Stateful processing is one of the most challenging aspects of distributed, fault-tolerant stream processing. The DataFrame APIs in Structured Streaming make it very easy for the developer to express their stateful logic, either implicitly (streaming aggregations) or explicitly (mapGroupsWithState). However, there are a number of moving parts under the hood which makes all the magic possible. In this talk, I am going to dive deeper into how stateful processing works in Structured Streaming.
In particular, I’m going to discuss the following.
• Different stateful operations in Structured Streaming
• How state data is stored in a distributed, fault-tolerant manner using State Stores
• How you can write custom State Stores for saving state to external storage systems.