Resource management and search is very important yet challenging in large-scale distributed systems like
P2Pnetworks. Most existing P2P systems rely on indexing to efficiently route queries over the network.
However, searches based on such indices face two key issues. First, majority of existing search schemes
often rely on simply keyword based indices that can only support exact string based matches without taking
into account the meaning of words. Second it is difficult, if not impossible, to devise query based indexing
schemes that can represent all possible concept combinations without resulting in exponential index sizes.
To address these problems, we present BSI, a novel P2P indexing and query routing strategy to support
semantic based content searches. The BSI indexing structure captures the semantic content of documents
using a reference ontology. Our indexing scheme can efficiently handle multi-concept queries by
maintaining summary level information for each individual concept and concept combinations using a
novel space-efficient Two-level Semantic Bloom Filter(TSBF) data structure. By using TSBFs to represent
a large document and query base, BSI significantly reduces the communication cost and storage cost of
indices. Furthermore, We devise a low-overhead mechanism to allow peers to dynamically estimate the
relevance strength of a peer for multi-concept queries with high accuracy solely based on TSBFs. We also
propose a routing index compression mechanism to observe peers’ dynamic storage limitations with
minimal loss of information by exploiting a reference ontology structure. Based on the proposed index
structure, we design a novel query routing algorithm that exploits semantic based information to route
queries to semantically relevant peers. Performance evaluation demonstrates that our proposed approach
can improve the search recall of unstructured P2P systems up to 383.71% while keeping the
communication cost at a low level compared to state-of-art search mechanism OSQR [7].