Polygraph to check View Serializability in DBMS
Last Updated :
07 Feb, 2025
In a Database Management System (DBMS), ensuring that transactions execute correctly without conflicts is important. One way to check this is through view serializability, which ensures that a schedule produces the same final result as some serial execution of transactions.
To check view serializability, we use a polygraph, a special type of graph that helps to visualize dependencies between transactions. By analyzing this graph, we can determine whether a given schedule maintains the correct order of operations.
Note: The main objective of serializability is to identify non-serial schedules that allow transactions to execute concurrently without interference while ensuring that the final database state is equivalent to a serial execution (where transactions run one after another).
There are different types of schedules based on serializability:
- Serial Schedule – Transactions execute one after another without overlapping.
- Non-Serial Schedule – Transactions overlap in execution.
- Conflict Serializable Schedule – A non-serial schedule that can be converted into a serial schedule by swapping non-conflicting operations.
- View Serializable Schedule – A non-serial schedule that produces the same final database state as some serial schedule, but may not be conflict serializable.
View Serializability
A schedule is called View Serializable if it’s view equivalent to a serial schedule (no overlapping transaction allowed). For a schedule to be View Serializable, it must meet these three conditions:
- Same Initial Reads – Each transaction in the schedule must read the same initial values as in a serial schedule.
- Same Read-Write Mapping – If a transaction reads a value written by another transaction, it must be the same as in a serial schedule.
- Same Final Writes – The final write operations in both schedules must be the same.
Now, let us consider the following examples.
Example: Suppose there is two schedules one is non-serial and another one is serial schedule.
Schedule 1 Schedule 2
-------------- ---------------
T1 T2 T1 T2
-------------- ---------------
r1(A) r1(A)
A=A+10 A=A+10
w1(A) w1(A)
r1(B) r2(A)
B=B*10 A=A+10
w1(B) w2(a)
r2(A) r1(B)
A=A+10 B=B*10
w2(A) w2(B)
r2(B) r2(B)
B=B*10 B=B*10
w2(B) w2(B)
To check whether the given Schedule 1 and Schedule 2 are View Serializable, we need to verify the three conditions of View Serializability:
- Same Initial Reads: Both schedules ensure that transactions read the initial values of A and B in the same way.
- Same Read-Write Mapping: In both schedules, transactions read values written by previous transactions consistently.
- Same Final Writes: The final values of A and B in both schedules match what would happen in some serial execution of T1 and T2.
Since both schedules follow the three conditions of View Serializability, they are View Serializable.
Polygraph Method to check View Serializability
Polygraph is a graphical representation used to check view serializability in database management systems (DBMS). View serializability is a property of a schedule of transactions that ensures the same final result is obtained regardless of the order in which the transactions are executed.
A polygraph consists of a directed graph with each node representing a transaction in the schedule, and each edge representing a conflict between two transactions. A conflict occurs when two transactions try to access the same data item in different ways, such as one reading and the other writing, or both writing.
To construct a polygraph, the following steps are followed:
- Identify all the transactions in the schedule.
- For each pair of transactions Ti and Tj, determine if there is a conflict between them. If there is a conflict, draw a directed edge from Ti to Tj.
- If there is a cycle in the polygraph, the schedule is not viewed as serializable, and the transactions must be rearranged to ensure view serializability.
- To check if a schedule is view serializable using a polygraph, we need to ensure that there are no cycles in the polygraph. If there are no cycles, the schedule is view serializable, and we can execute the transactions in any order without changing the final result.
Using polygraph when the number of transactions is more than 2 : Suppose we have 3 transactions T1, T2 and T3. Possible combinations of those transactions are:
T1 T2 T3
T1 T3 T2
T2 T1 T3
T2 T3 T1
T3 T1 T2
T3 T2 T1
1. A Tn reads an initial data in a schedule the same Tn also should read the initial data in one of the transaction combinations. That means T1 should occur before T2, so we have to remove these combinations:
T2 T1 T3
T2 T3 T1
T3 T2 T1
2. If a transaction (Tn) reads a value that was written by another transaction (Tm) in a schedule, then in any equivalent serial schedule, Tn should read the same value after Tm writes it.
3. A Tn writes the final value for a data in a schedule, the same Tn should also write the final data in one of the transaction combinations. That means T2 occur before T3, so we have to remove these combinations:
T1 T3 T2
T3 T1 T2
Remaining Schedule: T1 → T2 → T3
Polygraph Construction
If the polygraph is acyclic, then the schedule T1 → T2 → T3 is View Serializable.

Polygraph
Advantages
Accuracy: Polygraph is a powerful tool that can accurately determine whether a schedule is view serializable or not. It can detect conflicts that may not be apparent from a manual analysis of the schedule.
Efficiency: Polygraph can quickly analyze large schedules and determine whether they are view serializable. This saves time and effort that would be required for a manual analysis.
Visualization: Polygraph generates a graph representation of the schedule that shows the dependencies between transactions. This visualization can help users to better understand the schedule and the conflicts that occur.
Flexibility: Polygraph can be used to check the view serializability of different types of schedules, including serial and concurrent schedules.
Disadvantages
Complexity: Polygraph is a complex tool that requires a high level of technical expertise to use effectively. Users must be familiar with graph theory and database concepts to interpret the results.
Limited scope: Polygraph is designed to check view serializability only. It cannot detect other types of anomalies, such as deadlock or starvation.
False negatives: Polygraph may fail to detect some instances of non-view serializable schedules, resulting in false negatives.
Limited applicability: Polygraph may not be useful for all types of databases or database systems. Some DBMSs may have built-in features that ensure view serializability, making polygraph redundant.
FAQs on Polygraph to Check View Serializability in DBMS
What is a Polygraph in DBMS?
A Polygraph is a directed graph used to check View Serializability in DBMS by representing dependencies between transactions based on read-write and write-write relationships.
How does a Polygraph help in checking View Serializability?
A Polygraph helps by visually representing transaction dependencies. If the graph contains a cycle, the schedule is not view serializable. If no cycle exists, the schedule is view serializable and can be executed in some serial order.
What is the difference between a Polygraph and a Precedence Graph?
A Precedence Graph is used to check Conflict Serializability, ensuring a strict transaction order based on conflicts. A Polygraph is more flexible and is used to check View Serializability, allowing more schedules to be considered valid.
What are the steps to construct a Polygraph for a given schedule?
Identify transactions and dependencies, draw directed edges for read-after-write and write-after-write relationships, and check for cycles. If there are no cycles, the schedule is view serializable.
What happens if a cycle is found in the Polygraph?
A cycle means that no equivalent serial schedule exists for the given schedule, so it is not view serializable. Transactions may need to be reordered or rescheduled to achieve serializability.
Similar Reads
DBMS Tutorial â Learn Database Management System
Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Introduction of DBMS (Database Management System)
A Database Management System (DBMS) is a software solution designed to efficiently manage, organize, and retrieve data in a structured manner. It serves as a critical component in modern computing, enabling organizations to store, manipulate, and secure their data effectively. From small application
8 min read
History of DBMS
The first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica
7 min read
Advantages of Database Management System
Database Management System (DBMS) is a collection of interrelated data and a set of software tools/programs that access, process, and manipulate data. It allows access, retrieval, and use of that data by considering appropriate security measures. The Database Management system (DBMS) is really usefu
6 min read
Disadvantages of DBMS
You might have encountered bulks of files/registers either at some office/school/university. The traditional file management system has been followed for managing the information or data at many organizations and by many businesses. It used to be cost-effective and easily accessible. With evolving t
9 min read
Application of DBMS
The efficient and safe management, saving and retrieval of data is made possible by the Database Management Systems. They provide strong solutions for the data management demands and are the foundation of the numerous applications used in a variety of the sectors. Recognizing the uses of DBMSs aids
5 min read
Need for DBMS
In earlier times, data was stored and retrieved using files in a typical file system. For example: A company might keep separate files for employees' details, customer information, and daily sales.These files could be stored as text documents, spreadsheets, or printed records in cabinets.This approa
6 min read
DBMS Architecture 1-level, 2-Level, 3-Level
A Database stores a lot of critical information to access data quickly and securely. Hence it is important to select the correct architecture for efficient data management. Database Management System (DBMS) architecture is crucial for efficient data management and system performance. It helps users
6 min read
Difference between File System and DBMS
A file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well
6 min read
Entity Relationship Model
Introduction of ER Model
The Entity Relationship Model is a model for identifying entities (like student, car or company) to be represented in the database and representation of how those entities are related. The ER data model specifies enterprise schema that represents the overall logical structure of a database graphical
9 min read
Structural Constraints of Relationships in ER Model
Structural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Difference between entity, entity set and entity type
The Entity-Relationship (ER) Model is one of the primary components of Database Management Systems and is very important for designing the logical structure of databases. It helps define data, and the relationship between the data entities and it makes the system easier to visualize. This is the rea
7 min read
Difference between Strong and Weak Entity
An entity is a âthingâ or âobjectâ in the real world. An entity contains attributes, which describe that entity. So anything about which we store information is called an entity. Entities are recorded in the database and must be distinguishable, i.e., easily recognized from the group. In this articl
3 min read
Generalization, Specialization and Aggregation in ER Model
Using the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization, and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to
4 min read
Recursive Relationships in ER diagrams
A relationship between two entities of the same entity set is called a recursive relationship or repeated relationship. Here the same entity set participates more than once in a relationship type with a different role for each instance. Recursive relationships are often used to represent hierarchies
3 min read
Relational Model
Introduction of Relational Model and Codd Rules in DBMS
The Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Types of Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)
Keys are one of the basic requirements of a relational database model. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set up relations amongst various columns and tables of a relational database. Why do we require Keys in a DBMS?We require keys in a DBMS to
7 min read
Anomalies in Relational Model
Anomalies in the relational model refer to inconsistencies or errors that can arise when working with relational databases, specifically in the context of data insertion, deletion, and modification. There are different types of anomalies that can occur in referencing and referenced relations which c
5 min read
Mapping from ER Model to Relational Model
Converting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMS
There are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine, or build on them. In this article, let's d
7 min read
Relational Algebra
Introduction of Relational Algebra in DBMS
Relational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
10 min read
Basic Operators in Relational Algebra
The Relational Model is a way of structuring data using relations, which are a collection of tuples that have the same attributes. Relational Algebra is a procedural query language that takes relations as input and returns relations as output. It uses a set of operators to manipulate and retrieve da
4 min read
Extended Operators in Relational Algebra
Extended operators in relational algebra are operators that go beyond the basic set of relational algebra operations. They are also known as derived operators because they can be constructed from combinations of the fundamental operators. There are mainly three types of extended operators in Relatio
7 min read
SQL Joins (Inner, Left, Right and Full Join)
SQL joins are fundamental tools for combining data from multiple tables in relational databases. Joins allow efficient data retrieval, which is essential for generating meaningful observations and solving complex business queries. Understanding SQL join types, such as INNER JOIN, LEFT JOIN, RIGHT JO
6 min read
Join operation Vs Nested query in DBMS
The growth of technology and automation coupled with exponential amounts of data has led to the importance and omnipresence of databases which, simply put, are organized collections of data. Considering a naive approach, one can theoretically keep all the data in one large table, however that increa
5 min read
Tuple Relational Calculus (TRC) in DBMS
Tuple Relational Calculus (TRC) is a non-procedural query language used in relational database management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are ordered sets of attribute values that represent a single row or record in a database table. TRC is
4 min read
Domain Relational Calculus in DBMS
Domain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it. In Domain Relational Calculus, a query is expressed as, { < x1, x2
2 min read
Normalisation
Introduction of Database Normalization
Normalization is an important process in database design that helps improve the database's efficiency, consistency, and accuracy. It makes it easier to manage and maintain the data and ensures that the database is adaptable to changing business needs. Database normalization is the process of organiz
8 min read
Normal Forms in DBMS
In the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
8 min read
First Normal Form (1NF)
Normalization in database management is the process of organizing data to minimize redundancy and dependency, ensuring efficiency, consistency, and integrity. This involves structuring data into smaller, logically related tables and defining relationships between them to streamline data storage and
4 min read
Second Normal Form (2NF)
Normalization is a structural method whereby tables are broken down in a controlled manner with an aim of reducing data redundancy. It refers to the process of arranging the attributes and relations of a database in order to minimize data anomalies such as update, insert and delete anomalies. Normal
5 min read
Boyce-Codd Normal Form (BCNF)
While Third Normal Form (3NF) is generally sufficient for organizing relational databases, it may not completely eliminate redundancy. Redundancy can still occur if thereâs a dependency XâX where X is not a candidate key. This issue is addressed by a stronger normal form known as Boyce-Codd Normal F
7 min read
Introduction of 4th and 5th Normal Form in DBMS
Two of the highest levels of database normalization are the fourth normal form (4NF) and the fifth normal form (5NF). Multivalued dependencies are handled by 4NF, whereas join dependencies are handled by 5NF. If two or more independent relations are kept in a single relation or we can say multivalue
5 min read
The Problem of Redundancy in Database
Redundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Dependency Preserving Decomposition - DBMS
In a Database Management System (DBMS), dependency-preserving decomposition refers to the process of breaking down a complex database schema into simpler, smaller tables, such that all the functional dependencies of the original schema are still enforceable without needing to perform additional join
7 min read
Lossless Decomposition in DBMS
The original relation and relation reconstructed from joining decomposed relations must contain the same number of tuples if the number is increased or decreased then it is Lossy Join decomposition. Lossless join decomposition ensures that never get the situation where spurious tuples are generated
5 min read
Lossless Join and Dependency Preserving Decomposition
Decomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in Databases
Denormalization focuses on combining multiple tables to make queries execute quickly. It adds redundancies in the database though. In this article, weâll explore Denormalization and how it impacts database design. This method can help us to avoid costly joins in a relational database made during nor
6 min read
Transactions and Concurrency Control
Concurrency Control in DBMS
In a database management system (DBMS), allowing transactions to run concurrently has significant advantages, such as better system resource utilization and higher throughput. However, it is crucial that these transactions do not conflict with each other. The ultimate goal is to ensure that the data
7 min read
ACID Properties in DBMS
In the world of Database Management Systems (DBMS), transactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliabilit
8 min read
Implementation of Locking in DBMS
Locking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Lock Based Concurrency Control Protocol in DBMS
In a Database Management System (DBMS), lock-based concurrency control (BCC) is a method used to manage how multiple transactions access the same data. This protocol ensures data consistency and integrity when multiple users interact with the database simultaneously. This method uses locks to manage
7 min read
Graph Based Concurrency Control Protocol in DBMS
In a Database Management System (DBMS), multiple transactions often run at the same time, which can lead to conflicts when they access the same data. Graph-Based Concurrency Control Protocol helps manage these conflicts and ensures that the database remains consistent. In this protocol, transactions
4 min read
Two Phase Locking Protocol
The Two-Phase Locking (2PL) Protocol is an essential concept in database management systems used to maintain data consistency and ensure smooth operation when multiple transactions are happening simultaneously. It helps to prevent issues like data conflicts where two or more transactions try to acce
9 min read
Multiple Granularity Locking in DBMS
The various Concurrency Control schemes have used different methods and every individual Data item is the unit on which synchronization is performed. A certain drawback of this technique is if a transaction Ti needs to access the entire database, and a locking protocol is used, then Ti must lock eac
5 min read
Polygraph to check View Serializability in DBMS
In a Database Management System (DBMS), ensuring that transactions execute correctly without conflicts is important. One way to check this is through view serializability, which ensures that a schedule produces the same final result as some serial execution of transactions. To check view serializabi
7 min read
Log based Recovery in DBMS
Log-based recovery in DBMS ensures data can be maintained or restored in the event of a system failure. The DBMS records every transaction on stable storage, allowing for easy data recovery when a failure occurs. For each operation performed on the database, a log file is created. Transactions are l
10 min read
Timestamp based Concurrency Control
Timestamp-based concurrency control is a method used in database systems to ensure that transactions are executed safely and consistently without conflicts, even when multiple transactions are being processed simultaneously. This approach relies on timestamps to manage and coordinate the execution o
6 min read
Dirty Read in SQL
Pre-Requisite - Types of Schedules, Transaction Isolation Levels in DBMS A Dirty Read in SQL occurs when a transaction reads data that has been modified by another transaction, but not yet committed. In other words, a transaction reads uncommitted data from another transaction, which can lead to inc
6 min read
Types of Schedules in DBMS
Schedule, as the name suggests, is a process of lining the transactions and executing them one by one. When there are multiple transactions that are running in a concurrent manner and the order of operation is needed to be set so that the operations do not overlap each other, Scheduling is brought i
7 min read
Conflict Serializability in DBMS
A schedule is a sequence in which operations (read, write, commit, abort) from multiple transactions are executed in a database. Serial or one by one execution of schedules has less resource utilization and low throughput. To improve it, two or more transactions are run concurrently. Conflict Serial
6 min read
Condition of schedules to be View-equivalent
In a database system, a schedule is a sequence of operations (such as read and write operations) performed by transactions in the system. Serial or one by one execution of schedules has less resource utilization and low throughput. To improve it, two or more transactions are run concurrently. View S
6 min read
Recoverability in DBMS
Recoverability is a critical feature of database systems that ensures the database can return to a consistent and reliable state after a failure or error. It guarantees that the effects of committed transactions are saved permanently, while uncommitted transactions are rolled back to maintain data i
7 min read
Precedence Graph for Testing Conflict Serializability in DBMS
A Precedence Graph or Serialization Graph is used commonly to test the Conflict Serializability of a schedule. It is a directed Graph (V, E) consisting of a set of nodes V = {T1, T2, T3..........Tn} and a set of directed edges E = {e1, e2, e3..................em}. The graph contains one node for eac
6 min read
Database Recovery Techniques in DBMS
Database Systems like any other computer system, are subject to failures but the data stored in them must be available as and when required. When a database fails it must possess the facilities for fast recovery. It must also have atomicity i.e. either transactions are completed successfully and com
11 min read
Starvation in DBMS
Starvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Deadlock in DBMS
In database management systems (DBMS) a deadlock occurs when two or more transactions are unable to the proceed because each transaction is waiting for the other to the release locks on resources. This situation creates a cycle of the dependencies where no transaction can continue leading to the sta
10 min read
Types of Schedules Based on Recoverability in DBMS
In a Database Management System (DBMS), multiple transactions often run at the same time, and their execution order is called a schedule. It is important to ensure that these schedules do not cause data loss or inconsistencies, especially if a failure occurs. A recoverable schedule allows the system
5 min read
Why recovery is needed in DBMS
Basically, whenever a transaction is submitted to a DBMS for execution, the operating system is responsible for making sure or to be confirmed that all the operations which need to be performed in the transaction have been completed successfully and their effect is either recorded in the database or
6 min read
Indexing, B and B+ trees
Indexing in Databases - Set 1
Indexing is a crucial technique used in databases to optimize data retrieval operations. It improves query performance by minimizing disk I/O operations, thus reducing the time it takes to locate and access data. Essentially, indexing allows the database management system (DBMS) to locate data more
8 min read
Introduction of B-Tree
A B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Insert Operation in B-Tree
In this post, we'll discuss the insert() operation in a B-Tree. A new key is always inserted into a leaf node. To insert a key k, we start from the root and traverse down the tree until we reach the appropriate leaf node. Once there, the key is added to the leaf. Unlike Binary Search Trees (BSTs), n
15+ min read
Delete Operation in B-Tree
A B Tree is a type of data structure commonly known as a Balanced Tree that stores multiple data items very easily. B Trees are one of the most useful data structures that provide ordered access to the data in the database. In this article, we will see the delete operation in the B-Tree. B-Trees are
15+ min read
Introduction of B+ Tree
B + Tree is a variation of the B-tree data structure. In a B + tree, data pointers are stored only at the leaf nodes of the tree. In this tree structure of a leaf node differs from the structure of internal nodes. The leaf nodes have an entry for every value of the search field, along with a data po
8 min read
Bitmap Indexing in DBMS
Bitmap Indexing is a data indexing technique used in database management systems (DBMS) to improve the performance of read-only queries that involve large datasets. It involves creating a bitmap index, which is a data structure that represents the presence or absence of data values in a table or col
8 min read
Inverted Index
An Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
Difference between Inverted Index and Forward Index
Inverted Index It is a data structure that stores mapping from words to documents or set of documents i.e. directs you from word to document.Steps to build Inverted index are:Fetch the document and gather all the words.Check for each word, if it is present then add reference of document to index els
2 min read
SQL Queries on Clustered and Non-Clustered Indexes
Indexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read