My Day5 Python Learning: Deep Dive into NumPy
Date: 2025-04-30
1. Introduction
Day 5 of my Python journey was all about NumPy and Seaborn, focusing on array operations, data distribution, and advanced statistical concepts. I delved into NumPy’s powerful array functionalities and explored various distributions using the Seaborn module. 📊🔢 Mastering these tools is key for data analysis, manipulation, and visualization.
2. Topics Covered
🔹 NumPy Basics
🔹 NumPy Random Module
🔹 Seaborn Module for Statistical Plots
Recommended by LinkedIn
3. Practice Code Snippets
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# NumPy Array Creation and Operations
arr = np.array([1, 2, 3, 4, 5])
reshaped_arr = arr.reshape(1, 5)
print("Reshaped Array:", reshaped_arr)
# NumPy Array Slicing
sliced_arr = arr[1:4]
print("Sliced Array:", sliced_arr)
# NumPy Random Distribution (Normal)
random_normal = np.random.normal(loc=0, scale=1, size=1000)
sns.histplot(random_normal, kde=True)
plt.title("Normal Distribution")
plt.show()
# NumPy Random Distribution (Binomial)
random_binomial = np.random.binomial(n=10, p=0.5, size=1000)
sns.histplot(random_binomial, kde=True)
plt.title("Binomial Distribution")
plt.show()
# Seaborn Distribution Plot (Exponential)
random_exponential = np.random.exponential(scale=1, size=1000)
sns.histplot(random_exponential, kde=True)
plt.title("Exponential Distribution")
plt.show()
# Visualizing a Chi-Square Distribution with Seaborn
random_chi_square = np.random.chisquare(df=2, size=1000)
sns.histplot(random_chi_square, kde=True)
plt.title("Chi-Square Distribution")
plt.show()
4. Reflection
Mastering NumPy’s array handling and diving into random number generation for various statistical distributions gave me a new appreciation for the power and flexibility of Python in data analysis. Seaborn, as a visualization tool, made these concepts even more approachable by allowing me to see the distributions in action. 📊🔍
5. Tomorrow's Goals
6. Reference
#PythonDay5 #NumPy #Seaborn #DataScience #100DaysOfCode #PythonProgress #2025Learning