inria-00575462, version 5
Conditional Density Estimation by Penalized Likelihood Model Selection and Applications
Serge Cohen a, 1Erwan Le Pennec
b, 2, 3
N° RR-7596 (2011)
Résumé : In this technical report, we consider conditional density estimation with a maximum likelihood approach. Under weak assumptions, we obtain a theoretical bound for a Kullback-Leibler type loss for a single model maximum likelihood estimate. We use a penalized model selection technique to select a best model within a collection. We give a general condition on penalty choice that leads to oracle type inequality for the resulting estimate. This construction is applied to two examples of partition-based conditional density models, models in which the conditional density depends only in a piecewise manner from the covariate. The first example relies on classical piecewise polynomial densities while the second uses Gaussian mixtures with varying mixing proportion but same mixture components. We show how this last case is related to an unsupervised segmentation application that has been the source of our motivation to this study.
- a – IPANEMA / Synchrotron Soleil
- b – INRIA
- 1 : IPANEMA
- Synchrotron SOLEIL
- 2 : SELECT (INRIA Saclay - Ile de France)
- INRIA – Université Paris XI - Paris Sud – CNRS : UMR
- 3 : Laboratoire de Mathématiques d'Orsay (LM-Orsay)
- CNRS : UMR8628 – Université Paris XI - Paris Sud
- Domaine : Mathématiques/Statistiques
Statistiques/Théorie
- Référence interne : RR-7596
- Versions disponibles : v1 (10-03-2011) v2 (08-04-2011) v3 (08-08-2011) v4 (11-12-2011) v5 (09-07-2012)
- inria-00575462, version 5
- http://hal.inria.fr/inria-00575462
- oai:hal.inria.fr:inria-00575462
- Contributeur : Erwan Le Pennec
- Soumis le : Lundi 9 Juillet 2012, 13:33:03
- Dernière modification le : Lundi 9 Juillet 2012, 15:07:32