The document discusses various neural network learning rules:
1. Error correction learning rule (delta rule) adapts weights based on the error between the actual and desired output.
2. Memory-based learning stores all training examples and classifies new inputs based on similarity to nearby examples (e.g. k-nearest neighbors).
3. Hebbian learning increases weights of simultaneously active neuron connections and decreases others, allowing patterns to emerge from correlations in inputs over time.
4. Competitive learning (winner-take-all) adapts the weights of the neuron most active for a given input, allowing unsupervised clustering of similar inputs across neurons.