Modulus of Elasticity or Elastic Modulus is the measurement of resistance offered by a material against the deformation force acting on it. Modulus of Elasticity is also called Young's Modulus. It is given as the ratio of Stress to Strain. The unit of elastic modulus is megapascal or gigapascal
Modulus of Elasticity is one of the most important concepts of material science and engineering. It is the property of material that measures stiffness to elastic deformation under stress. In this article, we will discuss about Modulus of Elasticity, including its definition, types, and fundamental concepts along with its various applications in day-to-day life.
What is Modulus of Elasticity
Modulus of Elasticity, or Young Modulus of Elasticity or Elastic Modulus, is a fundamental mechanical property of materials that measures their stiffness or resistance to elastic deformation under stress. It is also defined as the ratio of tensile stress (σ) to tensile strain (ε), where
Stress is the amount of force applied per unit area (σ = F/A) and strain is extension per unit length (ε = dl/l).
- Modulus of Elasticity was introduced by a famous British polymath and physician Sir Thomas Young who was born on 13th June, 1773. He was well known for the discovery of many theories and experiments such as - Young's modulus, Young's interference experiment, Astigmatism, Young-Helmholtz theory and Young Temperament.
- This property is essential in engineering and materials science, as it determine a material's ability to support loads and maintain its shape.
- One of the most important tests in engineering is knowing when an object or material will bend or break, and the property that tells us this is the Young’s modulus. It is the measure of how easily a material stretches and deforms.
- Modulus of Elasticity is also known as Young Modulus, tensile modulus and elastic modulus.
- Whether it is a small piece of rubber or large piece, its modulus of elasticity will always be same.
Modulus of Elasticity Definition
Modulus of Elasticity is the material's resistance to the deformation force. It is the ratio of stress acting on the body to the strain produced.
Modulus of Elasticity Example
Steel is one of the most common example of elastic modulus which is often used in construction because it has high strength and durability It is able to resist deformation and maintain its shape under stress. This allows steel to bear heavy loads without even bending or breaking. It is a brittle material and is instructed to use with safety and precaution. Diamond has one of the highest elastic modulus around 1220 GPa.
- Elastic Modulus of Steel is 210GPa
- Elastic Modulus of Concrete is 30 to 50 GPa
- Elastic Modulus of Aluminum is 70 GPa
- Elastic Modulus of Wood is 5.5 GPa to 17 GPa
How to Calculate Modulus of Elasticity
Modulus of Elasticity, in terms of the stress-strain curve, is the slope of the stress-strain curve in the region of elastic behavior, where stress is linearly proportional to strain.
-(1).png)
From the Graph we can measure the Modulus of Elasticity in the following Manner
- Modulus of Elasticity is the slope of the stress-strain curve.
- The region starting from 0 to the Yield strength is known as the elastic region. After that region, the plastic deformation region occurs.
- Yield strength is the stress required to produce a small amount of plastic deformation.
- Ultimate strength is the maximum stress a material can hold while being stress or pulled.
- After the ultimate stress point failure occurs as the material cannot hold the stress and hence breaks.
Determining of Modulus of Elasticity of Wire
Determining Young's modulus (also known as modulus of elasticity) of a material typically involves performing a tensile test on a wire or specimen.
- Cut a length of the wire to be tested. The wire should be uniform in diameter along its length and free from defects.
- Fix one end of the wire to a fixed clamp or holder. The other end should be attached to a load cell or device capable of applying a controlled tensile force.
- Set up a measurement system to accurately measure the applied force (tensile load) and the corresponding elongation (strain) of the wire.
- Apply a gradually increasing tensile force to the wire while simultaneously measuring the elongation. Ensure that the force is applied uniformly along the length of the wire and that the loading rate is controlled.
- Record the applied force (load) and the corresponding elongation (strain) at regular intervals throughout the test until the wire fractures. Plot a stress-strain curve using the recorded data.
- From the stress-strain curve, determine the elastic (linear) region where the stress is directly proportional to the strain. Calculate the slope of the linear portion of the curve, which represents the Young's modulus of the material according to Hooke's law
- Young's modulus (E) is calculated using the formula: E = Stress/Strain
Learn,
Formula of Elastic Modulus is given as the ratio of stress and strain
E = σ / ε
where
- E is the Elastic Modulus,
- ε is the resulting strain of the material
- σ is the stress applied to the material.
We can also define the modulus of elasticity by:
E = (F × L) / (A × δL)
where
- F = force exerted by the object under tension
- L = length
- A = cross-sectional area
- δL = change in length
- E = Young modulus in Pa
Modulus of Elasticity Dimensional formula
The Dimensional Formula for Modulus of Elasticity can be written as: [M1L-1T-2]
Where,
- M = mass
- L = length
- T = time
Derivation of Dimensional Formula of Modulus of Elasticity
We can derive the dimensional formula of Modulus of Elasticity as follows:
Modulus of Elasticity = Stress / Strain
We know, Stress = Force / Area.
Force = mass × acceleration = [M1L1T-2]
Area = length × breadth [M0L2T0]
Now, Stress = [M1L-1T-2] {Force / Area}
And, the dimensional formula of linear strain = [M0L0T0]
Therefore, the modulus of elasticity is dimensionally represented as [M1 L-1 T-2].
Unit of Elastic Modulus
SI Unit of Modulus of Elasticity is Nm-2 or Pascal
Elastic Modulus is expressed as a force per unit area. Its unit of measurement is pascals (Pa) or pounds per square inch (psi). If elastic modulus is of larger magnitudes, they are expressed by MPa and GPa. It is a measure of a material's stiffness or resistance to elastic deformation under stress.
Modulus of Elasticity of Different Materials
The values of some common elastic modulus materials are mentioned below:
Elastic Modulus of Different Materials
|
---|
Materials
| Modulus of Elasticity (GPa)
|
---|
ABS (Plastic)
| 2.3
|
Acrylic
| 3.2
|
Aluminum
| 69
|
Aluminum 6061
| 68.9
|
Copper
| 117
|
Diamond
| 1220
|
Glass
| 50-90
|
Magnesium
| 45
|
Nylon
| 2-4
|
Polypropylene
| 1.5-2
|
Rubber
| 0.01-0.1
|
Steel
| 200-210
|
Titanium and its alloys
| 105-120
|
Wood
| 10-20
|
Modulus of Elasticity vs Modulus of Rigidity
Modulus of Elasticity and Modulus Rigidity are two component that acts when the deforming force acts parallel and tangential respectively.
Difference Between Modulus of Elasticity and Modulus of Rigidity
|
---|
Modulus of Elasticity
| Modulus of Rigidity
|
---|
Calculate the deformations of an object when the deforming force is applied parallel to the surface.
| Calculate the deformation of an object when the deforming force is tangential to the surface.
|
Denoted by E
| denoted by G
|
E = Stress/Strain
| G = Shear Stress/Shear Strain
|
stretching or compressing type of deformation
| sliding or twisting type of deformation
|
E = 3K(1 - 2v)
| G = E/(2 + 2v)
|
Elastic Constants
Elastic Constants are used to determine the deformation produced by stress. They are used to obtain relationship between stress and strain. There are basically 4 types of elastic constants which we use, namely:
Bulk Modulus of Elasticity is explained as having the ability of a material to resist deformation in terms of change in volume at the time of subject compression under pressure.
Young's Modulus of Elasticity is based on the elastic constant which is defined as the proportionality constant between stress and strain.
Modulus of rigidity that is also known as Shear Modulus is defined as the measure of elastic shear stiffness of a material. This property depends on the material of the member which means the more elastic the member, the higher the modulus of rigidity.
Poisson's ratio is defined as the ratio of the change in width per unit width of a material in order to the change in its length per unit length which will be given as a result of strain.
Relation Between Elastic Constants
The relationship between these constants can be known by the given expression:
1/K − 3/G = 9/E
Where,
- K is the Bulk Modulus
- G is the shear modulus
- E is the Young's modulus.
Elastic Modulus Applications
Modulus of Elasticity is used in day to day life in many ways. It is used in engineering as well as medical science.
- We can use the elastic modulus to calculate how much a material will stretch and also how much potential energy will be stored.
- The elastic modulus allows us to determine how a given material will respond to stress.
- Elastic modulus is used to characterize biological materials like cartilage and bone as well.
Also, Check
Elastic Modulus Examples
Example 1. A wire is 2m long and has cross-sectional area of 10-6m2 A load of 980 N is suspended. Calculate the stress, the strain and, the energy stored in the wire
Given: Y = 12 × 1010 N m-2
Solution:
Stress = F / A = 980 / 10-6 = 98 × 107 N m-2
Strain = Stress / Y = 98 × 107 / 12 × 1010 = 8.17 × 10-3
Energy = 1/2 × (stress × strain) × volume = 1/2 × (98 × 107 × 8.17 × 10-3) × 2 × 10-6 = 8 Joules.
Example 2. A Metallic Cube with side 0.20 m is undergoes a shearing force of 1000 N. The top surface is displaced through 0.40 cm with respect to the bottom. Find the shear modulus of elasticity of the metal.
Solution:
Here, L = 0.20 m, F = 1000 N, x = 0.40 cm = 0.004 m and
Area A = L2= 0.04 m2
Therefore, Shear modulus = (1000/ 0.04) × (0.20 / 0.004) = 1.25 × 106 N m-2.
Example 3. What must be the elongation of a wire 5 m long so that the strain is 1% of 0.1? If the wire has cross-selection of 1 mm2 and is stretched by 10 kg, what is the stress?
Solution:
L = 5m, Strain = 1% of 0.1 = 1 × 10-2 × 0.1 = 1 × 10-3, Area of cross-section = 1 mm² = 1 × 10-6 m²
F = 10 kg= 10 × 9.8 N
Extension = Stress × L = 5mm
Stress = Force / Area = (10 × 9.8) / (1 × 10-6) = 9.8 × 107 N/m².
Modulus of Elasticity Numericals
Q1: A rod 10 m long has a cross-sectional area 1.5 × 10-4 m2. It is subjected to a load of 10 kg. If Young’s modulus of the material is 4 × 1010 N/m2, calculate the elongation produced in the wire.
Q2: A metallic cube of side 100 cm is subjected to a uniform force acting normal to the whole surface of the cube. The pressure is 106 pascal. If the volume changes by 1.25 x 10-3 m3, calculate the bulk modulus of the material.
Q3: A metal cube of side 0.45 m is subjected to a shearing force of 8000 N. The top surface is displaced through 0.30 cm with respect to the bottom. Calculate the shear modulus of metal.
Q4: A mild steel wire of radius 0.5 mm and length 3 m is stretched by a force of 49 N. calculate a) longitudinal stress, b) longitudinal strain c) elongation produced in the body if Y for steel is 2.1 × 1011 N/m2.
Similar Reads
CBSE Class 11 Physics Notes
CBSE Class 11 Physics Notes 2023-24 is a comprehensive guide for CBSE Class 11 students. The class 11 syllabus is designed to provide students with a strong foundation in the basic principles of physics, including Measurement, Vectors, Kinematics, Dynamics, Rotational Motion, Laws of Motion, and Gra
12 min read
Chapter 1 - UNITS AND MEASUREMENT
Measurement
Measurement is the process of finding out how much, how big, or how heavy something is. Itâs like a way to compare things using a standard unit. For example: How long? We measure length using units like inches, feet, or meters.If you measure the height of a door, youâre finding out how many meters o
7 min read
System of Units
Measurement forms the fundamental principle to various other branches of science, that is, construction and engineering services. Measurement is defined as the action of associating numerical with their possible physical quantities and phenomena. Measurements find a role in everyday activities to a
9 min read
Significant Figures
In Order to find the value of different sizes and compare them, measurement is used. Measuring things is not only a concept but also practically used in everyday life, for example, a milkman measures milk before selling it in order to make sure the correct amount is served, A tailor always measures
7 min read
Units and Dimensions
Units and Dimensions is a fundamental and essential topic in Physics. For the measurement of a physical quantity, Unit plays a vital role. Unit provides a complete idea about the measurement of a physical quantity. Dimension is a measure of the size or extent of a particular quantity. In this articl
8 min read
Dimensional Formula
Dimensional Formulas play an important role in converting units from one system to another and find numerous practical applications in real-life situations. Dimensional Formulas are a fundamental component of the field of units and measurements. In mathematics, Dimension refers to the measurement of
9 min read
Dimensional Analysis
Most of the physical things are measurable in this world. The system developed by humans to measure these things is called the measuring system. Every measurement has two parts, a number (n) and a unit(u). The unit describes the number, what this number is and what it signifies. For example, 46 cm,
6 min read
Chapter 2 - MOTION IN A STRAIGHT LINE
What is Motion?
Motion is defined as the change in the position of an object with respect to time i.e. when an object changes its position according to time it is said to be in the state of motion. Everything in the universe is in a state of continuous motion, for example, the moon revolves around the planets, the
12 min read
Instantaneous Velocity Formula
The speed of a moving item at a given point in time while retaining a specific direction is known as instantaneous velocity. With the passage of time, the velocity of an object changes. On the other hand, velocity is defined as the ratio of change in position to change in time when the difference in
4 min read
Instantaneous Speed Formula
Velocity is defined as the rate of change of its position with respect to its frame of reference. It is a vector quantity as it has magnitude and direction. The SI unit of velocity is meter per second or m/s.Whereas speed measures the distance traveled by an object over the change in time. It has ma
5 min read
Acceleration
Acceleration is defined as the rate of change in velocity. This implies that if an objectâs velocity is increasing or decreasing, then the object is accelerating. Acceleration has both magnitude and direction, therefore it is a Vector quantity. According to Newton's Second Law of Motion, acceleratio
9 min read
Uniform Acceleration
Uniformly Accelerated Motion or Uniform Acceleration in Physics is a motion in which the object is accelerated at constant acceleration. We have to keep in mind that uniform accelerated motion does not mean uniform velocity i.e. in uniform accelerated the velocity of the object increases linearly wi
8 min read
Relative Velocity Formula
Let us suppose we are travelling on a bus, and another bus overtakes us. We will not feel the actual speed of the overtaking bus, as felt by a person who looks at it, standing by the side of the road. If both the buses are moving at the same speed in the same direction, a person in one bus observes
11 min read
Chapter 3 - MOTION IN A Plane
Scalar and Vector
Scalar and Vector Quantities are used to describe the motion of an object. Scalar Quantities are defined as physical quantities that have magnitude or size only. For example, distance, speed, mass, density, etc. However, vector quantities are those physical quantities that have both magnitude and di
8 min read
Product of Vectors
Vector operations are used almost everywhere in the field of physics. Many times these operations include addition, subtraction, and multiplication. Addition and subtraction can be performed using the triangle law of vector addition. In the case of products, vector multiplication can be done in two
6 min read
Vector Operations
Vectors are fundamental quantities in physics and mathematics, that have both magnitude and direction. So performing mathematical operations on them directly is not possible. So we have special operations that work only with vector quantities and hence the name, vector operations. Thus, It is essent
8 min read
Resolution of Vectors
Vector Resolution is splitting a vector into its components along different coordinate axes. When a vector is expressed in terms of its components, it becomes easier to analyze its effects in different directions. This process is particularly useful when dealing with vector quantities such as forces
8 min read
Vector Addition
A Vectors is defined as, "A quantity that has both magnitudes, as well as direction." For any point P(x, y, z), the vector [Tex]\overrightarrow{OP}[/Tex] is represented as: [Tex]\overrightarrow{OP}(=\overrightarrow{r}) = x\hat{i} + y \hat{j} + z\hat{k} [/Tex] Vector addition is a fundamental operati
12 min read
Projectile Motion
Projectile motion refers to the curved path an object follows when it is thrown or projected into the air and moves under the influence of gravity. In this motion, the object experiences two independent motions: horizontal motion (along the x-axis) and vertical motion (along the y-axis). Projectile
15+ min read
Chapter 4 - LAWS OF MOTION
Newton's Laws of Motion | Formula, Examples and Questions
Newton's Laws of Motion, formulated by the renowned English physicist Sir Isaac Newton, are fundamental principles that form the core of classical mechanics. These three laws explain how objects move and interact with forces, shaping our view of everything from everyday movement to the dynamics of c
9 min read
Law of Inertia
Isaac Newton's first law of motion, also called the Law of Inertia, is one of the most important ideas in physics. But before we talk about the law, letâs first understand inertia. Inertia is just a fancy word for the idea that things donât like to change their state. If something is sitting still,
8 min read
Newton's First Law of Motion
Before the revolutionary ideas of Galileo and Newton, people commonly believed that objects naturally slowed down over time because it was their inherent nature. This assumption stemmed from everyday observations, where things like friction, air resistance, and gravity seemed to slow moving objects.
15+ min read
Newton's Second Law of Motion: Definition, Formula, Derivation, and Applications
Newton's Second Law of Motion is a fundamental principle that explains how the velocity of an object changes when it is subjected to an external force. This law is important in understanding the relationship between an object's mass, the force applied to it, and its acceleration. Here, we will learn
15 min read
Newton's Third Law of Motion
When you jump, you feel the gravitational force pulling you down towards the Earth. But did you know that at the same time, you are exerting an equal force on the Earth? This phenomenon is explained by Newton's Third Law of Motion. Newton's Third Law of Motion is a foundational principle in physics,
13 min read
Conservation of Momentum
Assume a fast truck collides with a stopped automobile, causing the automobile to begin moving. What exactly is going on behind the scenes? In this case, as the truck's velocity drops, the automobile's velocity increases, and therefore the momentum lost by the truck is acquired by the automobile. Wh
12 min read
Static Equilibrium
Static Equilibrium refers to the physical state of an object when it is at rest and no external force or torque is applied to it. In Static Equilibrium, the word 'static' refers to the body being at rest and the word 'equilibrium' refers to the state where all opposing forces cancel out each other a
9 min read
Types of Forces
Forces are an external cause that makes a body move, stop, and increase its velocity and other. There are various types of forces in physics and they are generally classified into two categories that are, Contact Force and Non Contact Force. In general, we define a push and pull as a force, and forc
14 min read
Friction
Friction in Physics is defined as a type of force that always opposes the motion of the object on which it is applied. Suppose we kick a football and it rolls for some distance and eventually it stops after rolling for some time. This is because of the friction force between the ball and the ground.
8 min read
Rolling Friction
Rolling Friction is a frictional force that opposes rolling objects. Rolling friction is applicable where the body moves along its curved surfaces. For example, wheels in vehicles, ball bearings, etc. are examples of rolling friction. In this article, we will learn about rolling friction, its defini
10 min read
Circular Motion
Circular Motion is defined as the movement of an object rotating along a circular path. Objects in a circular motion can be performing either uniform or non-uniform circular motion. Motion of a car on a bank road, the motion of a bike, the well of death, etc. are examples of circular motion. In this
15+ min read
Solving Problems in Mechanics
One must have probably heard of Newton's Laws of Motion by now. These laws will assist you in addressing mechanical issues. Typically, a mechanics problem does not include numerous forces operating on a single item. On the contrary, it is concerned with an assembly of many bodies exerting forces on
10 min read
Chapter 5 - WORK, ENERGY AND POWER
Energy
Energy in Physics is defined as the capacity of a body to do work. It is the capacity to complete a work. Energy can be broadly categorized into two categories, Kinetic Energy and Potential Energy. The capacity of an object to do the work is called the Energy. In this article, we will learn about, E
11 min read
Work Energy Theorem
The concept "work" is commonly used in ordinary speech, and we understand that it refers to the act of accomplishing something. For example, you are currently improving your understanding of Physics by reading this article! However, Physics may disagree on this point. The Work-energy Theorem explain
12 min read
Work - Definition, Formula, Types of Work, Sample Problems
In daily life, you are doing activities like study, running speaking, hear, climbing, gossips with friends and a lot of other things. Do you know? All these activities require some energy, and you get it from your daily food. In our day-to-day life, everyone eats food, gets energy, and does some act
6 min read
Kinetic Energy
Kinetic Energy is the energy associated with an object moving with a velocity. For an object of mass m and velocity, its kinetic energy is half of the product of the mass of the object with the square of its velocity. In our daily life, we observe kinetic energy while walking, cycling, throwing a ba
10 min read
Work Done by a Variable Force
Usually, a dancing person is considered to be more energetic compared to a sitting person. A security guard who has been standing at his place the whole day has been working for hours. In real life, this seems obvious, but these terms and definitions work differently when it comes to physics. In phy
6 min read
Potential Energy
Potential energy in physics is the energy that an object possesses as a result of its position. The term Potential Energy was first introduced by a well-known physicist William Rankine, in the 19th century. Gravitational Potential Energy, the elastic potential energy of an elastic spring, and the el
8 min read
Mechanical Energy Formula
Mechanical Energy - When a force operates on an object to displace it, it is said that work is performed. Work entails the use of a force to shift an object. The object will gather energy after the job is completed on it. Mechanical energy is the amount of energy acquired by a working object. The me
7 min read
Potential Energy of a Spring
A spring is used in almost every mechanical aspect of our daily lives, from the shock absorbers of a car to a gas lighter in the kitchen. Spring is used because of their property to get deformed and come back to their natural state again. Whenever a spring is stretched or compressed, a force is expe
7 min read
Power
Power in Physics is defined as the time rate of the amount of energy converted or transferred. In the SI system (or International System of Units), Watt (W) is the unit of Power. Watt is equal to one joule per second. In earlier studies, power is sometimes called Activity. Power is a scalar quantity
9 min read
Collision Theory
Collision Theory says that when particles collide (strike) each other, a chemical reaction occurs. However, this is necessary but may not be a sufficient condition for the chemical reaction. The collision of molecules must be sufficient to produce the desired products following the chemical reaction
7 min read
Collisions in Two Dimensions
A Collision occurs when a powerful force strikes on two or more bodies in a relatively short period of time. Collision is a one-time occurrence. As a result of the collision, the involved particles' energy and momentum change. The collision may occur as a result of actual physical contact between th
9 min read
Chapter 6 - SYSTEMS OF PARTICLES AND ROTATIONAL MOTION
Concepts of Rotational Motion
Rotational motion refers to the movement of an object around a fixed axis. It is a complex concept that requires an understanding of several related concepts. Some of the important concepts related to rotational motion include angular displacement, angular velocity, angular acceleration, torque, the
10 min read
Motion of a Rigid Body
A rigid body is a solid body that has little to no deformation when a force is applied. When forces are applied to such bodies, they come to translational and rotational motion. These forces change the momentum of the system. Rigid bodies are found almost everywhere in real life, all the objects fou
7 min read
Centre of Mass
Centre of Mass is the point of anybody where all the mass of the body is concentrated. For the sake of convenience in Newtonian Physics, we take the body as the point object where all its mass is concentrated at the centre of mass of the body. The centre of mass of the body is a point that can be on
15+ min read
Motion of Center of Mass
Center of Mass is an important property of any rigid body system. Usually, these systems contain more than one particle. It becomes essential to analyze these systems as a whole. To perform calculations of mechanics, these bodies must be considered as a single-point mass. The Center of mass denotes
7 min read
Linear Momentum of a System of Particles
The mass (m) and velocity (v) of an item are used to calculate linear momentum. It is more difficult to halt an item with more momentum. p = m v is the formula for linear momentum. Conservation of momentum refers to the fact that the overall quantity of momentum never changes. Let's learn more about
8 min read
Relation between Angular Velocity and Linear Velocity
Motion is described as a change in position over a period of time. In terms of physics and mechanics, this is called velocity. It is defined as the change in position over a period. Rotational Motion is concerned with the bodies which are moving around a fixed axis. These bodies in rotation motion o
4 min read
Angular Acceleration
Angular acceleration is the change in angular speed per unit of time. It can also be defined as the rate of change of angular acceleration. It is represented by the Greek letter alpha (α). The SI unit for the measurement of, Angular Acceleration is radians per second squared (rad/s2). In this articl
6 min read
Torque and Angular Momentum
For a rigid body, motion is generally both rotational and translation. If the body is fixed at one point, the motion is usually rotational. It is known that force is needed to change the translatory state of the body and to provide it with linear acceleration. Torque and angular momentum are rotatio
7 min read
Torque
Torque is the effect of force when it is applied to an object containing a pivot point or the axis of rotation (the point at which an object rotates), which results in the form of rotational motion of the object. The Force causes objects to accelerate in the linear direction in which the force is ap
10 min read
Angular Momentum
Angular Momentum is a kinematic characteristic of a system with one or more point masses. Angular momentum is sometimes called Rotational Momentum or Moment of Momentum, which is the rotational equivalent of linear momentum. It is an important physical quantity as it is conserved for a closed system
10 min read
Equilibrium of Bodies
The laws of motion, which are the foundation of old-style mechanics, are three explanations that portray the connections between the forces following up on a body and its movement. They were first expressed by English physicist and mathematician Isaac Newton. The motion of an item is related to the
7 min read
Moment of Inertia
Moment of inertia is the property of a body in rotational motion. Moment of Inertia is the property of the rotational bodies which tends to oppose the change in rotational motion of the body. It is similar to the inertia of any body in translational motion. Mathematically, the Moment of Inertia is g
15+ min read
Kinematics of Rotational Motion
It is not difficult to notice the analogous nature of rotational motion and kinematic motion. The terms of angular velocity and angular acceleration remind us of linear velocity and acceleration. So, similar to the kinematic equation of motion. Equations of rotational motion can also be defined. Suc
6 min read
Dynamics of Rotational Motion
Rigid bodies can move both in translation and rotation. As a result, in such circumstances, both the linear and angular velocities must be examined. To make these difficulties easier to understand, it is needed to separately define the translational and rotational motions of the body. The dynamics o
9 min read
Angular Momentum in Case of Rotation About a Fixed Axis
Imagine riding a bicycle. As you pedal, the wheels start spinning, and their speed depends on how fast you pedal. If you suddenly stop pedaling, the wheels keep rotating for a while before gradually slowing down. This phenomenon occurs due to rotational motion, where the spinning wheels possess angu
7 min read
Chapter 7 - GRAVITATION
Gravitational Force
Have you ever wondered why the Earth revolves around the Sun and not the other way around? Or why does the Moon remain in orbit instead of crashing into Earth? If the Earth pulls the Moon and the Moon pulls the Earth, shouldnât they just come together? What keeps them apart? All these questions can
11 min read
Kepler's Laws of Planetary Motion
Kepler's law of planetary motion is the basic law that is used to define the motion of planets around the stars. These laws work in parallel with Newton's Law and Gravitation Law and are helpful in studying the motion of various planetary objects. Kepeler's law provides three basic laws which are, K
10 min read
Acceleration due to Gravity
Acceleration due to gravity (or acceleration of gravity) or gravity acceleration is the acceleration caused by the gravitational force of attraction of large bodies. As we know that the term acceleration is defined as the rate of change of velocity with respect to a given time. Scientists like Sir I
8 min read
What is the Acceleration due to Gravity on Earth ?
Take something in your hand and toss it down. Its speed is zero when you free it from your grip. Its pace rises as it descends. It flies faster the longer it goes. This sounds like acceleration. Acceleration, on the other hand, implies more than just rising speed. Pick up the same object and throw i
12 min read
Gravitational Potential Energy
The energy possessed by objects due to changes in their position in a gravitational field is called Gravitational Potential Energy. It is the energy of the object due to the gravitational forces. The work done per unit mass to bring the body from infinity to a location inside the gravitational field
13 min read
Escape Velocity
Escape velocity as the name suggests, is the velocity required by an object to escape from the gravitational barrier of any celestial object. "What happens when you throw a stone upward in the air?" The stone comes back to the Earth's surface. If we throw the stone with a much higher force still it
7 min read
Artificial Satellites
When looked at the night sky many heavenly bodies like stars, moon, satellites, etc are observed in the sky. Satellites are small objects revolving or orbiting around a planet or on object larger than it. The most commonly observed and known satellite is the moon, the moon is the satellite of Earth,
8 min read
Binding Energy of Satellites
Humans learn early in life that all material items have a natural tendency to gravitate towards the earth. Anything thrown up falls to the ground, traveling uphill is much more exhausting than walking downhill, Rains from the clouds above fall to the ground, and there are several additional examples
10 min read
Chapter 8 - Mechanical Properties of Solids
Stress and Strain
Stress and Strain are the two terms in Physics that describe the forces causing the deformation of objects. Deformation is known as the change of the shape of an object by applications of force. The object experiences it due to external forces; for example, the forces might be like squeezing, squash
12 min read
Hooke's Law
Hooke's law provides a relation between the stress applied to any material and the strain observed by the material. This law was proposed by English scientist Robert Hooke. Let's learn about Hooke's law, its application, and others, in detail in this article. What is Hookeâs Law?According to Hooke's
10 min read
Stress-Strain Curve
Stress-Strain Curve is a very crucial concept in the study of material science and engineering. It describes the relationship between stress and the strain applied on an object. We know that stress is the applied force on the material, and strain, is the resulting change (deformation or elongation)
12 min read
Modulus of Elasticity
Modulus of Elasticity or Elastic Modulus is the measurement of resistance offered by a material against the deformation force acting on it. Modulus of Elasticity is also called Young's Modulus. It is given as the ratio of Stress to Strain. The unit of elastic modulus is megapascal or gigapascal Modu
12 min read
Elastic Behavior of Materials
Solids are made up of atoms based on their atomic elasticity (or molecules). They are surrounded by other atoms of the same kind, which are maintained in equilibrium by interatomic forces. When an external force is applied, these particles are displaced, causing the solid to deform. When the deformi
10 min read
Chapter 9 - Mechanical Properties of Fluids