Building an ETL Pipeline Using Spring Boot and Spring Cloud
ETL (Extract, Transform, Load) is a crucial process for moving data from various sources to a central repository while applying necessary transformations. In this article, we will build an ETL pipeline using Spring Boot with Spring Cloud Data Flow for distributed and scalable ETL orchestration.
1. Project Setup
Step 1: Create a Spring Boot Project
Use Spring Initializr and include the following dependencies:
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-dataflow-server</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>com.microsoft.sqlserver</groupId>
<artifactId>mssql-jdbc</artifactId>
</dependency>
</dependencies>
2. Configure the Database
Update the application.properties file to connect to MS SQL Server:
spring.datasource.url=jdbc:sqlserver://localhost:1433;databaseName=etl_db
spring.datasource.username=your_username
spring.datasource.password=your_password
spring.datasource.driver-class-name=com.microsoft.sqlserver.jdbc.SQLServerDriver
spring.jpa.database-platform=org.hibernate.dialect.SQLServerDialect
spring.cloud.dataflow.server.uri=http://localhost:9393
3. Define the ETL Entities
Extract (E) - Define the Source Entity
@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
public class SourceData {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
private Double value;
private LocalDateTime timestamp;
}
Transform & Load (T & L) - Define the Target Entity
@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
public class SourceData {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
private Double value;
private LocalDateTime timestamp;
}
4. Create the ETL Stream with Spring Cloud Data Flow
Step 1: Define Source Data Stream
Recommended by LinkedIn
@EnableBinding(Source.class)
public class DataProducer {
@Autowired
private Source source;
public void sendData(SourceData data) {
Message<SourceData> message = MessageBuilder.withPayload(data).build();
source.output().send(message);
}
}
Step 2: Transform Data Stream
@EnableBinding(Processor.class)
public class DataProcessor {
@StreamListener(Processor.INPUT)
@SendTo(Processor.OUTPUT)
public ProcessedData process(SourceData sourceData) {
ProcessedData processedData = new ProcessedData();
processedData.setName(sourceData.getName());
processedData.setTransformedValue(sourceData.getValue() * 1.1);
processedData.setProcessedAt(LocalDateTime.now());
return processedData;
}
}
Step 3: Load Data to Database
@EnableBinding(Sink.class)
public class DataConsumer {
@Autowired
private ProcessedDataRepository repository;
@StreamListener(Sink.INPUT)
public void saveData(ProcessedData processedData) {
repository.save(processedData);
}
}
5. Deploying the ETL Pipeline
Run the Spring Cloud Data Flow server locally:
docker run --name dataflow-server --rm -p 9393:9393 springcloud/spring-cloud-dataflow-server
Then, deploy the ETL pipeline using:
stream create etlStream --definition "source | processor | sink" --deploy
6. Conclusion
This article demonstrated how to build an ETL pipeline in Spring Boot using Spring Cloud Data Flow. You learned how to:
For production use, consider adding: