What is Spiral Model in Software Engineering?
Last Updated :
11 Apr, 2025
The Spiral Model is one of the most important SDLC model. The Spiral Model is a combination of the waterfall model and the iterative model. It provides support for Risk Handling.
The Spiral Model was first proposed by Barry Boehm. This article focuses on discussing the Spiral Model in detail.
What is the Spiral Model?
The Spiral Model is a Software Development Life Cycle (SDLC) model that provides a systematic and iterative approach to software development. In its diagrammatic representation, looks like a spiral with many loops. The exact number of loops of the spiral is unknown and can vary from project to project. Each loop of the spiral is called a phase of the software development process.
Some Key Points regarding the Stages of a Spiral Model:
- The exact number of phases needed to develop the product can be varied by the project manager depending upon the project risks.
- As the project manager dynamically determines the number of phases, the project manager has an important role in developing a product using the spiral model.
- It is based on the idea of a spiral, with each iteration of the spiral representing a complete software development cycle, from requirements gathering and analysis to design, implementation, testing, and maintenance.
Phases of the Spiral Model
The Spiral Model is a risk-driven model, meaning that the focus is on managing risk through multiple iterations of the software development process. Each phase of the Spiral Model is divided into four Quadrants:

Spiral Model – SDLC
1. Objectives Defined
In first phase of the spiral model we clarify what the project aims to achieve, including functional and non-functional requirements.
Requirements are gathered from the customers and the objectives are identified, elaborated, and analyzed at the start of every phase. Then alternative solutions possible for the phase are proposed in this quadrant.
2. Risk Analysis and Resolving
In the risk analysis phase, the risks associated with the project are identified and evaluated.
During the second quadrant, all the possible solutions are evaluated to select the best possible solution. Then the risks associated with that solution are identified and the risks are resolved using the best possible strategy. At the end of this quadrant, the Prototype is built for the best possible solution.
3. Develop the next version of the Product
During the third quadrant, the identified features are developed and verified through testing. At the end of the third quadrant, the next version of the software is available.
In the evaluation phase, the software is evaluated to determine if it meets the customer’s requirements and if it is of high quality.
4. Review and plan for the next Phase
In the fourth quadrant, the Customers evaluate the so-far developed version of the software. In the end, planning for the next phase is started.
The next iteration of the spiral begins with a new planning phase, based on the results of the evaluation.
The Spiral Model is often used for complex and large software development projects, as it allows for a more flexible and adaptable approach to Software development. It is also well-suited to projects with significant uncertainty or high levels of risk.
The Radius of the spiral at any point represents the expenses (cost) of the project so far, and the angular dimension represents the progress made so far in the current phase.
Risk Handling in Spiral Model
A risk is any adverse situation that might affect the successful completion of a software project. The most important feature of the spiral model is handling these unknown risks after the project has started. Such risk resolutions are easier done by developing a prototype.
- The spiral model supports coping with risks by providing the scope to build a prototype at every phase of software development.
- The Prototyping Model also supports risk handling, but the risks must be identified completely before the start of the development work of the project.
- But in real life, project risk may occur after the development work starts, in that case, we cannot use the Prototyping Model.
- In each phase of the Spiral Model, the features of the product dated and analyzed, and the risks at that point in time are identified and are resolved through prototyping.
- Thus, this model is much more flexible compared to other SDLC models.
The Spiral model is called a Meta-Model because it subsumes all the other SDLC models. For example, a single loop spiral actually represents the Iterative Waterfall Model.
- The spiral model incorporates the stepwise approach of the Classical Waterfall Model.
- The spiral model uses the approach of the Prototyping Model by building a prototype at the start of each phase as a risk-handling technique.
- Also, the spiral model can be considered as supporting the Evolutionary model – the iterations along the spiral can be considered as evolutionary levels through which the complete system is built.
Example of Spiral Model
Here we can take a Real world example of the Spiral Model.
Real-Life Example of Spiral Model: Developing an E-Commerce Website
1. First Spiral – Planning and Requirements:
In this first phase, the team gathers the basic requirements for the e-commerce website, like product listings, shopping carts, and payment options. They also identify potential risks, like security issues or scalability concerns.
To get started, they build a simple prototype, like a homepage with a basic product catalog, to see how users interact with it and spot any initial design problems.
2. Second Spiral – Risk Analysis and Refining the Design
After getting feedback from the first prototype, the team moves to the next phase. They add more features and address the problems that were found earlier.
This includes verifying secure payment processing and testing how the site handles more users. They also add a basic shopping cart and user registration system, and they run tests with dummy transactions to make sure everything is secure.
3. Third Spiral – Detailed Implementation
With more feedback in hand, the team adds advanced features, like order tracking, customer reviews, and a search function. They also revisit any remaining risks, especially around scalability making sure the website can handle a growing number of users.
During this phase, the team tests the site to verify it can handle large orders, especially during busy times like sales or holidays.
4. Final Spiral – Full Deployment
In the last phase, the website is fully implemented, tested properly, and then launched to the public. Any remaining risks, like potential crashes or user feedback issues, are closely monitored and dealt with.
This example shows how the Spiral Model allows for continuous improvement, with feedback and risk assessment at each step to make sure the final product is solid and reliable.
Advantages of the Spiral Model
Below are some advantages of the Spiral Model.
- Risk Handling: The projects with many unknown risks that occur as the development proceeds, in that case, Spiral Model is the best development model to follow due to the risk analysis and risk handling at every phase.
- Good for large projects: It is recommended to use the Spiral Model in large and complex projects.
- Flexibility in Requirements: Change requests in the Requirements at a later phase can be incorporated accurately by using this model.
- Customer Satisfaction: Customers can see the development of the product at the early phase of the software development and thus, they habituated with the system by using it before completion of the total product.
- Iterative and Incremental Approach: The Spiral Model provides an iterative and incremental approach to software development, allowing for flexibility and adaptability in response to changing requirements or unexpected events.
- Emphasis on Risk Management: The Spiral Model places a strong emphasis on risk management, which helps to minimize the impact of uncertainty and risk on the software development process.
- Improved Communication: The Spiral Model provides for regular evaluations and reviews, which can improve communication between the customer and the development team.
- Improved Quality: The Spiral Model allows for multiple iterations of the software development process, which can result in improved software quality and reliability.
Disadvantages of the Spiral Model
Below are some main disadvantages of the spiral model.
- Complex: The Spiral Model is much more complex than other SDLC models.
- Expensive: Spiral Model is not suitable for small projects as it is expensive.
- Too much dependability on Risk Analysis: The successful completion of the project is very much dependent on Risk Analysis. Without very highly experienced experts, it is going to be a failure to develop a project using this model.
- Difficulty in time management: As the number of phases is unknown at the start of the project, time estimation is very difficult.
- Complexity: The Spiral Model can be complex, as it involves multiple iterations of the software development process.
- Time-Consuming: The Spiral Model can be time-consuming, as it requires multiple evaluations and reviews.
- Resource Intensive: The Spiral Model can be resource-intensive, as it requires a significant investment in planning, risk analysis, and evaluations.
The most serious issue we face in the cascade model is that taking a long length to finish the item, and the product became obsolete. To tackle this issue, we have another methodology, which is known as the Winding model or spiral model. The winding model is otherwise called the cyclic model.
When To Use the Spiral Model?
Here are the reasons where the Spiral Model is used:
- When a project is vast in Software Engineering, a spiral model is utilized.
- A spiral approach is utilized when frequent releases are necessary.
- When it is appropriate to create a prototype
- When evaluating risks and costs is crucial
- The spiral approach is beneficial for projects with moderate to high risk.
- The SDLC’s spiral model is helpful when requirements are complicated and ambiguous.
- If modifications are possible at any moment
- When committing to a long-term project is impractical owing to shifting economic priorities.
Conclusion
Spiral Model is a valuable choice for software development projects where risk management is on high priority. Spiral Model deliver high-quality software by promoting risk identification, iterative development and continuous client feedback. When a project is vast in software engineering, a spiral model is utilized.
If you want to learn the SDLC models in detail do refer “Software Development Life Cycle (SDLC) Models“.
Similar Reads
Software Engineering Tutorial
Software Engineering is a subdomain of Engineering in which you learn to develop, design, test, and maintain software using a systematic and structured approach. Software is a collection of programs. And that programs are developed by software engineers. The code of a program is written in any of va
7 min read
Introduction
Introduction to Software Engineering
Software is a program or set of programs containing instructions that provide the desired functionality. Engineering is the process of designing and building something that serves a particular purpose and finds a cost-effective solution to problems. Table of Content What is Software Engineering?Key
11 min read
What is the Need of Software Engineering?
Pre-requisites: Software Engineering | Introduction to Software Engineering Software engineering is a technique through which we can develop or create software for computer systems or any other electronic devices. It is a systematic, scientific and disciplined approach to the development, functionin
4 min read
Software Development Life Cycle (SDLC)
Software development life cycle (SDLC) is a structured process that is used to design, develop, and test good-quality software. SDLC, or software development life cycle, is a methodology that defines the entire procedure of software development step-by-step. The goal of the SDLC life cycle model is
11 min read
Classification of Software - Software Engineering
Software Engineering is the process of developing a software product in a well-defined systematic approach software engineering is the process of analyzing user needs and then designing, constructing, and testing end-user applications that will satisfy these needs through the use of software program
8 min read
Software Characteristics - Software Engineering
Software is defined as a collection of computer programs, procedures, rules, and data. Software Characteristics are classified into six major components. Software engineering is the process of designing, developing, testing, and maintaining software. In this article, we will look into the characteri
6 min read
Software Quality - Software Engineering
Traditionally, a high-quality product is outlined in terms of its fitness of purpose. That is, a high-quality product will specifically be what the users need to try. For code products, the fitness of purpose is typically taken in terms of satisfaction of the wants arranged down within the SRS docum
5 min read
ISO/IEC 9126 in Software Engineering
The International Organization for Standardization (ISO) has established a series of ISO and ISO/IEC standards for software quality. Starting with the ISO 9000-3 instructions for implementing the ISO 9001 standard, which is concerned with quality assurance processes, to the creation, supply, install
4 min read
Boehm's Software Quality Model
In 1978, B.W. Boehm introduced his software quality model, which defines software quality through a hierarchical structure of attributes and metrics. This model is similar to the McCall Quality Model but encompasses a wider range of characteristics, including hardware performance-related ones. Boehm
4 min read
McCall's Quality Model
McCall's Quality Model is one of the software quality models. McCall's Quality Model aims to cover the gap between users and developers by highlighting several kinds of software quality factors that reflect both the views of users and developers' interests. Table of Content What is McCall's Software
4 min read
Software Crisis - Software Engineering
The term "software crisis" refers to the numerous challenges and difficulties faced by the software industry during the 1960s and 1970s. It became clear that old methods of developing software couldn't keep up with the growing complexity and demands of new projects. This led to high costs, delays, a
3 min read
Difference between Software Engineering process and Conventional Engineering Process
Software Engineering Process and Conventional Engineering Process, both are processes related to computers and development. In this article, we will see the similarities as well as differences between both, that is Software Engineering Process and the Conventional Engineering Process. Table of Conte
4 min read
Software Measurement and Metrics
Software Measurement and Metrics
Software Measurement: A measurement is a manifestation of the size, quantity, amount, or dimension of a particular attribute of a product or process. Software measurement is a titrate impute of a characteristic of a software product or the software process. Table of Content Software Measurement Prin
4 min read
People Metrics and Process Metrics in Software Engineering
People Metrics and Process Metrics, both play important roles in software development. People Metrics helps in quantifying the useful attributes whereas Process Metrics creates the body of the software. People metrics focus on how well team members work together and their overall satisfaction, while
8 min read
Halsteadâs Software Metrics - Software Engineering
Halstead's Software metrics are a set of measures proposed by Maurice Halstead to evaluate the complexity of a software program. These metrics are based on the number of distinct operators and operands in the program and are used to estimate the effort required to develop and maintain the program. T
11 min read
Cyclomatic Complexity
Cyclomatic complexity, developed by Thomas McCabe, is a metric that measures the complexity of a program by counting its decision points. It measures the number of unique paths through the code, indicating how complex the logic is. Lower complexity suggests simpler, more manageable code, reducing th
6 min read
Functional Point (FP) Analysis - Software Engineering
Functional Point Analysis (FPA) is a software measurement technique used to assess the size and complexity of a software system based on its functionality. It involves categorizing the functions of the software, such as input screens, output reports, inquiries, files, and interfaces, and assigning w
9 min read
Lines of Code (LOC) in Software Engineering
A line of code (LOC) is any line of text in a code that is not a comment or blank line, and also header lines, in any case of the number of statements or fragments of statements on the line. LOC consists of all lines containing the declaration of any variable, and executable and non-executable state
4 min read
Software Development Models
Agile Software Development
Agile Software Development - Software Engineering
Agile Software Development is a Software Development Methodology that values flexibility, collaboration, and customer satisfaction. It is based on the Agile Manifesto, a set of principles for software development that prioritize individuals and interactions, working software, customer collaboration,
15+ min read
Agile Development Models - Software Engineering
In earlier days, the Iterative Waterfall Model was very popular for completing a project. But nowadays, developers face various problems while using it to develop software. The main difficulties included handling customer change requests during project development and the high cost and time required
11 min read
Agile Methodology Advantages and Disadvantages
Agile Software Development Methodology is a process of software development similar to other software development methodologies like waterfall models, V-models, iterative models, etc. Agile methodology follows the iterative as well as incremental approach that emphasizes the importance of delivering
4 min read
Agile SDLC (Software Development Life Cycle)
Software Development Life Cycle (SDLC) is a process of maintaining or building software applications/services/systems. Generally, it includes various levels, from initial development plan and analysis to post-development software testing and evaluation. It also consists of the models and methodologi
8 min read
Difference between Traditional and Agile Software Development
Traditional Software Development and Agile Software Development are the ways of the designing and developing system software. Both are important types of the software designing. Traditional Software DevelopmentTraditional Software Development is the software development process used to design and de
5 min read
Comparison between Agile model and other models in Software Engineering
Software development models are various processes or methods that are chosen for project development depending on the objectives and goals of the project. Agile is a popular model among these development models because it is flexible and adapts quickly to changes. It focuses on delivering small, usa
8 min read
Software Requirements Specification
Software Requirement Specification (SRS) Format
In order to form a good SRS, here you will see some points that can be used and should be considered to form a structure of good Software Requirements Specification (SRS). These are below mentioned in the table of contents and are well explained below. Table of ContentIntroductionGeneral description
5 min read
Parts of a SRS document - Software Engineering
The important parts of the Software Requirements Specification (SRS) document are: Functional requirements of the systemNon-functional requirements of the system, andGoals of implementationThese are explained as follows. Functional RequirementsThe purposeful requirements part discusses the functiona
2 min read
Classification of Software Requirements - Software Engineering
Classification of Software Requirements is important in the software development process. It organizes our requirements into different categories that make them easier to manage, prioritize, and track. The main types of Software Requirements are functional, non-functional, and domain requirements. T
8 min read
How to write a good SRS for your Project
What is SRS? A software requirements specification (SRS) is a description of a software system to be developed. It lays out functional and non-functional requirements and may include a set of use cases that describe user interactions that the software must provide. The output of requirement engineer
8 min read
Software Engineering | Quality Characteristics of a good SRS
Related Article: Writing a good SRS for your project Quality characteristics of a good Software Requirements Specification (SRS) document include:Complete: The SRS should include all the requirements for the software system, including both functional and non-functional requirements.Consistent: The S
7 min read
Difference between SRS and FRS
The role of formulating a document is to understand requirements that will be compelled to develop a robust software. Type of document required depends upon business type, their criteria, how company processes, and what class of software is to be developed. Let us understand common documents which a
3 min read
Software Project Management(SPM)
Software Project Management (SPM) - Software Engineering
Software Project Management (SPM) is a proper way of planning and leading software projects. It is a part of project management in which software projects are planned, implemented, monitored, and controlled. In this article, we are discussing Software Project Management (SPM) topics that are useful
8 min read
Project Size Estimation Techniques - Software Engineering
In the fast-paced world of Software Engineering, accurately estimating the size of a project is key to its success. Understanding how big a project will be helps predict the resources, time, and cost needed, ensuring the project starts off on the right foot. Project Size Estimation Techniques are vi
12 min read
System configuration management - Software Engineering
Whenever software is built, there is always scope for improvement and those improvements bring picture changes. Changes may be required to modify or update any existing solution or to create a new solution for a problem. Requirements keep on changing daily so we need to keep on upgrading our systems
7 min read
COCOMO Model - Software Engineering
The Constructive Cost Model (COCOMO) It was proposed by Barry Boehm in 1981 and is based on the study of 63 projects, which makes it one of the best-documented models. It is a Software Cost Estimation Model that helps predict the effort, cost, and schedule required for a software development project
15+ min read
Capability Maturity Model (CMM) - Software Engineering
The Capability Maturity Model (CMM) is a tool used to improve and refine software development processes. It provides a structured way for organizations to assess their current practices and identify areas for improvement. CMM consists of five maturity levels: initial, repeatable, defined, managed, a
11 min read
Integrating Risk Management in SDLC | Set 1
The Software Development Life Cycle (SDLC) is a conceptual model for defining the tasks performed at each step of the software development process. This model gives you a brief about the life cycle of Software in the development phase. In this particular article, we are going to discuss risk managem
8 min read
Integrating Risk Management in SDLC | Set 2
Prerequisite: Integrating Risk Management in SDLC | Set 1 We have seen the Risk Management Techniques in SDLC which we have discussed Preliminary Analysis, System Analysis, and Requirement Definition part. In this article, we will be discussing the System Design and Development phase of the Software
9 min read
Integrating Risk Management in SDLC | Set 3
Prerequisite - Integrating Risk Management in SDLC | Set 1, and Set 2. We have already discussed the first four steps of the Software Development Life Cycle. In this article, we will be discussing the remaining four steps: Integration and System Testing, Installation, Operation and Acceptance Testin
9 min read
Software Project Management Complexities | Software Engineering
Software project management complexities refer to the various challenges and difficulties involved in managing software development projects. The primary goal of software project management is to guide a team of developers to complete a project successfully within a given timeframe. However, this ta
12 min read
Quasi renewal processes - Software Engineering
Let {N(t), t > 0} be a counting process and let [Tex]$X_n$ [/Tex]be the time between the [Tex]$(n-1)_{th}$ [/Tex]and the [Tex]$n_{th}$ [/Tex]event of this process, [Tex]n\geq 1 [/Tex] Definition: If the sequence of non-negative random variables {X1, X2, ....} is independent and [Tex]$$X_i=aX_{i-1
7 min read
Reliability Growth Models - Software Engineering
The reliability growth group of models measures and predicts the improvement of reliability programs through the testing process. The growth model represents the reliability or failure rate of a system as a function of time or the number of test cases. Models included in this group are as follows. C
5 min read
Jelinski Moranda software reliability model - Software Engineering
The Jelinski-Moranda (JM) Software Reliability Model is a mathematical model developed in 1972 by M.A. Jelinski and P.A. Moranda. It is used to predict the reliability of software systems, particularly during the testing and debugging phases. This model assumes that software failures occur randomly
10 min read
Software Engineering | Schick-Wolverton software reliability model
Prerequisite - Jelinski Moranda software reliability model The Schick-Wolverton (S-W) model is a modification to the J-M model. It is similar to the J-M model except that it further assumes that the failure rate at the ith time interval increases with time ti since the last debugging. In the model,
4 min read
Goel-Okumoto Model - Software Engineering
The Goel-Okumoto Model is a reliable software prediction tool based on simple principles: bugs are independent, bug detection is related to existing bugs, and bugs are fixed promptly. Through mathematical estimation, it helps predict bug counts and manage software development effectively, offering e
7 min read
Mills' Error Seeding Model - Software Engineering
Mills'error seeding model proposed an error seeding method to estimate the number of errors in a program by introducing seeded errors into the program. From the debugging data, which consists of inherent errors and induced errors, the unknown number of inherent errors could be estimated. If both inh
7 min read
Basic Fault Tolerant Software Techniques
Fault tolerance is a critical property of software systems, ensuring they can continue operating even when faced with failures or errors. This resilience is achieved through various techniques to prevent disruptions and maintain high availability, particularly for mission-critical applications. Basi
11 min read
Software Maintenance - Software Engineering
Software Maintenance refers to the process of modifying and updating a software system after it has been delivered to the customer. This involves fixing bugs, adding new features, and adapting to new hardware or software environments. Effective maintenance is crucial for extending the software's lif
14 min read
Software Testing and Debugging
What is Software Testing?
Software testing is an important process in the Software Development Lifecycle(SDLC). It involves verifying and validating that a Software Application is free of bugs, meets the technical requirements set by its Design and Development, and satisfies user requirements efficiently and effectively. Her
11 min read
Types of Software Testing
Software Testing is an important part of the Software Development Lifecycle, which includes many more Types of Software Testing that we are discussing here in detail. Read More: Software Development Life Cycle. Table of Content Different Types of Software Testing1. Manual Testing 2. Automation Testi
15+ min read
Principles of Software testing - Software Testing
Software testing is an important aspect of software development, ensuring that applications function correctly and meet user expectations. In this article, we will go into the principles of software testing, exploring key concepts and methodologies to enhance product quality. From test planning to e
10 min read
Testing Guidelines - Software Engineering
Software testing is an essential component of software development, ensuring that applications function correctly, meet user expectations, and are ready for deployment. Effective software testing involves a structured approach guided by well-defined principles and best practices. This article explor
3 min read
Black Box Testing - Software Engineering
Black Box Testing is a Software testing method in which the internal working of the application is not known to the tester. The Black Box Testing mainly focuses on testing the functionality of software without any knowledge of the internal logic of an application. Here we are learning the topics rel
12 min read
White box Testing - Software Engineering
White box testing techniques analyze the internal structures the used data structures, internal design, code structure, and the working of the software rather than just the functionality as in black box testing. It is also called glass box testing clear box testing or structural testing. White Box T
15 min read
Unit Testing - Software Testing
Unit Testing is a software testing technique in which individual units or components of a software application are tested in isolation. These units are the smallest pieces of code, typically functions or methods, ensuring they perform as expected. Unit testing helps identify bugs early in the develo
12 min read
Acceptance Testing - Software Testing
Acceptance Testing is an important aspect of Software Testing, which guarantees that software aligns with user needs and business requirements. The major aim of this test is to evaluate the compliance of the system with the business requirements and assess whether it is acceptable for delivery or no
5 min read
Alpha Testing - Software Testing
Alpha Testing is an essential phase in software testing conducted by the development or QA team before beta testing . It aims to identify and fix bugs in a controlled environment that simulates real-world conditions. This helps ensure the software's functionality , reliability , and stability . Alph
8 min read
Beta Testing - Software Testing
Prerequisites: Software Testing Basics, Types of Software Testing Table of Content IntroductionWhy require Beta Testing?Characteristics of Beta TestingTypes of Beta TestingCriteria for Beta TestingTools used for Beta TestingUses of Beta TestingAdvantages of Beta TestingDisadvantages of Beta TestingI
6 min read
Regression Testing - Software Engineering
Regression testing is a crucial aspect of software engineering that ensures the stability and reliability of a software product. It involves retesting the previously tested functionalities to verify that recent code changes haven't adversely affected the existing features. By identifying and fixing
7 min read
Integration Testing - Software Engineering
Integration Testing is the process of testing the interface between two software units or modules. It focuses on determining the correctness of the interface. The purpose of integration testing is to expose faults in the interaction between integrated units. Once all the modules have been unit-teste
11 min read
What is Debugging in Software Engineering?
Debugging in Software Engineering is the process of identifying and resolving errors or bugs in a software system. It's a critical aspect of software development, ensuring quality, performance, and user satisfaction. Despite being time-consuming, effective debugging is essential for reliable and com
11 min read
Software Verification and Validation
Software Engineering Interview Questions