Find the maximum GCD of the siblings of a Binary Tree
Last Updated :
22 May, 2024
Given a 2d-array arr[][] which represents the nodes of a Binary tree, the task is to find the maximum GCD of the siblings of this tree without actually constructing it.
Example:
Input: arr[][] = {{4, 5}, {4, 2}, {2, 3}, {2, 1}, {3, 6}, {3, 12}}
Output: 6
Explanation:

For the above tree, the maximum GCD for the siblings is formed for the nodes 6 and 12 for the children of node 3.
Input: arr[][] = {{5, 4}, {5, 8}, {4, 6}, {4, 9}, {8, 10}, {10, 20}, {10, 30}}
Output: 10
Approach: The idea is to form a vector and store the tree in the form of the vector. After storing the tree in the form of a vector, the following cases occur:
- If the vector size is 0 or 1, then print 0 as GCD could not be found.
- For all other cases, since we store the tree in the form of a pair, we consider the first values of two pairs and compare them. But first, you need to Sort the pair of edges.
For example, let’s assume there are two pairs in the vector A and B. We check if:
A.first == B.first
- If both of them match, then both of them belongs to the same parent. Therefore, we compute the GCD of the second values in the pairs and finally print the maximum of all such GCD’s.
Below is the implementation of the above approach:
C++
// C++ program to find the maximum
// GCD of the siblings of a binary tree
#include <bits/stdc++.h>
using namespace std;
// Function to find maximum GCD
int max_gcd(vector<pair<int, int> >& v)
{
// No child or Single child
if (v.size() == 1 || v.size() == 0)
return 0;
sort(v.begin(), v.end());
// To get the first pair
pair<int, int> a = v[0];
pair<int, int> b;
int ans = INT_MIN;
for (int i = 1; i < v.size(); i++) {
b = v[i];
// If both the pairs belongs to
// the same parent
if (b.first == a.first)
// Update ans with the max
// of current gcd and
// gcd of both children
ans
= max(ans,
__gcd(a.second,
b.second));
// Update previous
// for next iteration
a = b;
}
return ans;
}
// Driver function
int main()
{
vector<pair<int, int> > v;
v.push_back(make_pair(5, 4));
v.push_back(make_pair(5, 8));
v.push_back(make_pair(4, 6));
v.push_back(make_pair(4, 9));
v.push_back(make_pair(8, 10));
v.push_back(make_pair(10, 20));
v.push_back(make_pair(10, 30));
cout << max_gcd(v);
return 0;
}
Java
// Java program to find the maximum
// GCD of the siblings of a binary tree
import java.util.*;
import java.lang.*;
class GFG{
// Function to find maximum GCD
static int max_gcd(ArrayList<int[]> v)
{
// No child or Single child
if (v.size() == 1 || v.size() == 0)
return 0;
Collections.sort(v, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0]-b[0];
}
});
// To get the first pair
int[] a = v.get(0);
int[] b = new int[2];
int ans = Integer.MIN_VALUE;
for(int i = 1; i < v.size(); i++)
{
b = v.get(i);
// If both the pairs belongs to
// the same parent
if (b[0] == a[0])
// Update ans with the max
// of current gcd and
// gcd of both children
ans = Math.max(ans,
gcd(a[1],
b[1]));
// Update previous
// for next iteration
a = b;
}
return ans;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Driver code
public static void main(String[] args)
{
ArrayList<int[]> v = new ArrayList<>();
v.add(new int[]{5, 4});
v.add(new int[]{5, 8});
v.add(new int[]{4, 6});
v.add(new int[]{4, 9});
v.add(new int[]{8, 10});
v.add(new int[]{10, 20});
v.add(new int[]{10, 30});
System.out.println(max_gcd(v));
}
}
// This code is contributed by offbeat
Python
# Python3 program to find the maximum
# GCD of the siblings of a binary tree
from math import gcd
# Function to find maximum GCD
def max_gcd(v):
# No child or Single child
if (len(v) == 1 or len(v) == 0):
return 0
v.sort()
# To get the first pair
a = v[0]
ans = -10**9
for i in range(1, len(v)):
b = v[i]
# If both the pairs belongs to
# the same parent
if (b[0] == a[0]):
# Update ans with the max
# of current gcd and
# gcd of both children
ans = max(ans, gcd(a[1], b[1]))
# Update previous
# for next iteration
a = b
return ans
# Driver function
if __name__ == '__main__':
v=[]
v.append([5, 4])
v.append([5, 8])
v.append([4, 6])
v.append([4, 9])
v.append([8, 10])
v.append([10, 20])
v.append([10, 30])
print(max_gcd(v))
# This code is contributed by mohit kumar 29
C#
// C# program to find the maximum
// GCD of the siblings of a binary tree
using System.Collections;
using System;
class GFG{
// Function to find maximum GCD
static int max_gcd(ArrayList v)
{
// No child or Single child
if (v.Count == 1 || v.Count == 0)
return 0;
v.Sort();
// To get the first pair
int[] a = (int [])v[0];
int[] b = new int[2];
int ans = -10000000;
for(int i = 1; i < v.Count; i++)
{
b = (int[])v[i];
// If both the pairs belongs to
// the same parent
if (b[0] == a[0])
// Update ans with the max
// of current gcd and
// gcd of both children
ans = Math.Max(ans, gcd(a[1], b[1]));
// Update previous
// for next iteration
a = b;
}
return ans;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Driver code
public static void Main(string[] args)
{
ArrayList v = new ArrayList();
v.Add(new int[]{5, 4});
v.Add(new int[]{5, 8});
v.Add(new int[]{4, 6});
v.Add(new int[]{4, 9});
v.Add(new int[]{8, 10});
v.Add(new int[]{10, 20});
v.Add(new int[]{10, 30});
Console.Write(max_gcd(v));
}
}
// This code is contributed by rutvik_56
JavaScript
// JavaScript program to find the maximum
// GCD of the siblings of a binary tree
// Function to find maximum GCD
function max_gcd(v)
{
// No child or Single child
if (v.length == 1 || v.length == 0)
return 0;
v.sort((a, b) => a - b);
// To get the first pair
let a = v[0];
let b;
let ans = Number.MIN_SAFE_INTEGER;
for (let i = 1; i < v.length; i++) {
b = v[i];
// If both the pairs belongs to
// the same parent
if (b[0] == a[0])
// Update ans with the max
// of current gcd and
// gcd of both children
ans
= Math.max(ans, gcd(a[1], b[1]));
// Update previous
// for next iteration
a = b;
}
return ans;
}
function gcd(a, b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
// Driver function
let v = new Array();
v.push([5, 4]);
v.push([5, 8]);
v.push([4, 6]);
v.push([4, 9]);
v.push([8, 10]);
v.push([10, 20]);
v.push([10, 30]);
console.log(max_gcd(v));
// This code is contributed by gfgking
Time Complexity: O(nlogn), as sort() takes O(nlogn) time.
Auxiliary Space: O(1)
Another Approach:
The approach is to traverse the binary tree in a postorder manner and for each node, compute the greatest common divisor (GCD) of the values of its left and right children. If both children exist and their GCD is greater than the current maximum GCD, update the maximum GCD. Then return the GCD of the current node value and the maximum of its children’s GCDs.
Here is an implementation of above approach:
C++
// C++ Implementation
#include <bits/stdc++.h>
using namespace std;
// Structure of Tree Node
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x)
: val(x)
, left(NULL)
, right(NULL)
{
}
};
// Find out gcd
int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
int max_gcd_helper(TreeNode* root, int& ans)
{
if (!root)
return 0;
int left_gcd = max_gcd_helper(root->left, ans);
int right_gcd = max_gcd_helper(root->right, ans);
if (left_gcd != 0 && right_gcd != 0) {
int siblings_gcd = gcd(left_gcd, right_gcd);
ans = max(ans, siblings_gcd);
}
return (root->left) ? gcd(root->val, left_gcd)
: root->val;
}
int max_gcd(TreeNode* root)
{
int ans = 0;
max_gcd_helper(root, ans);
return ans;
}
// Driver code
int main()
{
TreeNode* root = new TreeNode(10);
root->left = new TreeNode(5);
root->right = new TreeNode(15);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(8);
root->right->left = new TreeNode(10);
root->right->right = new TreeNode(20);
// Function call
cout << max_gcd(root); // Output: 10
return 0;
}
Java
import java.io.*;
import java.util.Objects;
// Definition of TreeNode
class TreeNode {
int val;
TreeNode left;
TreeNode right;
public TreeNode(int x) {
val = x;
left = null;
right = null;
}
}
public class GFG {
// Find out gcd
private static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
// Helper function to find the
// maximum GCD in the tree
private static int maxGCDHelper(TreeNode root, int[] ans) {
if (root == null)
return 0;
int leftGCD = maxGCDHelper(root.left, ans);
int rightGCD = maxGCDHelper(root.right, ans);
if (leftGCD != 0 && rightGCD != 0) {
int siblingsGCD = gcd(leftGCD, rightGCD);
ans[0] = Math.max(ans[0], siblingsGCD);
}
return (root.left != null) ? gcd(root.val, leftGCD) : root.val;
}
// Function to find the maximum GCD in the tree
public static int maxGCD(TreeNode root) {
int[] ans = { 0 };
// Store the result in an array to
// pass by reference
maxGCDHelper(root, ans);
return ans[0];
}
// Driver code
public static void main(String[] args) {
TreeNode root = new TreeNode(10);
root.left = new TreeNode(5);
root.right = new TreeNode(15);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(8);
root.right.left = new TreeNode(10);
root.right.right = new TreeNode(20);
// Function call
System.out.println(maxGCD(root));
}
}
Python
# Python3 Implementation
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
def gcd(a, b):
if b == 0:
return a
return gcd(b, a % b)
def max_gcd_helper(root, ans):
if not root:
return 0
left_gcd = max_gcd_helper(root.left, ans)
right_gcd = max_gcd_helper(root.right, ans)
if left_gcd != 0 and right_gcd != 0:
siblings_gcd = gcd(left_gcd, right_gcd)
ans[0] = max(ans[0], siblings_gcd)
return root.val if not root.left else gcd(root.val, left_gcd)
def max_gcd(root):
ans = [0]
max_gcd_helper(root, ans)
return ans[0]
# Driver code
if __name__ == "__main__":
root = TreeNode(10)
root.left = TreeNode(5)
root.right = TreeNode(15)
root.left.left = TreeNode(4)
root.left.right = TreeNode(8)
root.right.left = TreeNode(10)
root.right.right = TreeNode(20)
# Function call
print(max_gcd(root)) # Output: 10
C#
// C# implementation
using System;
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int x)
{
val = x;
left = null;
right = null;
}
}
public class Program
{
// Find out gcd
public static int GCD(int a, int b)
{
if (b == 0)
return a;
return GCD(b, a % b);
}
public static int max_gcd_helper(TreeNode root, ref int ans)
{
if (root == null)
return 0;
int leftGCD = max_gcd_helper(root.left, ref ans);
int rightGCD = max_gcd_helper(root.right, ref ans);
if (leftGCD != 0 && rightGCD != 0)
{
int siblingsGCD = GCD(leftGCD, rightGCD);
ans = Math.Max(ans, siblingsGCD);
}
return (root.left != null) ? GCD(root.val, leftGCD) : root.val;
}
public static int MaxGCD(TreeNode root)
{
int ans = 0;
max_gcd_helper(root, ref ans);
return ans;
}
// Driver code
public static void Main(string[] args)
{
TreeNode root = new TreeNode(10);
root.left = new TreeNode(5);
root.right = new TreeNode(15);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(8);
root.right.left = new TreeNode(10);
root.right.right = new TreeNode(20);
Console.WriteLine(MaxGCD(root)); // Output: 10
}
}
// Code is Added by Avinash Wani
JavaScript
// Structure of Tree Node
class TreeNode {
constructor(val) {
this.val = val;
this.left = null;
this.right = null;
}
}
// Find out gcd
function gcd(a, b) {
if (b === 0)
return a;
return gcd(b, a % b);
}
function max_gcd_helper(root, ans) {
if (!root)
return 0;
const left_gcd = max_gcd_helper(root.left, ans);
const right_gcd = max_gcd_helper(root.right, ans);
if (left_gcd !== 0 && right_gcd !== 0) {
const siblings_gcd = gcd(left_gcd, right_gcd);
ans[0] = Math.max(ans[0], siblings_gcd);
}
return (root.left) ? gcd(root.val, left_gcd) : root.val;
}
function max_gcd(root) {
const ans = [0];
max_gcd_helper(root, ans);
return ans[0];
}
// Driver code
function main() {
const root = new TreeNode(10);
root.left = new TreeNode(5);
root.right = new TreeNode(15);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(8);
root.right.left = new TreeNode(10);
root.right.right = new TreeNode(20);
// Function call
console.log(max_gcd(root)); // Output: 10
}
main();
Time Complexity: O(nlogn)
Auxiliary Space: O(1)
Similar Reads
GCD (Greatest Common Divisor) Practice Problems for Competitive Programming
GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest positive integer that divides both of the numbers. Fastest Way to Compute GCDThe fastest way to find the Greatest Common Divisor (GCD) of two numbers is by using the Euclidean algorithm. The Euclidean algorith
4 min read
Program to Find GCD or HCF of Two Numbers
Given two numbers a and b, the task is to find the GCD of the two numbers. Note: The GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them. Examples: Input: a = 20, b = 28Output: 4Explanation: The factors of 20 are 1, 2, 4, 5, 10
15+ min read
Check if two numbers are co-prime or not
Two numbers A and B are said to be Co-Prime or mutually prime if the Greatest Common Divisor of them is 1. You have been given two numbers A and B, find if they are Co-prime or not.Examples : Input : 2 3Output : Co-PrimeInput : 4 8Output : Not Co-Prime The idea is simple, we find GCD of two numbers
5 min read
GCD of more than two (or array) numbers
Given an array arr[] of non-negative numbers, the task is to find GCD of all the array elements. In a previous post we find GCD of two number. Examples: Input: arr[] = [1, 2, 3]Output: 1Input: arr[] = [2, 4, 6, 8]Output: 2 Using Recursive GCDThe GCD of three or more numbers equals the product of the
11 min read
Program to find LCM of two numbers
LCM of two numbers is the smallest number which can be divided by both numbers. Input : a = 12, b = 18Output : 3636 is the smallest number divisible by both 12 and 18 Input : a = 5, b = 11Output : 5555 is the smallest number divisible by both 5 and 11 [Naive Approach] Using Conditional Loop This app
8 min read
LCM of given array elements
In this article, we will learn how to find the LCM of given array elements. Given an array of n numbers, find the LCM of it. Example: Input : {1, 2, 8, 3}Output : 24LCM of 1, 2, 8 and 3 is 24Input : {2, 7, 3, 9, 4}Output : 252 Table of Content [Naive Approach] Iterative LCM Calculation - O(n * log(m
15 min read
Find the other number when LCM and HCF given
Given a number A and L.C.M and H.C.F. The task is to determine the other number B. Examples: Input: A = 10, Lcm = 10, Hcf = 50. Output: B = 50 Input: A = 5, Lcm = 25, Hcf = 4. Output: B = 20 Formula: A * B = LCM * HCF B = (LCM * HCF)/AExample : A = 15, B = 12 HCF = 3, LCM = 60 We can see that 3 * 60
4 min read
Minimum insertions to make a Co-prime array
Given an array of N elements, find the minimum number of insertions to convert the given array into a co-prime array. Print the resultant array also.Co-prime Array : An array in which every pair of adjacent elements are co-primes. i.e, [Tex]gcd(a, b) = 1 [/Tex]. Examples : Input : A[] = {2, 7, 28}Ou
7 min read
Find the minimum possible health of the winning player
Given an array health[] where health[i] is the health of the ith player in a game, any player can attack any other player in the game. The health of the player being attacked will be reduced by the amount of health the attacking player has. The task is to find the minimum possible health of the winn
4 min read
Minimum squares to evenly cut a rectangle
Given a rectangular sheet of length l and width w. we need to divide this sheet into square sheets such that the number of square sheets should be as minimum as possible.Examples: Input :l= 4 w=6 Output :6 We can form squares with side of 1 unit, But the number of squares will be 24, this is not min
4 min read