Open In App

Print path between any two nodes in a Binary Tree

Last Updated : 08 Sep, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a Binary Tree of distinct nodes and a pair of nodes. The task is to find and print the path between the two given nodes in the binary tree.
 

For Example, in the above binary tree the path between the nodes 7 and 4 is 7 -> 3 -> 1 -> 4

The idea is to find paths from root nodes to the two nodes and store them in two separate vectors or arrays say path1 and path2.

Now, there arises two different cases: 

  1. If the two nodes are in different subtrees of root nodes. That is one in the left subtree and the other in the right subtree. In this case it is clear that root node will lie in between the path from node1 to node2. So, print path1 in reverse order and then path 2.
  2. If the nodes are in the same subtree. That is either in the left subtree or in the right subtree. In this case you need to observe that path from root to the two nodes will have an intersection point before which the path is common for the two nodes from the root node. Find that intersection point and print nodes from that point in a similar fashion of the above case.

Below is the implementation of the above approach: 

C++
// C++ program to print path between any
// two nodes in a Binary Tree
#include <bits/stdc++.h>
using namespace std;

// structure of a node of binary tree
struct Node {
    int data;
    Node *left, *right;
};

/* Helper function that allocates a new node with the 
given data and NULL left and right pointers. */
struct Node* getNode(int data)
{
    struct Node* newNode = new Node;
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
}

// Function to check if there is a path from root
// to the given node. It also populates
// 'arr' with the given path
bool getPath(Node* root, vector<int>& arr, int x)
{
    // if root is NULL
    // there is no path
    if (!root)
        return false;

    // push the node's value in 'arr'
    arr.push_back(root->data);

    // if it is the required node
    // return true
    if (root->data == x)
        return true;

    // else check whether the required node lies
    // in the left subtree or right subtree of
    // the current node
    if (getPath(root->left, arr, x) || getPath(root->right, arr, x))
        return true;

    // required node does not lie either in the
    // left or right subtree of the current node
    // Thus, remove current node's value from
    // 'arr'and then return false
    arr.pop_back();
    return false;
}

// Function to print the path between
// any two nodes in a binary tree
void printPathBetweenNodes(Node* root, int n1, int n2)
{
    // vector to store the path of
    // first node n1 from root
    vector<int> path1;

    // vector to store the path of
    // second node n2 from root
    vector<int> path2;

    getPath(root, path1, n1);
    getPath(root, path2, n2);

    int intersection = -1;

    // Get intersection point
    int i = 0, j = 0;
    while (i != path1.size() || j != path2.size()) {

        // Keep moving forward until no intersection
        // is found
        if (i == j && path1[i] == path2[j]) {
            i++;
            j++;
        }
        else {
            intersection = j - 1;
            break;
        }
    }

    // Print the required path
    for (int i = path1.size() - 1; i > intersection; i--)
        cout << path1[i] << " ";

    for (int i = intersection; i < path2.size(); i++)
        cout << path2[i] << " ";
}

// Driver program
int main()
{
    // binary tree formation
    struct Node* root = getNode(0);
    root->left = getNode(1);
    root->left->left = getNode(3);
    root->left->left->left = getNode(7);
    root->left->right = getNode(4);
    root->left->right->left = getNode(8);
    root->left->right->right = getNode(9);
    root->right = getNode(2);
    root->right->left = getNode(5);
    root->right->right = getNode(6);

    int node1 = 7;
    int node2 = 4;
    printPathBetweenNodes(root, node1, node2);

    return 0;
}
Java
// Java program to print path between any 
// two nodes in a Binary Tree 
import java.util.*;
class Solution
{

// structure of a node of binary tree 
static class Node { 
    int data; 
    Node left, right; 
} 

/* Helper function that allocates a new node with the 
given data and null left and right pointers. */
 static Node getNode(int data) 
{ 
     Node newNode = new Node(); 
    newNode.data = data; 
    newNode.left = newNode.right = null; 
    return newNode; 
} 

// Function to check if there is a path from root 
// to the given node. It also populates 
// 'arr' with the given path 
static boolean getPath(Node root, Vector<Integer> arr, int x) 
{ 
    // if root is null 
    // there is no path 
    if (root==null) 
        return false; 

    // push the node's value in 'arr' 
    arr.add(root.data); 

    // if it is the required node 
    // return true 
    if (root.data == x) 
        return true; 

    // else check whether the required node lies 
    // in the left subtree or right subtree of 
    // the current node 
    if (getPath(root.left, arr, x) || getPath(root.right, arr, x)) 
        return true; 

    // required node does not lie either in the 
    // left or right subtree of the current node 
    // Thus, remove current node's value from 
    // 'arr'and then return false 
    arr.remove(arr.size()-1); 
    return false; 
} 

// Function to print the path between 
// any two nodes in a binary tree 
static void printPathBetweenNodes(Node root, int n1, int n2) 
{ 
    // vector to store the path of 
    // first node n1 from root 
    Vector<Integer> path1= new Vector<Integer>(); 

    // vector to store the path of 
    // second node n2 from root 
    Vector<Integer> path2=new Vector<Integer>(); 

    getPath(root, path1, n1); 
    getPath(root, path2, n2); 

    int intersection = -1; 

    // Get intersection point 
    int i = 0, j = 0; 
    while (i != path1.size() || j != path2.size()) { 

        // Keep moving forward until no intersection 
        // is found 
        if (i == j && path1.get(i) == path2.get(i)) { 
            i++; 
            j++; 
        } 
        else { 
            intersection = j - 1; 
            break; 
        } 
    } 

    // Print the required path 
    for ( i = path1.size() - 1; i > intersection; i--) 
        System.out.print( path1.get(i) + " ");

    for ( i = intersection; i < path2.size(); i++) 
        System.out.print( path2.get(i) + " "); 
} 

// Driver program 
public static void main(String[] args) 
{ 
    // binary tree formation 
     Node root = getNode(0); 
    root.left = getNode(1); 
    root.left.left = getNode(3); 
    root.left.left.left = getNode(7); 
    root.left.right = getNode(4); 
    root.left.right.left = getNode(8); 
    root.left.right.right = getNode(9); 
    root.right = getNode(2); 
    root.right.left = getNode(5); 
    root.right.right = getNode(6); 

    int node1 = 7; 
    int node2 = 4; 
    printPathBetweenNodes(root, node1, node2); 

} 
}
// This code is contributed by Arnab Kundu
Python
# Python3 program to print path between any 
# two nodes in a Binary Tree 

import sys
import math

# structure of a node of binary tree
class Node:
    def __init__(self,data):
        self.data = data
        self.left = None
        self.right = None

# Helper function that allocates a new node with the 
#given data and NULL left and right pointers. 
def getNode(data):
        return Node(data)

# Function to check if there is a path from root 
# to the given node. It also populates 
# 'arr' with the given path 
def getPath(root, rarr, x):

    # if root is NULL 
    # there is no path 
    if not root:
        return False
    
    # push the node's value in 'arr' 
    rarr.append(root.data)

    # if it is the required node 
    # return true 
    if root.data == x:
        return True
    
    # else check whether the required node lies 
    # in the left subtree or right subtree of 
    # the current node 
    if getPath(root.left, rarr, x) or getPath(root.right, rarr, x):
        return True
    
    # required node does not lie either in the 
    # left or right subtree of the current node 
    # Thus, remove current node's value from 
    # 'arr'and then return false 
    rarr.pop()
    return False

# Function to print the path between 
# any two nodes in a binary tree 
def printPathBetweenNodes(root, n1, n2):

    # vector to store the path of 
    # first node n1 from root 
    path1 = []

    # vector to store the path of 
    # second node n2 from root 
    path2 = []
    getPath(root, path1, n1)
    getPath(root, path2, n2)

    # Get intersection point
    i, j = 0, 0
    intersection=-1
    while(i != len(path1) or j != len(path2)):

        # Keep moving forward until no intersection 
        # is found
        if (i == j and path1[i] == path2[j]):
            i += 1
            j += 1
        else:
            intersection = j - 1
            break

    # Print the required path
    for i in range(len(path1) - 1, intersection - 1, -1):
        print("{} ".format(path1[i]), end = "")
    for j in range(intersection + 1, len(path2)):
        print("{} ".format(path2[j]), end = "")
    
# Driver program 
if __name__=='__main__':

    # binary tree formation 
    root = getNode(0)
    root.left = getNode(1) 
    root.left.left = getNode(3) 
    root.left.left.left = getNode(7) 
    root.left.right = getNode(4) 
    root.left.right.left = getNode(8) 
    root.left.right.right = getNode(9) 
    root.right = getNode(2)
    root.right.left = getNode(5) 
    root.right.right = getNode(6)
    node1=7
    node2=4
    printPathBetweenNodes(root,node1,node2)

# This Code is Contributed By Vikash Kumar 37
C#
// C# program to print path between any 
// two nodes in a Binary Tree 
using System;
using System.Collections.Generic; 

class Solution
{

// structure of a node of binary tree 
public class Node 
{ 
    public int data; 
    public Node left, right; 
} 

/* Helper function that allocates a new node with the 
given data and null left and right pointers. */
static Node getNode(int data) 
{ 
    Node newNode = new Node(); 
    newNode.data = data; 
    newNode.left = newNode.right = null; 
    return newNode; 
} 

// Function to check if there is a path from root 
// to the given node. It also populates 
// 'arr' with the given path 
static Boolean getPath(Node root, List<int> arr, int x) 
{ 
    // if root is null 
    // there is no path 
    if (root == null) 
        return false; 

    // push the node's value in 'arr' 
    arr.Add(root.data); 

    // if it is the required node 
    // return true 
    if (root.data == x) 
        return true; 

    // else check whether the required node lies 
    // in the left subtree or right subtree of 
    // the current node 
    if (getPath(root.left, arr, x) || getPath(root.right, arr, x)) 
        return true; 

    // required node does not lie either in the 
    // left or right subtree of the current node 
    // Thus, remove current node's value from 
    // 'arr'and then return false 
    arr.RemoveAt(arr.Count-1); 
    return false; 
} 

// Function to print the path between 
// any two nodes in a binary tree 
static void printPathBetweenNodes(Node root, int n1, int n2) 
{ 
    // vector to store the path of 
    // first node n1 from root 
    List<int> path1 = new List<int>(); 

    // vector to store the path of 
    // second node n2 from root 
    List<int> path2 = new List<int>(); 

    getPath(root, path1, n1); 
    getPath(root, path2, n2); 

    int intersection = -1; 

    // Get intersection point 
    int i = 0, j = 0; 
    while (i != path1.Count || j != path2.Count) 
    { 

        // Keep moving forward until no intersection 
        // is found 
        if (i == j && path1[i] == path2[i])
        { 
            i++; 
            j++; 
        } 
        else 
        { 
            intersection = j - 1; 
            break; 
        } 
    } 

    // Print the required path 
    for ( i = path1.Count - 1; i > intersection; i--) 
        Console.Write( path1[i] + " ");

    for ( i = intersection; i < path2.Count; i++) 
        Console.Write( path2[i] + " "); 
} 

// Driver code 
public static void Main(String[] args) 
{ 
    // binary tree formation 
    Node root = getNode(0); 
    root.left = getNode(1); 
    root.left.left = getNode(3); 
    root.left.left.left = getNode(7); 
    root.left.right = getNode(4); 
    root.left.right.left = getNode(8); 
    root.left.right.right = getNode(9); 
    root.right = getNode(2); 
    root.right.left = getNode(5); 
    root.right.right = getNode(6); 

    int node1 = 7; 
    int node2 = 4; 
    printPathBetweenNodes(root, node1, node2); 

} 
}

// This code is contributed by Princi Singh
JavaScript
<script>

    // JavaScript program to print path between any 
    // two nodes in a Binary Tree
    
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }

    /* Helper function that allocates a new node with the 
    given data and null left and right pointers. */
    function getNode(data) 
    { 
        let newNode = new Node(data); 
        return newNode; 
    } 

    // Function to check if there is a path from root 
    // to the given node. It also populates 
    // 'arr' with the given path 
    function getPath(root, arr, x) 
    { 
        // if root is null 
        // there is no path 
        if (root==null) 
            return false; 

        // push the node's value in 'arr' 
        arr.push(root.data); 

        // if it is the required node 
        // return true 
        if (root.data == x) 
            return true; 

        // else check whether the required node lies 
        // in the left subtree or right subtree of 
        // the current node 
        if (getPath(root.left, arr, x) || getPath(root.right, arr, x)) 
            return true; 

        // required node does not lie either in the 
        // left or right subtree of the current node 
        // Thus, remove current node's value from 
        // 'arr'and then return false 
        arr.pop(); 
        return false; 
    } 

    // Function to print the path between 
    // any two nodes in a binary tree 
    function printPathBetweenNodes(root, n1, n2) 
    { 
        // vector to store the path of 
        // first node n1 from root 
        let path1= []; 

        // vector to store the path of 
        // second node n2 from root 
        let path2 = []; 

        getPath(root, path1, n1); 
        getPath(root, path2, n2); 

        let intersection = -1; 

        // Get intersection point 
        let i = 0, j = 0; 
        while (i != path1.length || j != path2.length) { 

            // Keep moving forward until no intersection 
            // is found 
            if (i == j && path1[i] == path2[i]) { 
                i++; 
                j++; 
            } 
            else { 
                intersection = j - 1; 
                break; 
            } 
        } 

        // Print the required path 
        for ( i = path1.length - 1; i > intersection; i--) 
            document.write( path1[i] + " ");

        for ( i = intersection; i < path2.length; i++) 
            document.write( path2[i] + " "); 
    } 
    
    // binary tree formation 
    let root = getNode(0); 
    root.left = getNode(1); 
    root.left.left = getNode(3); 
    root.left.left.left = getNode(7); 
    root.left.right = getNode(4); 
    root.left.right.left = getNode(8); 
    root.left.right.right = getNode(9); 
    root.right = getNode(2); 
    root.right.left = getNode(5); 
    root.right.right = getNode(6); 
  
    let node1 = 7; 
    let node2 = 4; 
    printPathBetweenNodes(root, node1, node2); 

</script>

Output
7 3 1 4 

Complexity Analysis:

  • Time Complexity: O(N), as we are using recursion for traversing the tree. Where N is the number of nodes in the tree.
  • Auxiliary Space: O(N), as we are using extra space for storing the paths of the trees. Where N is the number of nodes in the tree.

Next Article
Article Tags :
Practice Tags :

Similar Reads

  翻译: