SlideShare a Scribd company logo
Ch. 4 Boolean Algebra and Logic Simplification Boolean Operations and Expressions Laws and Rules of Boolean Algebra Boolean Analysis of Logic Circuits Simplification Using Boolean Algebra Standard Forms of Boolean Expressions Truth Table and Karnaugh Map Programmable Logic: PALs and GALs Boolean Expressions with VHDL
Introduction Boolean Algebra George Boole(English mathematician), 1854 “ An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of  Logic  and Probabilities” Boolean Algebra  {(1,0), Var, (NOT, AND, OR), Thms} Mathematical tool to expression and analyze  digital (logic) circuits Claude Shannon, the first to apply Boole’s work, 1938 “ A Symbolic Analysis of Relay and Switching Circuits”  at MIT  This chapter covers Boolean algebra, Boolean expression and its evaluation and simplification, and VHDL program
Boolean functions : NOT, AND, OR,    exclusive OR(XOR) : odd function   exclusive NOR(XNOR) : even function(equivalence) Basic Functions
AND Z=X    Y  or Z=XY  Z=1 if and only if X=1 and Y=1 , otherwise Z=0 OR Z=X + Y Z=1 if X=1 or if Y=1, or both X=1and Y=1.  Z=0 if and only if X=0 and Y=0 NOT Z=X   or Z=1 if X=0, Z=0 if X=1 Basic Functions ( 계속 )
Basic Functions ( 계속 )
Boolean Operations and Expressions Boolean Addition Logical OR operation Ex 4-1) Determine the values of A, B, C, and D that make the sum term A+B’+C+D’ Sol) all literals must be ‘0’ for the sum term to be ‘0’   A+B’+C+D’=0+1’+0+1’=0   A=0, B=1, C=0, and D=1 Boolean Multiplication Logical AND operation Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1 Sol) all literals must be ‘1’ for the product term to be ‘1’   AB’CD’=10’10’=1   A=1, B=0, C=1, and D=0
Basic Identities of Boolean Algebra The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
Laws of Boolean Algebra Commutative Law the order of literals does not matter A + B = B + A A B = B A
Associative Law the grouping of literals does not matter A + (B + C) = (A + B) + C  (=A+B+C) A(BC) = (AB)C  (=ABC) Laws of Boolean Algebra ( 계속 )
Distributive Law : A(B + C) = AB + AC Laws of Boolean Algebra ( 계속 ) A B C X Y X=Y
(A+B)(C+D) = AC + AD + BC + BD Laws of Boolean Algebra ( 계속 ) A B C D X Y X=Y
A+0=A In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing   A X X=A+0=A Rules of Boolean Algebra
A+1=1 ORing with 1 must give a 1 since if any input is 1 an OR gate will give a 1 Rules of Boolean Algebra ( 계속 ) A X X=A+1=1
A•0=0 In math if 0 is multiplied with anything you get 0. If you AND anything with 0 you get 0 Rules of Boolean Algebra ( 계속 ) A X X=A0 = 0
A•1 =A ANDing anything with 1 will yield the anything Rules of Boolean Algebra ( 계속 ) A X X=A1=A A
A+A = A ORing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=A+A =A
A+A’=1 Either A or A’ must be 1 so A + A’ =1 Rules of Boolean Algebra ( 계속 ) A A’ X X=+A’=1
A•A = A ANDing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=AA=A
A•A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the inputs must be 0. Rules of Boolean Algebra ( 계속 ) A A’ X X=AA’=0
A = (A’)’ If you not something twice you are back to the beginning   Rules of Boolean Algebra ( 계속 ) A X X=(A’)’=A
Rules of Boolean Algebra ( 계속 ) A B X A + AB = A
A + A’B = A + B   If A is 1 the output is 1  If A is 0 the output is B Rules of Boolean Algebra ( 계속 ) A B X Y X=Y
Rules of Boolean Algebra ( 계속 ) A B C X Y (A + B)(A + C) = A + BC
DeMorgan’s Theorem F  (A,A  ,   , + , 1,0)  =  F(A  , A, + ,   ,0,1) (A • B)’ = A’ + B’  and (A + B)’ = A’ • B’ DeMorgan’s theorem  will help to simplify digital circuits using NORs and NANDs his theorem states DeMorgan’s Theorems
 
Look at (A +B +C + D)’ = A’ • B’ • C’ • D’
Ex 4-3) Apply DeMorgan’s theorems to (XYZ)’ and (X+Y+Z)’ Sol) (XYZ)’=X’+Y’+Z’  and (X+Y+Z)’=X’Y’Z’ Ex 4-5) Apply DeMorgan’s theorems to  (a) ((A+B+C)D)’  (b) (ABC+DEF)’  (c) (AB’+C’D+EF)’ Sol) (a) ((A+B+C)D)’= (A+B+C)’+D’=A’B’C’+D’ (b) (ABC+DEF)’=(ABC)’(DEF)’=(A’+B’+C’)(D’+E’+F’) (c) (AB’+C’D+EF)’=(AB’)’(C’D)’(EF)’=(A’+B)(C+D’)(E’+F’)
Boolean Analysis of Logic Circuits Boolean Expression for a Logic Circuit Figure 4-16  A logic circuit showing the development of the Boolean expression for the output.
Constructing a Truth Table for a Logic Circuit Convert the expression into the min-terms containing all the input literals Get the numbers from the min-terms  Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s  in the remains Ex) A(B+CD)= AB(C+C’) (D+D’)  +A(B+B’)CD = ABC(D+D’) +ABC’(D+D’)  +ABCD+AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ + ABCD +AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ +AB’CD =m11+m12+m13+m14+m15=  (11,12,13,14,15)
Truth Table from Logic Circuit A(B+CD)=m11+m12+m13+m14+m15 =  (11,12,13,14,15)  Output Input 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 A(B+CD) D C B A
Ex 4-8) Using Boolean algebra, simplify this expression AB+A(B+C)+B(B+C) Sol) AB+AB+AC+BB+BC =B(1+A+A+C)+AC= B+AC Simplification Using Boolean Algebra
Ex 4-9) Simplify the following Boolean expression (AB’(C+BD)+A’B’)C Sol) (AB’C+ A B’B D +A’B’)C=A B’CC +A’ B’C =(A+A’)B’C=B’C Ex 4-10) Simplify the following Boolean expression A’ BC +A B’C’ +A’ B’C’ +AB’C+A BC Sol) (A+A’) BC +(A+A’) B’C’ +AB’C=BC+ B’ C’+A B’ C  =BC+B’(C’+AC)=BC+B’(C’+A)=BC+B’C’+AB’ Ex 4-11) Simplify the following Boolean expression (AB +AC)’+A’B’C Sol) (AB)’(AC)’+A’B’C=(A’+ B’)(A’+C’)+ A’ B’C =A’+A’B’ +A’C’+B’C+A’B’C =A’(1+B’+C’+B’C)+B’C=A’+B’C’
Standard Forms of Boolean Expressions   The Sum-of-Products(SOP) Form Ex) AB+ABC,  ABC+CDE+B’CD’ The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C),  (A+B+C)(C+D+E)(B’+C+D’) Principle of Duality : SOP    POS Domain of a Boolean Expression The set of variables contained in the expression Ex) A’B+AB’C : the domain is {A, B, C}
Implementation of a SOP Expression AND-OR logic Conversion of General Expression to SOP Form A(B+CD)=AB +ACD Ex 4-12) Convert each of the following expressions to SOP form: (a) AB+B(CD+EF)  (b) (A+B)(B+C+D) Sol) (a) AB+B(CD+EF)=AB+BCD+BEF   (b) (A+B)(B+C+D)=AB+AC+AD+ BB+BC+BD    =B(1+A+C+D)+ AC+AD=B+AC+AD
Standard SOP Form (Canonical SOP Form) For all the missing variables, apply  (x+x’)=1  to the AND terms of the expression List all the min-terms in forms of the complete set of variables in ascending order Ex 4-13) Convert the following expression into standard SOP form:  AB’C+A’B’+ABC’D Sol) domain={A,B,C,D}, AB’C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D =AB’CD’+AB’CD+A’B’C’D’+A’B’C’D+A’B’CD’+A’B’CD+ABC’D =1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 =   (0,1,2,3,10,11,13)
Product-of-Sums Form Implementation of a POS Expression OR-AND logic
Standard POS Form (Canonical POS Form) For all the missing variables, apply  (x’x)=0  to the OR terms of the expression List all the max-terms in forms of the complete set of variables in ascending order Ex 4-15) Convert the following expression into standard POS form:  (A+B’+C)(B’+C+D’)(A+B’+C’+D) Sol) domain={A,B,C,D},  (A+B’+C)(B’+C+D’)(A+B’+C’+D)  =(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D)  = (A+B’+C+D’) (A+B’+C+D) (A’+B’+C+D’) (A+B’+C+D’)(A+B’+C’+D)=(0100) )(0101)(0110)(1101)=   (4,5,6,13)
Converting Standard SOP to Standard POS Step 1. Evaluate each product term in the SOP expression. Determine the binary numbers that represent the product terms Step 2. Determine all of the binary numbers not included in the evaluation in Step 1  Step 3. Write in equivalent sum term for each binary number Step 2 and expression in POS form Ex 4-17) Convert the following SOP to POS Sol) SOP= A’B’C’+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7  =  (0,2,3,5,7)   POS=(1)(4)(6) =   (1, 4, 6)  (=(A+B+C’)(A’+B+C)(A’+B’+C))
Boolean Expressions and Truth Tables Converting SOP Expressions to Truth Table Format Ex 4-18) A’B’C+AB’C’+ABC =  (1,4,7)  ABC 1 1  1  1 0 1  1  0 0 1  0  1 AB’C’ 1 1  0  0 0 0  1  1 0 0  1  0 A’B’C 1 0  0  1 0 0  0  0 Product Term Output X Inputs A  B  C
Converting POS Expressions to Truth Table Format Ex 4-19) (A+B+C)(A+B’+C)(A+B’+C’)(A’+B+C’)(A’+B’+C)  = (000)(010)(011)(101)(110) =   (0,2,3,5,6)  1 1  1  1 A’+B’+C 0 1  1  0 A’+B+C’ 0 1  0  1 1 1  0  0 A+B’+C’ 0 0  1  1 A+B’+C 0 0  1  0 1 0  0  1 A+B+C 0 0  0  0 Sum Term Output X Inputs A  B  C
Ex 4-20) Determine standard SOP and POS from the truth table Sol) (a) Standard SOP F=A’BC+AB’C’+ABC’+ABC (b) Standard POS F=(A+B+C)(A+B+C’)(A+B’+C) (A’+B+C’) 1 1  1  1 1 1  1  0 0 1  0  1 1 1  0  0 1 0  1  1 0 0  1  0 0 0  0  1 0 0  0  0 Output X Inputs A  B  C
Boolean Expression Truth Table Logic Diagram
Karnaugh Map Simplification methods Boolean algebra(algebraic method) Karnaugh map(map method)) Quine-McCluskey(tabular method) XY+XY  =X(Y+Y  )=X
 
Three- and Four-input Kanaugh maps Gray code
 
 
Gray code sequence generation
F(X,Y,Z)=  m(0,1,2,6) =(XY  +YZ)  =X’Y’ + YZ’
Example) F(X,Y,Z)=  m(2,3,4,5) =X  Y+XY  0  1  3  2 4  5  7  6
Example)  F(X,Y,Z)=  m(0,2,4,6) = X  Z  +XZ    =Z  (X  +X)=Z 
Four-Variable Map 16 minterms : m 0  ~ m 15  Rectangle group  2-squares(minterms) : 3-literals product term 4-squares : 2-literals product term 8-squares : 1-literals product term 16-squares : logic 1
 
 
F(W, X,Y,Z)=  m(0,2,7,8,9,10,11) = WX’ + X’Z’ +  W’XYZ
Karnaugh Map SOP Minimization Mapping a Standard SOP Expression
Ex 4-21)     Ex 4-22)
Mapping a Nonstandard SOP Expression Numerical Expression of a Nonstandard Product Term Ex 4-23)  A’+AB’+ABC’ A’ AB’ ABC’ 0 00  10 0 110 0 01   10 1 0 10 0 11
Ex 4-24) B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD B’C’  AB’   ABC’  AB’CD’  A’B’C’D  AB’CD 0000  1000  1100  1010  0001  1011 0001  1001  1101 1000  1010 1001  1011
Karnaugh Map Simplification of SOP Expressions Group 2 n  adjacent cells including the largest possible number of 1s in a rectangle or square shape, 1<=n Get the groups containing all 1s on the map for the expression Determine the minimum SOP expression form map
Ex 4-26)  F=B+A’C+AC’D
Ex 4-27)  (a) AB+BC+A’B’C’  (b) B’+AC+A’C’    (c) A’C’+A’B+AB’D  (d) D’+BC’+AB’C
Ex 4-28) Minimize the following expression AB’C+A’BC+A’B’C+A’B’C’+AB’C’ Sol) B’+A’C
Ex 4-29) Minimize the following expression B’C’D’ +A’BC’D’+ABC’D’+A’B’CD+AB’CD+A’B’CD’+A’BCD’ +ABCD’+AB’CD’ Sol) D’+B’C
Mapping Directly from a Truth Table
Don’t Care Conditions it really does not matter since they will never occur(its output is either ‘0’ or ‘1’) The don’t care terms can be used to advantage on the Karnaugh map
Karnaugh Map POS Minimization Use the  Duality Principle F(A,A  ,   , + , 1,0)     F * (A,A  , + ,   ,0,1)  SOP    POS
Ex 4-30) (A’+B’+C+D)(A’+B+C’+D’)(A+B+C’+D) (A’+B’+C’+D’)(A+B+C’+D’) Sol)
Ex 4-31) (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C) Sol) (0+0+0)(0+0+1)(0+1+0)(0+1+1)(1+1+0)=A(B’+C)   AC+AB’=A(B’+C)
Ex 4-32)  (B+C+D) (A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D) Sol)  (B+C+D)=(A’A+B+C+D)=(A’+B+C+D)(A+B+C+D) (1+0+0+0)(0+0+0+0)(0+0+1+0)(1+0+0+1)(0+1+0+0)(1+1+0+0)   F=(C+D)(A’+B+C)(A+B+D)
Converting Between POS and SOP Using the K-map Ex 4-33) (A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)(A+B+C’+D) Sol)
 
Five/Six –Variable K-Maps Five Variable K-Map : {A,B,C,D,E} 0  1  3  2  4  5  7  6 12  13  15  14 8  9  11  10 16  17  19  18 20  21  23  22 28  29  31  30 24  25  27  26 00  01  11  10 00  01  11  10 BC DE A=0 A=1
Six Variable K-Map : {A,B,C,D,E,F} 0  1  3  2  4  5  7  6 12  13  15  14 8  9  11  10 16  17  19  18 20  21  23  22 28  29  31  30 24  25  27  26 00  01  11  10 00  01  11  10 CD EF AB 32  33  35  34 36  37  39  38 44  45  47  46 40  41  43  42 48  49  51  50 52  53  55  54 60  61  62  63 56  57  59  58 00 10   01 11
Ex 4-34) Sol) A’D’E’+B’C’D’+BCD+ACDE
Programmable Logic: PALs and  GALs Basic PAL Operation Programmable array of AND gates Fixed OR gate
Implementing a Sum-of-Product Expression
 
Ex 4-35) Show how a PAL is programmed for the following function : X=AB’C+A’BC’+A’B’+AC Sol)
PAL Block Diagram
PAL Output Combinational Logic X  0=X X  1=X’
A Specific PAL Figure 4-50  Block diagram of the  PAL16L8 .
Basic GAL Operation Reprogrammable AND array Electrically Erasable CMOS(E 2 CMOS) technology
Figure 4-52  GAL implementation of a sum-of-products expression.
Ex 4-36) Show how a GAL is programmed for the function: X=A’BC’+A’BC+BC+AB’ Sol)
The GAL Block Diagram OLMCs(Output Logic Macrocells) OR array and programmable output logic Typically m and n >= 8
 
GAL20V8 High Performance E2CMOS PLD Generic Array Logic™
Boolean Expressions with VHDL Boolean Algebra in VHDL Programming VHDL Optimization Ex 4-37) Write a VHDL grogram for the following function:  X=(AC+(BC’)’+D)’+((BC)’)’ -- Program  X=(AC+(BC’)’+D)’+((BC)’)’ entity alogicft is port(A, B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<=not((A and C) or not(B and not C) or D) or not(not B  and C); end architecture expaft;
--  Program  X=(AC+(BC’)’+D)’+((BC)’)’=(A’+C’)(BC’)D’+BC  --  =A’BC’D’+BC’D’+BC=(A’+1)BC’D’+BC =  BC’D’+BC entity alogicft is port(B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<= (B and not C and not D) or (B and C); end architecture expaft;
Levels of Abstraction for sequential logic circuits VHDL (1) Behavioral approach : state diagram or truth table (2) Data flow approach : Boolean expression or function (3) Structure approach : logic diagram or schematic describing logic function
Digital System Application : 7-Segment LED Driver Seven-Segment LED driver
A  B  C  D 0  1  3  2  4  5  7  6 13  15  14 8  9  11  10 g  = m(2,3,4,5,6,8,9) =A+BC’+B’C+CD’ CD AB
Figure 4-59  Karnaugh map minimization of the segment- a  logic expression.
Figure 4-60  The minimum logic implementation for segment  a  of the 7-segment display.
--  Program  7-segment driver  entity sevensegdrv is port(A, B, C, D: in bit; a,b,c,d,e,f,g: out bit); end entity sevensegdrv; architecture segment of sevensegdrv is begin a<= B or D or (A and C) or (not A and not C); -- B +D+AC+A’C’ • • •  • • •  • • •  g<= A or B and C’ or not B and C or C and not D; -- A+BC’+B’C+CD’ end architecture segment; VHDL for 7-Segment Driver
Summary Gate symbols Duality Principle F(A,A  ,   , + , 1,0)     F * (A,A  , + ,   ,0,1)  DeMorgan’s Theorem F  (A,A  ,   , + , 1,0)  =  F(A  , A, + ,   ,0,1)
The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
Sum-of-Product(SOP) form    Product-of-Sums(POS) form Standard(canonical) SOP form    Standard POS form Universal gates: NAND, NOR Don’t care conditions Karnaugh map(3, 4, 5, 6 variables) PLDs: PAL, GAL VHDL for logic expressions
Boolean Expression Truth Table Logic Diagram VHDL (HDL)
End of Ch. 4
Ad

More Related Content

What's hot (20)

BOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATEBOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATE
Ideal Eyes Business College
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
Satya P. Joshi
 
boolean algebra and logic simplification
boolean algebra and logic simplificationboolean algebra and logic simplification
boolean algebra and logic simplification
Unsa Shakir
 
8086 assembly language
8086 assembly language8086 assembly language
8086 assembly language
Mir Majid
 
Sequential circuit
Sequential circuitSequential circuit
Sequential circuit
Brenda Debra
 
Lec 04 - Gate-level Minimization
Lec 04 - Gate-level MinimizationLec 04 - Gate-level Minimization
Lec 04 - Gate-level Minimization
Vajira Thambawita
 
presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)
kinza arshad
 
Stabilised Power Supplies
Stabilised Power SuppliesStabilised Power Supplies
Stabilised Power Supplies
School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport
 
Sop and pos
Sop and posSop and pos
Sop and pos
shubhamprajapat23
 
Combinational circuits
Combinational circuits Combinational circuits
Combinational circuits
DrSonali Vyas
 
Finite State Machine.ppt.pptx
Finite State Machine.ppt.pptxFinite State Machine.ppt.pptx
Finite State Machine.ppt.pptx
SKUP1
 
advanced searching and sorting.pdf
advanced searching and sorting.pdfadvanced searching and sorting.pdf
advanced searching and sorting.pdf
haramaya university
 
Basic theorems and properties of boolean algebra
Basic theorems and properties of boolean algebraBasic theorems and properties of boolean algebra
Basic theorems and properties of boolean algebra
Hanu Kavi
 
08 decoder
08 decoder08 decoder
08 decoder
Aamina Aslam
 
Digital electronics
Digital electronicsDigital electronics
Digital electronics
Afghanistan civil aviation institute
 
Logic gates ppt
Logic gates pptLogic gates ppt
Logic gates ppt
parassini
 
Encoders and decoders
Encoders and decodersEncoders and decoders
Encoders and decoders
Jher Carlson Atasan
 
Logic gates
Logic gatesLogic gates
Logic gates
School of Design Engineering Fashion & Technology (DEFT), University of Wales, Newport
 
decoder and encoder
 decoder and encoder decoder and encoder
decoder and encoder
Unsa Shakir
 
Logical micro-operations
Logical micro-operationsLogical micro-operations
Logical micro-operations
VATSAL TRIVEDI
 

Similar to Ch4 Boolean Algebra And Logic Simplication1 (20)

Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
praveenkaundal
 
07 boolean algebra
07 boolean algebra07 boolean algebra
07 boolean algebra
Sohail Akbar Goheer
 
Unit-2 ppt.pdf introduction to it technology
Unit-2 ppt.pdf introduction to it technologyUnit-2 ppt.pdf introduction to it technology
Unit-2 ppt.pdf introduction to it technology
PDineshReddy3
 
9402730.ppt
9402730.ppt9402730.ppt
9402730.ppt
qquwandiq19
 
Best Explanation about De Morgan's Law and Components
Best Explanation about De Morgan's Law and ComponentsBest Explanation about De Morgan's Law and Components
Best Explanation about De Morgan's Law and Components
AssadLeo1
 
Digital logic design lecture 06
Digital logic design   lecture 06 Digital logic design   lecture 06
Digital logic design lecture 06
FarhatUllah27
 
Digital-Logic40124sequential circuits logic gatepptx
Digital-Logic40124sequential circuits logic gatepptxDigital-Logic40124sequential circuits logic gatepptx
Digital-Logic40124sequential circuits logic gatepptx
ssuser6feece1
 
Introduction to Boolean Algebra class XI CBSE.ppt
Introduction to Boolean Algebra class XI CBSE.pptIntroduction to Boolean Algebra class XI CBSE.ppt
Introduction to Boolean Algebra class XI CBSE.ppt
monicathakkar2
 
Introduction-to-Boolean-Algebra.ppt
Introduction-to-Boolean-Algebra.pptIntroduction-to-Boolean-Algebra.ppt
Introduction-to-Boolean-Algebra.ppt
Sanjay446332
 
session 3 - Boolean Functions Minimization.pptx
session 3 - Boolean Functions Minimization.pptxsession 3 - Boolean Functions Minimization.pptx
session 3 - Boolean Functions Minimization.pptx
NagaiKumaresan1
 
Introduction-to-Boolean- Algebra.ppt
Introduction-to-Boolean-     Algebra.pptIntroduction-to-Boolean-     Algebra.ppt
Introduction-to-Boolean- Algebra.ppt
shradhashilwant
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
Ganesh Mummidi
 
Boolean Algebra DLD
Boolean Algebra DLDBoolean Algebra DLD
Boolean Algebra DLD
Rokonuzzaman Rony
 
PPT 1.pptx
PPT 1.pptxPPT 1.pptx
PPT 1.pptx
ShrutiSharma485933
 
Unit 2 Boolean Algebra and Logic Gates.pdf
Unit 2 Boolean Algebra and Logic Gates.pdfUnit 2 Boolean Algebra and Logic Gates.pdf
Unit 2 Boolean Algebra and Logic Gates.pdf
ShirazHusain4
 
IS 151 Lecture 5
IS 151 Lecture 5IS 151 Lecture 5
IS 151 Lecture 5
wajanga
 
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra   .docxELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra   .docx
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
jack60216
 
B sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gatesB sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gates
Rai University
 
Digital electronics lesson 2
Digital electronics lesson 2Digital electronics lesson 2
Digital electronics lesson 2
Sukriti Dhang
 
Digital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 unitsDigital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 units
Lekashri Subramanian
 
Unit-2 ppt.pdf introduction to it technology
Unit-2 ppt.pdf introduction to it technologyUnit-2 ppt.pdf introduction to it technology
Unit-2 ppt.pdf introduction to it technology
PDineshReddy3
 
Best Explanation about De Morgan's Law and Components
Best Explanation about De Morgan's Law and ComponentsBest Explanation about De Morgan's Law and Components
Best Explanation about De Morgan's Law and Components
AssadLeo1
 
Digital logic design lecture 06
Digital logic design   lecture 06 Digital logic design   lecture 06
Digital logic design lecture 06
FarhatUllah27
 
Digital-Logic40124sequential circuits logic gatepptx
Digital-Logic40124sequential circuits logic gatepptxDigital-Logic40124sequential circuits logic gatepptx
Digital-Logic40124sequential circuits logic gatepptx
ssuser6feece1
 
Introduction to Boolean Algebra class XI CBSE.ppt
Introduction to Boolean Algebra class XI CBSE.pptIntroduction to Boolean Algebra class XI CBSE.ppt
Introduction to Boolean Algebra class XI CBSE.ppt
monicathakkar2
 
Introduction-to-Boolean-Algebra.ppt
Introduction-to-Boolean-Algebra.pptIntroduction-to-Boolean-Algebra.ppt
Introduction-to-Boolean-Algebra.ppt
Sanjay446332
 
session 3 - Boolean Functions Minimization.pptx
session 3 - Boolean Functions Minimization.pptxsession 3 - Boolean Functions Minimization.pptx
session 3 - Boolean Functions Minimization.pptx
NagaiKumaresan1
 
Introduction-to-Boolean- Algebra.ppt
Introduction-to-Boolean-     Algebra.pptIntroduction-to-Boolean-     Algebra.ppt
Introduction-to-Boolean- Algebra.ppt
shradhashilwant
 
Unit 2 Boolean Algebra and Logic Gates.pdf
Unit 2 Boolean Algebra and Logic Gates.pdfUnit 2 Boolean Algebra and Logic Gates.pdf
Unit 2 Boolean Algebra and Logic Gates.pdf
ShirazHusain4
 
IS 151 Lecture 5
IS 151 Lecture 5IS 151 Lecture 5
IS 151 Lecture 5
wajanga
 
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra   .docxELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra   .docx
ELN-133 Chapter 4 Homework Spring 2015 Boolean Algebra .docx
jack60216
 
B sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gatesB sc cs i bo-de u-ii logic gates
B sc cs i bo-de u-ii logic gates
Rai University
 
Digital electronics lesson 2
Digital electronics lesson 2Digital electronics lesson 2
Digital electronics lesson 2
Sukriti Dhang
 
Digital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 unitsDigital logic circuits important question and answers for 5 units
Digital logic circuits important question and answers for 5 units
Lekashri Subramanian
 
Ad

Recently uploaded (20)

Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
Com fer un pla de gestió de dades amb l'eiNa DMP (en anglès)
CSUC - Consorci de Serveis Universitaris de Catalunya
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Unlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web AppsUnlocking Generative AI in your Web Apps
Unlocking Generative AI in your Web Apps
Maximiliano Firtman
 
Dark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanizationDark Dynamism: drones, dark factories and deurbanization
Dark Dynamism: drones, dark factories and deurbanization
Jakub Šimek
 
Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?Shoehorning dependency injection into a FP language, what does it take?
Shoehorning dependency injection into a FP language, what does it take?
Eric Torreborre
 
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent LasterAI 3-in-1: Agents, RAG, and Local Models - Brent Laster
AI 3-in-1: Agents, RAG, and Local Models - Brent Laster
All Things Open
 
IT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information TechnologyIT488 Wireless Sensor Networks_Information Technology
IT488 Wireless Sensor Networks_Information Technology
SHEHABALYAMANI
 
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Crazy Incentives and How They Kill Security. How Do You Turn the Wheel?
Christian Folini
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient CareAn Overview of Salesforce Health Cloud & How is it Transforming Patient Care
An Overview of Salesforce Health Cloud & How is it Transforming Patient Care
Cyntexa
 
Building the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdfBuilding the Customer Identity Community, Together.pdf
Building the Customer Identity Community, Together.pdf
Cheryl Hung
 
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Integrating FME with Python: Tips, Demos, and Best Practices for Powerful Aut...
Safe Software
 
Artificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptxArtificial_Intelligence_in_Everyday_Life.pptx
Artificial_Intelligence_in_Everyday_Life.pptx
03ANMOLCHAURASIYA
 
Slack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teamsSlack like a pro: strategies for 10x engineering teams
Slack like a pro: strategies for 10x engineering teams
Nacho Cougil
 
Config 2025 presentation recap covering both days
Config 2025 presentation recap covering both daysConfig 2025 presentation recap covering both days
Config 2025 presentation recap covering both days
TrishAntoni1
 
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier VroomAI x Accessibility UXPA by Stew Smith and Olivier Vroom
AI x Accessibility UXPA by Stew Smith and Olivier Vroom
UXPA Boston
 
Top-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptxTop-AI-Based-Tools-for-Game-Developers (1).pptx
Top-AI-Based-Tools-for-Game-Developers (1).pptx
BR Softech
 
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptxDevOpsDays SLC - Platform Engineers are Product Managers.pptx
DevOpsDays SLC - Platform Engineers are Product Managers.pptx
Justin Reock
 
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Enterprise Integration Is Dead! Long Live AI-Driven Integration with Apache C...
Markus Eisele
 
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Everything You Need to Know About Agentforce? (Put AI Agents to Work)
Cyntexa
 
May Patch Tuesday
May Patch TuesdayMay Patch Tuesday
May Patch Tuesday
Ivanti
 
Ad

Ch4 Boolean Algebra And Logic Simplication1

  • 1. Ch. 4 Boolean Algebra and Logic Simplification Boolean Operations and Expressions Laws and Rules of Boolean Algebra Boolean Analysis of Logic Circuits Simplification Using Boolean Algebra Standard Forms of Boolean Expressions Truth Table and Karnaugh Map Programmable Logic: PALs and GALs Boolean Expressions with VHDL
  • 2. Introduction Boolean Algebra George Boole(English mathematician), 1854 “ An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities” Boolean Algebra {(1,0), Var, (NOT, AND, OR), Thms} Mathematical tool to expression and analyze digital (logic) circuits Claude Shannon, the first to apply Boole’s work, 1938 “ A Symbolic Analysis of Relay and Switching Circuits” at MIT This chapter covers Boolean algebra, Boolean expression and its evaluation and simplification, and VHDL program
  • 3. Boolean functions : NOT, AND, OR, exclusive OR(XOR) : odd function exclusive NOR(XNOR) : even function(equivalence) Basic Functions
  • 4. AND Z=X  Y or Z=XY Z=1 if and only if X=1 and Y=1 , otherwise Z=0 OR Z=X + Y Z=1 if X=1 or if Y=1, or both X=1and Y=1. Z=0 if and only if X=0 and Y=0 NOT Z=X  or Z=1 if X=0, Z=0 if X=1 Basic Functions ( 계속 )
  • 5. Basic Functions ( 계속 )
  • 6. Boolean Operations and Expressions Boolean Addition Logical OR operation Ex 4-1) Determine the values of A, B, C, and D that make the sum term A+B’+C+D’ Sol) all literals must be ‘0’ for the sum term to be ‘0’ A+B’+C+D’=0+1’+0+1’=0  A=0, B=1, C=0, and D=1 Boolean Multiplication Logical AND operation Ex 4-2) Determine the values of A, B, C, and D for AB’CD’=1 Sol) all literals must be ‘1’ for the product term to be ‘1’ AB’CD’=10’10’=1  A=1, B=0, C=1, and D=0
  • 7. Basic Identities of Boolean Algebra The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
  • 8. Laws of Boolean Algebra Commutative Law the order of literals does not matter A + B = B + A A B = B A
  • 9. Associative Law the grouping of literals does not matter A + (B + C) = (A + B) + C (=A+B+C) A(BC) = (AB)C (=ABC) Laws of Boolean Algebra ( 계속 )
  • 10. Distributive Law : A(B + C) = AB + AC Laws of Boolean Algebra ( 계속 ) A B C X Y X=Y
  • 11. (A+B)(C+D) = AC + AD + BC + BD Laws of Boolean Algebra ( 계속 ) A B C D X Y X=Y
  • 12. A+0=A In math if you add 0 you have changed nothing in Boolean Algebra ORing with 0 changes nothing A X X=A+0=A Rules of Boolean Algebra
  • 13. A+1=1 ORing with 1 must give a 1 since if any input is 1 an OR gate will give a 1 Rules of Boolean Algebra ( 계속 ) A X X=A+1=1
  • 14. A•0=0 In math if 0 is multiplied with anything you get 0. If you AND anything with 0 you get 0 Rules of Boolean Algebra ( 계속 ) A X X=A0 = 0
  • 15. A•1 =A ANDing anything with 1 will yield the anything Rules of Boolean Algebra ( 계속 ) A X X=A1=A A
  • 16. A+A = A ORing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=A+A =A
  • 17. A+A’=1 Either A or A’ must be 1 so A + A’ =1 Rules of Boolean Algebra ( 계속 ) A A’ X X=+A’=1
  • 18. A•A = A ANDing with itself will give the same result Rules of Boolean Algebra ( 계속 ) A A X A=AA=A
  • 19. A•A’ =0 In digital Logic 1’ =0 and 0’ =1, so AA’=0 since one of the inputs must be 0. Rules of Boolean Algebra ( 계속 ) A A’ X X=AA’=0
  • 20. A = (A’)’ If you not something twice you are back to the beginning Rules of Boolean Algebra ( 계속 ) A X X=(A’)’=A
  • 21. Rules of Boolean Algebra ( 계속 ) A B X A + AB = A
  • 22. A + A’B = A + B If A is 1 the output is 1 If A is 0 the output is B Rules of Boolean Algebra ( 계속 ) A B X Y X=Y
  • 23. Rules of Boolean Algebra ( 계속 ) A B C X Y (A + B)(A + C) = A + BC
  • 24. DeMorgan’s Theorem F  (A,A  ,  , + , 1,0) = F(A  , A, + ,  ,0,1) (A • B)’ = A’ + B’ and (A + B)’ = A’ • B’ DeMorgan’s theorem will help to simplify digital circuits using NORs and NANDs his theorem states DeMorgan’s Theorems
  • 25.  
  • 26. Look at (A +B +C + D)’ = A’ • B’ • C’ • D’
  • 27. Ex 4-3) Apply DeMorgan’s theorems to (XYZ)’ and (X+Y+Z)’ Sol) (XYZ)’=X’+Y’+Z’ and (X+Y+Z)’=X’Y’Z’ Ex 4-5) Apply DeMorgan’s theorems to (a) ((A+B+C)D)’ (b) (ABC+DEF)’ (c) (AB’+C’D+EF)’ Sol) (a) ((A+B+C)D)’= (A+B+C)’+D’=A’B’C’+D’ (b) (ABC+DEF)’=(ABC)’(DEF)’=(A’+B’+C’)(D’+E’+F’) (c) (AB’+C’D+EF)’=(AB’)’(C’D)’(EF)’=(A’+B)(C+D’)(E’+F’)
  • 28. Boolean Analysis of Logic Circuits Boolean Expression for a Logic Circuit Figure 4-16 A logic circuit showing the development of the Boolean expression for the output.
  • 29. Constructing a Truth Table for a Logic Circuit Convert the expression into the min-terms containing all the input literals Get the numbers from the min-terms Putting ‘1’s in the rows corresponding to the min-terms and ‘0’s in the remains Ex) A(B+CD)= AB(C+C’) (D+D’) +A(B+B’)CD = ABC(D+D’) +ABC’(D+D’) +ABCD+AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ + ABCD +AB’CD = ABCD +ABCD’+ABC’D+ABC’D’ +AB’CD =m11+m12+m13+m14+m15=  (11,12,13,14,15)
  • 30. Truth Table from Logic Circuit A(B+CD)=m11+m12+m13+m14+m15 =  (11,12,13,14,15) Output Input 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 A(B+CD) D C B A
  • 31. Ex 4-8) Using Boolean algebra, simplify this expression AB+A(B+C)+B(B+C) Sol) AB+AB+AC+BB+BC =B(1+A+A+C)+AC= B+AC Simplification Using Boolean Algebra
  • 32. Ex 4-9) Simplify the following Boolean expression (AB’(C+BD)+A’B’)C Sol) (AB’C+ A B’B D +A’B’)C=A B’CC +A’ B’C =(A+A’)B’C=B’C Ex 4-10) Simplify the following Boolean expression A’ BC +A B’C’ +A’ B’C’ +AB’C+A BC Sol) (A+A’) BC +(A+A’) B’C’ +AB’C=BC+ B’ C’+A B’ C =BC+B’(C’+AC)=BC+B’(C’+A)=BC+B’C’+AB’ Ex 4-11) Simplify the following Boolean expression (AB +AC)’+A’B’C Sol) (AB)’(AC)’+A’B’C=(A’+ B’)(A’+C’)+ A’ B’C =A’+A’B’ +A’C’+B’C+A’B’C =A’(1+B’+C’+B’C)+B’C=A’+B’C’
  • 33. Standard Forms of Boolean Expressions The Sum-of-Products(SOP) Form Ex) AB+ABC, ABC+CDE+B’CD’ The Product-of-Sums(POS) Form Ex) (A+B)(A+B+C), (A+B+C)(C+D+E)(B’+C+D’) Principle of Duality : SOP  POS Domain of a Boolean Expression The set of variables contained in the expression Ex) A’B+AB’C : the domain is {A, B, C}
  • 34. Implementation of a SOP Expression AND-OR logic Conversion of General Expression to SOP Form A(B+CD)=AB +ACD Ex 4-12) Convert each of the following expressions to SOP form: (a) AB+B(CD+EF) (b) (A+B)(B+C+D) Sol) (a) AB+B(CD+EF)=AB+BCD+BEF (b) (A+B)(B+C+D)=AB+AC+AD+ BB+BC+BD =B(1+A+C+D)+ AC+AD=B+AC+AD
  • 35. Standard SOP Form (Canonical SOP Form) For all the missing variables, apply (x+x’)=1 to the AND terms of the expression List all the min-terms in forms of the complete set of variables in ascending order Ex 4-13) Convert the following expression into standard SOP form: AB’C+A’B’+ABC’D Sol) domain={A,B,C,D}, AB’C(D’+D)+A’B’(C’+C)(D’+D)+ABC’D =AB’CD’+AB’CD+A’B’C’D’+A’B’C’D+A’B’CD’+A’B’CD+ABC’D =1010+1011+0000+0001+0010+0011+1101 =0+1+2+3+10+11+13 =  (0,1,2,3,10,11,13)
  • 36. Product-of-Sums Form Implementation of a POS Expression OR-AND logic
  • 37. Standard POS Form (Canonical POS Form) For all the missing variables, apply (x’x)=0 to the OR terms of the expression List all the max-terms in forms of the complete set of variables in ascending order Ex 4-15) Convert the following expression into standard POS form: (A+B’+C)(B’+C+D’)(A+B’+C’+D) Sol) domain={A,B,C,D}, (A+B’+C)(B’+C+D’)(A+B’+C’+D) =(A+B’+C+D’D)(A’A+B’+C+D’)(A+B’+C’+D) = (A+B’+C+D’) (A+B’+C+D) (A’+B’+C+D’) (A+B’+C+D’)(A+B’+C’+D)=(0100) )(0101)(0110)(1101)=  (4,5,6,13)
  • 38. Converting Standard SOP to Standard POS Step 1. Evaluate each product term in the SOP expression. Determine the binary numbers that represent the product terms Step 2. Determine all of the binary numbers not included in the evaluation in Step 1 Step 3. Write in equivalent sum term for each binary number Step 2 and expression in POS form Ex 4-17) Convert the following SOP to POS Sol) SOP= A’B’C’+A’BC’+A’BC+AB’C+ABC=0+2+3+5+7 =  (0,2,3,5,7) POS=(1)(4)(6) =  (1, 4, 6) (=(A+B+C’)(A’+B+C)(A’+B’+C))
  • 39. Boolean Expressions and Truth Tables Converting SOP Expressions to Truth Table Format Ex 4-18) A’B’C+AB’C’+ABC =  (1,4,7) ABC 1 1 1 1 0 1 1 0 0 1 0 1 AB’C’ 1 1 0 0 0 0 1 1 0 0 1 0 A’B’C 1 0 0 1 0 0 0 0 Product Term Output X Inputs A B C
  • 40. Converting POS Expressions to Truth Table Format Ex 4-19) (A+B+C)(A+B’+C)(A+B’+C’)(A’+B+C’)(A’+B’+C) = (000)(010)(011)(101)(110) =  (0,2,3,5,6) 1 1 1 1 A’+B’+C 0 1 1 0 A’+B+C’ 0 1 0 1 1 1 0 0 A+B’+C’ 0 0 1 1 A+B’+C 0 0 1 0 1 0 0 1 A+B+C 0 0 0 0 Sum Term Output X Inputs A B C
  • 41. Ex 4-20) Determine standard SOP and POS from the truth table Sol) (a) Standard SOP F=A’BC+AB’C’+ABC’+ABC (b) Standard POS F=(A+B+C)(A+B+C’)(A+B’+C) (A’+B+C’) 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 Output X Inputs A B C
  • 42. Boolean Expression Truth Table Logic Diagram
  • 43. Karnaugh Map Simplification methods Boolean algebra(algebraic method) Karnaugh map(map method)) Quine-McCluskey(tabular method) XY+XY  =X(Y+Y  )=X
  • 44.  
  • 45. Three- and Four-input Kanaugh maps Gray code
  • 46.  
  • 47.  
  • 48. Gray code sequence generation
  • 49. F(X,Y,Z)=  m(0,1,2,6) =(XY  +YZ)  =X’Y’ + YZ’
  • 50. Example) F(X,Y,Z)=  m(2,3,4,5) =X  Y+XY  0 1 3 2 4 5 7 6
  • 51. Example) F(X,Y,Z)=  m(0,2,4,6) = X  Z  +XZ  =Z  (X  +X)=Z 
  • 52. Four-Variable Map 16 minterms : m 0 ~ m 15 Rectangle group 2-squares(minterms) : 3-literals product term 4-squares : 2-literals product term 8-squares : 1-literals product term 16-squares : logic 1
  • 53.  
  • 54.  
  • 55. F(W, X,Y,Z)=  m(0,2,7,8,9,10,11) = WX’ + X’Z’ + W’XYZ
  • 56. Karnaugh Map SOP Minimization Mapping a Standard SOP Expression
  • 57. Ex 4-21) Ex 4-22)
  • 58. Mapping a Nonstandard SOP Expression Numerical Expression of a Nonstandard Product Term Ex 4-23) A’+AB’+ABC’ A’ AB’ ABC’ 0 00 10 0 110 0 01 10 1 0 10 0 11
  • 59. Ex 4-24) B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD B’C’ AB’ ABC’ AB’CD’ A’B’C’D AB’CD 0000 1000 1100 1010 0001 1011 0001 1001 1101 1000 1010 1001 1011
  • 60. Karnaugh Map Simplification of SOP Expressions Group 2 n adjacent cells including the largest possible number of 1s in a rectangle or square shape, 1<=n Get the groups containing all 1s on the map for the expression Determine the minimum SOP expression form map
  • 61. Ex 4-26) F=B+A’C+AC’D
  • 62. Ex 4-27) (a) AB+BC+A’B’C’ (b) B’+AC+A’C’ (c) A’C’+A’B+AB’D (d) D’+BC’+AB’C
  • 63. Ex 4-28) Minimize the following expression AB’C+A’BC+A’B’C+A’B’C’+AB’C’ Sol) B’+A’C
  • 64. Ex 4-29) Minimize the following expression B’C’D’ +A’BC’D’+ABC’D’+A’B’CD+AB’CD+A’B’CD’+A’BCD’ +ABCD’+AB’CD’ Sol) D’+B’C
  • 65. Mapping Directly from a Truth Table
  • 66. Don’t Care Conditions it really does not matter since they will never occur(its output is either ‘0’ or ‘1’) The don’t care terms can be used to advantage on the Karnaugh map
  • 67. Karnaugh Map POS Minimization Use the Duality Principle F(A,A  ,  , + , 1,0)  F * (A,A  , + ,  ,0,1) SOP  POS
  • 68. Ex 4-30) (A’+B’+C+D)(A’+B+C’+D’)(A+B+C’+D) (A’+B’+C’+D’)(A+B+C’+D’) Sol)
  • 69. Ex 4-31) (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C) Sol) (0+0+0)(0+0+1)(0+1+0)(0+1+1)(1+1+0)=A(B’+C) AC+AB’=A(B’+C)
  • 70. Ex 4-32) (B+C+D) (A+B+C’+D)(A’+B+C+D’)(A+B’+C+D)(A’+B’+C+D) Sol) (B+C+D)=(A’A+B+C+D)=(A’+B+C+D)(A+B+C+D) (1+0+0+0)(0+0+0+0)(0+0+1+0)(1+0+0+1)(0+1+0+0)(1+1+0+0) F=(C+D)(A’+B+C)(A+B+D)
  • 71. Converting Between POS and SOP Using the K-map Ex 4-33) (A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’) (A’+B+C+D’)(A+B+C’+D) Sol)
  • 72.  
  • 73. Five/Six –Variable K-Maps Five Variable K-Map : {A,B,C,D,E} 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 16 17 19 18 20 21 23 22 28 29 31 30 24 25 27 26 00 01 11 10 00 01 11 10 BC DE A=0 A=1
  • 74. Six Variable K-Map : {A,B,C,D,E,F} 0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10 16 17 19 18 20 21 23 22 28 29 31 30 24 25 27 26 00 01 11 10 00 01 11 10 CD EF AB 32 33 35 34 36 37 39 38 44 45 47 46 40 41 43 42 48 49 51 50 52 53 55 54 60 61 62 63 56 57 59 58 00 10 01 11
  • 75. Ex 4-34) Sol) A’D’E’+B’C’D’+BCD+ACDE
  • 76. Programmable Logic: PALs and GALs Basic PAL Operation Programmable array of AND gates Fixed OR gate
  • 78.  
  • 79. Ex 4-35) Show how a PAL is programmed for the following function : X=AB’C+A’BC’+A’B’+AC Sol)
  • 81. PAL Output Combinational Logic X  0=X X  1=X’
  • 82. A Specific PAL Figure 4-50 Block diagram of the PAL16L8 .
  • 83. Basic GAL Operation Reprogrammable AND array Electrically Erasable CMOS(E 2 CMOS) technology
  • 84. Figure 4-52 GAL implementation of a sum-of-products expression.
  • 85. Ex 4-36) Show how a GAL is programmed for the function: X=A’BC’+A’BC+BC+AB’ Sol)
  • 86. The GAL Block Diagram OLMCs(Output Logic Macrocells) OR array and programmable output logic Typically m and n >= 8
  • 87.  
  • 88. GAL20V8 High Performance E2CMOS PLD Generic Array Logic™
  • 89. Boolean Expressions with VHDL Boolean Algebra in VHDL Programming VHDL Optimization Ex 4-37) Write a VHDL grogram for the following function: X=(AC+(BC’)’+D)’+((BC)’)’ -- Program X=(AC+(BC’)’+D)’+((BC)’)’ entity alogicft is port(A, B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<=not((A and C) or not(B and not C) or D) or not(not B and C); end architecture expaft;
  • 90. -- Program X=(AC+(BC’)’+D)’+((BC)’)’=(A’+C’)(BC’)D’+BC -- =A’BC’D’+BC’D’+BC=(A’+1)BC’D’+BC = BC’D’+BC entity alogicft is port(B, C, D: in bit; X: out bit); end entity alogicft; architecture expaft of alogicft is begin X<= (B and not C and not D) or (B and C); end architecture expaft;
  • 91. Levels of Abstraction for sequential logic circuits VHDL (1) Behavioral approach : state diagram or truth table (2) Data flow approach : Boolean expression or function (3) Structure approach : logic diagram or schematic describing logic function
  • 92. Digital System Application : 7-Segment LED Driver Seven-Segment LED driver
  • 93. A B C D 0 1 3 2 4 5 7 6 13 15 14 8 9 11 10 g = m(2,3,4,5,6,8,9) =A+BC’+B’C+CD’ CD AB
  • 94. Figure 4-59 Karnaugh map minimization of the segment- a logic expression.
  • 95. Figure 4-60 The minimum logic implementation for segment a of the 7-segment display.
  • 96. -- Program 7-segment driver entity sevensegdrv is port(A, B, C, D: in bit; a,b,c,d,e,f,g: out bit); end entity sevensegdrv; architecture segment of sevensegdrv is begin a<= B or D or (A and C) or (not A and not C); -- B +D+AC+A’C’ • • • • • • • • • g<= A or B and C’ or not B and C or C and not D; -- A+BC’+B’C+CD’ end architecture segment; VHDL for 7-Segment Driver
  • 97. Summary Gate symbols Duality Principle F(A,A  ,  , + , 1,0)  F * (A,A  , + ,  ,0,1) DeMorgan’s Theorem F  (A,A  ,  , + , 1,0) = F(A  , A, + ,  ,0,1)
  • 98. The relationship between a single variable X, its complement X  , and the binary constants 0 and 1
  • 99. Sum-of-Product(SOP) form  Product-of-Sums(POS) form Standard(canonical) SOP form  Standard POS form Universal gates: NAND, NOR Don’t care conditions Karnaugh map(3, 4, 5, 6 variables) PLDs: PAL, GAL VHDL for logic expressions
  • 100. Boolean Expression Truth Table Logic Diagram VHDL (HDL)
  翻译: