C Program For Finding The Middle Element Of A Given Linked List
Last Updated :
23 Feb, 2023
Given a singly linked list, find the middle of the linked list. For example, if the given linked list is 1->2->3->4->5 then the output should be 3.
If there are even nodes, then there would be two middle nodes, we need to print the second middle element. For example, if given linked list is 1->2->3->4->5->6 then the output should be 4.
Method 1:
Traverse the whole linked list and count the no. of nodes. Now traverse the list again till count/2 and return the node at count/2.
Method 2:
Traverse linked list using two pointers. Move one pointer by one and the other pointers by two. When the fast pointer reaches the end slow pointer will reach the middle of the linked list.
Below image shows how printMiddle function works in the code :

C
// C program to find middle of linked list
#include<stdio.h>
#include<stdlib.h>
// Link list node
struct Node
{
int data;
struct Node* next;
};
// Function to get the middle of
// the linked list
void printMiddle(struct Node *head)
{
struct Node *slow_ptr = head;
struct Node *fast_ptr = head;
if (head!=NULL)
{
while (fast_ptr != NULL &&
fast_ptr->next != NULL)
{
fast_ptr = fast_ptr->next->next;
slow_ptr = slow_ptr->next;
}
printf("The middle element is [%d]",
slow_ptr->data);
}
}
void push(struct Node** head_ref,
int new_data)
{
// Allocate node
struct Node* new_node =
(struct Node*) malloc(sizeof(struct Node));
// Put in the data
new_node->data = new_data;
// Link the old list of the new node
new_node->next = (*head_ref);
// Move the head to point to the new node
(*head_ref) = new_node;
}
// A utility function to print a given
// linked list
void printList(struct Node *ptr)
{
while (ptr != NULL)
{
printf("%d->", ptr->data);
ptr = ptr->next;
}
printf("NULL");
}
// Driver code
int main()
{
// Start with the empty list
struct Node* head = NULL;
int i;
for (i = 5; i > 0; i--)
{
push(&head, i);
printList(head);
printMiddle(head);
}
return 0;
}
Output:
5->NULL
The middle element is [5]
4->5->NULL
The middle element is [5]
3->4->5->NULL
The middle element is [4]
2->3->4->5->NULL
The middle element is [4]
1->2->3->4->5->NULL
The middle element is [3]
Time Complexity: O(n) where n is the number of nodes in the given linked list.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Method 3:
Initialize mid element as head and initialize a counter as 0. Traverse the list from head, while traversing increment the counter and change mid to mid->next whenever the counter is odd. So the mid will move only half of the total length of the list.
Thanks to Narendra Kangralkar for suggesting this method.
C
// C program to implement the
// above approach
#include <stdio.h>
#include <stdlib.h>
// Link list node
struct node
{
int data;
struct node* next;
};
// Function to get the middle of
// the linked list
void printMiddle(struct node* head)
{
int count = 0;
struct node* mid = head;
while (head != NULL)
{
// Update mid, when 'count'
// is odd number
if (count & 1)
mid = mid->next;
++count;
head = head->next;
}
// If empty list is provided
if (mid != NULL)
printf("The middle element is [%d]",
mid->data);
}
void push(struct node** head_ref,
int new_data)
{
// Allocate node
struct node* new_node =
(struct node*)malloc(sizeof(struct node));
// Put in the data
new_node->data = new_data;
// Link the old list of the new node
new_node->next = (*head_ref);
// Move the head to point to the new node
(*head_ref) = new_node;
}
// A utility function to print a
// given linked list
void printList(struct node* ptr)
{
while (ptr != NULL)
{
printf("%d->", ptr->data);
ptr = ptr->next;
}
printf("NULL");
}
// Driver code
int main()
{
// Start with the empty list
struct node* head = NULL;
int i;
for (i = 5; i > 0; i--)
{
push(&head, i);
printList(head);
printMiddle(head);
}
return 0;
}
Output:
5->NULL
The middle element is [5]
4->5->NULL
The middle element is [5]
3->4->5->NULL
The middle element is [4]
2->3->4->5->NULL
The middle element is [4]
1->2->3->4->5->NULL
The middle element is [3]
Time Complexity: O(n) where n is the number of nodes in the given linked list.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Please refer complete article on Find the middle of a given linked list for more details!
Similar Reads
C Program For Moving Last Element To Front Of A Given Linked List
Write a function that moves the last element to the front in a given Singly Linked List. For example, if the given Linked List is 1->2->3->4->5, then the function should change the list to 5->1->2->3->4. Algorithm: Traverse the list till the last node. Use two pointers: one t
3 min read
C# Program For Moving Last Element To Front Of A Given Linked List
Write a function that moves the last element to the front in a given Singly Linked List. For example, if the given Linked List is 1->2->3->4->5, then the function should change the list to 5->1->2->3->4. Algorithm: Traverse the list till the last node. Use two pointers: one t
3 min read
C Program For Finding The Length Of Loop In Linked List
Write a function detectAndCountLoop() that checks whether a given Linked List contains loop and if loop is present then returns count of nodes in loop. For example, the loop is present in below-linked list and length of the loop is 4. If the loop is not present, then the function should return 0. Re
3 min read
C Program For Finding Length Of A Linked List
Write a function to count the number of nodes in a given singly linked list. For example, the function should return 5 for linked list 1->3->1->2->1. Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Iterative Solution: 1) Initialize count as 0 2) Initia
2 min read
C Program For Deleting A Node In A Linked List
We have discussed Linked List Introduction and Linked List Insertion in previous posts on a singly linked list.Let us formulate the problem statement to understand the deletion process. Given a 'key', delete the first occurrence of this key in the linked list. Iterative Method:To delete a node from
3 min read
C Program For Deleting A Linked List Node At A Given Position
Given a singly linked list and a position, delete a linked list node at the given position. Example: Input: position = 1, Linked List = 8->2->3->1->7 Output: Linked List = 8->3->1->7 Input: position = 0, Linked List = 8->2->3->1->7 Output: Linked List = 2->3->1
3 min read
C Program For Detecting Loop In A Linked List
Given a linked list, check if the linked list has loop or not. Below diagram shows a linked list with a loop. Solution: Floyd's Cycle-Finding Algorithm Approach: This is the fastest method and has been described below: Traverse linked list using two pointers.Move one pointer(slow_p) by one and anoth
2 min read
C Program For Deleting A Node In A Doubly Linked List
Pre-requisite: Doubly Link List Set 1| Introduction and Insertion Write a function to delete a given node in a doubly-linked list. Original Doubly Linked List Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Approach: The deletion of a node in a doubly-linked list
4 min read
C Program For Pairwise Swapping Elements Of A Given Linked List
Given a singly linked list, write a function to swap elements pairwise. Input: 1->2->3->4->5->6->NULL Output: 2->1->4->3->6->5->NULL Input: 1->2->3->4->5->NULL Output: 2->1->4->3->5->NULL Input: 1->NULL Output: 1->NULL For examp
3 min read
C# Program For Deleting A Node In A Doubly Linked List
Pre-requisite: Doubly Link List Set 1| Introduction and Insertion Write a function to delete a given node in a doubly-linked list. Original Doubly Linked List Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Approach: The deletion of a node in a doubly-linked list
4 min read