivano Malavolta
 
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
Could Virtual Threads cast away the usage of Kotlin Coroutines - DevoxxUK2025
João Esperancinha
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
AsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API DesignAsyncAPI v3 : Streamlining Event-Driven API Design
AsyncAPI v3 : Streamlining Event-Driven API Design
leonid54
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptxSmart Investments Leveraging Agentic AI for Real Estate Success.pptx
Smart Investments Leveraging Agentic AI for Real Estate Success.pptx
Seasia Infotech
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptxTop 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
Top 5 Benefits of Using Molybdenum Rods in Industrial Applications.pptx
mkubeusa
 
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Kit-Works Team Study_아직도 Dockefile.pdf_김성호
Wonjun Hwang
 
fennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solutionfennec fox optimization algorithm for optimal solution
fennec fox optimization algorithm for optimal solution
shallal2
 

Big Data Day LA 2015 - HBase at Factual: Real time and Batch Uses by Molly O'Connor of Factual

  • 1. HBase and Batch Processing Molly O’Connor Factual
  • 2. HBase at Factual Support API for global location queries and accept live writes of new supporting data Batch updates: ingesting large amounts of new data, pushing out new versions of the data (improvements in algorithms for data cleaning, verification, clustering)
  • 3. Overview 1. HBase Architecture 2. Batch Workflow 3. Lessons/Challenges
  • 4. HBase Intro -- Data Model ● Column families for HBase table are specified at creation time ● Arbitrary byte sequences for column qualifiers (unlimited and created as data is written) ● Data organized by column families and sorted by key
  • 5. HBase Intro -- HFile Format ● Sorted lexicographically with secondary indices inline with data ● Block size: memory tradeoffs. Choose based on expected read access ● Compression: experiment: lzo, snappy, gz ● Index Size: don’t make keys and column names longer than needed.
  • 6. HBase Intro -- Region Servers
  • 7. HBase Intro -- Locality ● Region servers write new data locally ● Compaction further promotes data locality ● Metrics: at the region server level. In 1.0, “Block Locality”, in 0.94, “hdfsBlocksLocalityIndex” ● Enable short circuit reads for additional benefits
  • 8. HBase Intro -- Consistency ● Single row atomicity across column families guaranteed ● checkAndPut -- single row, checks on the value of a single column only ● mutateRowsWithLocks --via coprocessor ○ within a region: need clever row key design, region split policy
  • 9. Overview 1. HBase Architecture 2. Batch Workflow 3. Lessons/Challenges
  • 10. ● Better performance for large scale updates ● Quality analysis and metrics on all data before adopting ● Perform computations that are not possible or prohibitively expensive in a live hbase setting ● Data is already on HDFS HBase and Batch
  • 11. Batch Workflow 1. Snapshot 2. MapReduce 3. Bulkloading
  • 12. HBase Snapshots ● Copy on write (HFile links) ● Per table ● Rolling ○ HBase’s guarantee of consistency within a row ● Use cases: backup/recovery, export, mapreduce
  • 13. Snapshots and MapReduce ● Definitely use Mapreduce over snapshots, if possible (HBASE-8369) ○ before this feature, issues with reading HFiles directly because of compaction ○ Advantages: Job is faster and puts less pressure on region servers ○ Caveat: Not reading live data
  • 14. Locality and Mapreduce Tradeoffs: want to colocate computation with data. But, this causes contention with HBase ○ Don’t run mapreduce on HBase nodes? ○ Mitigated somewhat with Yarn?
  • 15. Federated Namespaces for Multi-Purpose Cluster
  • 16. Bulkloading ● Additional path to ingesting data with HBase. Create HFiles directly, and HBase adopts the files ● Bulkload is atomic at the region level ○ single row consistency (across CF) guaranteed
  • 17. Locality after Bulkloading ● Look at current region locations, and try to produce new HFiles on those nodes ● Compaction after bulkloading: needs to be timed well, but can eventually lead to locality ● New data will not be in the block cache! ● HBASE-11195 can promote compaction in cases where locality is low ● HBASE-8329 throttling compaction speed
  • 18. Overview 1. HBase Architecture 2. Batch Workflow 3. Lessons/Challenges
  • 19. Challenges ● Does bulkloading fit your data model? ○ Replay--do you need a catchup phase after data ingestion? ● Consistency beyond row level (using a library to manage a secondary index or other transactional writes)? ● Maybe use Mapreduce over live tables but throttle requests? HBASE-11598
  • 20. Summary 1. Ability to do bulk updates can be hugely important for performance 2. HDFS integration and strong feature set make HBase a good choice for batch processing 3. More features coming (today highlighted many introduced in the new version 1.0)
  翻译: