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Robustness is a standard correctness property which intuitively means that if the input to the program

changes less than a fixed small amount then the output changes only slightly. This notion is useful in

the analysis of rounding error for floating point programs because it helps to establish bounds on out-

put errors introduced by both measurement errors and by floating point computation. Compositional

methods often do not work since key constructs—like the conditional and the while-loop—are not

robust. We propose a method for proving the robustness of a while-loop. This method is non-local in

the sense that instead of breaking the analysis down to single lines of code, it checks certain global

properties of its structure. We show the applicability of our method on two standard algorithms: the

CORDIC computation of the cosine and Dijkstra’s shortest path algorithm.

Keywords: Program analysis, floating-point arithmetic, robustness to errors.

1 Introduction

Programs using floating point arithmetic are often used for critical applications and it is therefore funda-

mental to develop methods to establish the correctness of such programs. A central problem in dealing

with floating point programs is the propagation of errors due to the digitization of analog quantities and

the introduction of floating point errors during computation. As is well known, floating point arithmetic

on these representations is quite different from real number arithmetic: for example, addition is neither

commutative nor associative [5].

The developers of floating point programs would like to think in terms of real number semantics

instead of the more ad hoc and complicated semantics given by some specific definition of floating point

arithmetic, such as the IEEE standard 754 [8]. A central problem in trying to reason about floating point

programs is that in dealing with non-continuous operators such as the conditional and the while-loop,

floating point errors can result in what appears to be erratic behavior. The problem is that these constructs

are in general non-robust: small variations in the data can cause large variations in the results.

When the program contains non-robust operators, traditional compositional methods do not work

well. Decomposing the correctness of a looping program using Hoare triples, for example, usually

requires either introducing abstractions (e.g., approximations) which can then make conclusions too

imprecise, or to undergo a very complex and intricate proof.

In this paper, we will take a different approach: we shall describe some programs where such erratic

behavior is recognized and find a way to reason and bound all of that behavior. By moving away from

the reasoning using Hoare’s style emphasis on local and compositional analysis of a looping program,

we are able to avoid reasoning about individual erratic behaviors: instead, we will treat such behaviors

as an aggregate and try to bound the behavior of that aggregate.
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To illustrate such a possibility in reasoning, consider Dijkstra’s minimal path algorithm [3]. This

greedy algorithm moves from a source node to its neighbors, always picking the node with the least

accumulated path from the source. If one makes small changes to the distances labeling edges, then the

least path distance will change also by a small amount: that is, this algorithm is continuous. However,

the actual behavior of the loop and the marking of subsequent nodes can vary greatly with small changes

to edge lengths. Our approach to reasoning will allow us to view all of these apparently erratic choices

of intermediate paths as an aggregate on which we are able to establish the robustness of the entire

algorithm.

Plan of the paper In the next section we introduce the concept of robustness and we relate it to the

notions of continuity and k-Lipschitz. Section 3 contains our main contribution: a schema for reasoning

about robustness in programs and its correctness. We then show the applicability of our proposal in two

main examples: The CORDIC algorithm for computing cosine, presented in Section 4, and Dijkstra’s

shortest-path algorithm, presented in Section 5. In Section 6 we discuss some related work. Section 7

concludes and discusses some future lines of research.

2 Robustness of floating-point programs

Robustness is a standard concept from control theory [12, 11]. In the case of programming languages,

there are two definitions of robustness that have been considered. One definition used by Chaudhuri et

al [1] considered robustness to be based on continuity. Later Chaudhuri et al [2] considered a stronger

notion of robustness, namely the k-Lipschitz property: that is, changes to the input to a program lead to

only proportionally bounded changes to the output. Another approach was used by Majumdar et al in

[9, 10] where robustness is formulated as “if the input of the program changes by an amount less than

ε , where ε is a fixed constant, then the output changes only slightly." In our paper, we propose a more

flexible and general notion of robustness that generalizes both of these concepts. We now motivate and

explain our notion of robustness in more detail.

The notions of robustness considered in [1, 2] are mainly useful for exact semantics, namely when

we do not take into account the errors introduced by the representation and/or the computation. In this

case, the only deviation comes from the error of the input. The continuity property, that for a function f

on reals is defined as:

∀ε > 0 ∃δ ∀i, i′ ∈ R |i− i′|< δ ⇒ | f (i)− f (i′)|< ε

ensures that the correct output can be approximated when we can approximate the input closely enough.

This notion of robustness, however, is too weak in many settings, because a small variation in the input

can cause an unbounded change in the output. The k-Lipschitz property, defined as

∀i, i′ ∈R | f (i)− f (i′)| ≤ k|i− i′|

amends this problem because it bounds the variation in the output linearly by the variation in the input.

In our setting, however, the k-Lipschitz property is too strong. This is due to the following reasons:

1. If we consider a finite precision semantics, like floating point implementations, the constant factor

k can become much bigger than the one optimal for the exact semantics. For instance, assume

that the available representations are the numbers in the set {k 2−32|k ∈ Z} and rounding is done

by taking the lower value, and observe that a function like f : x 7→ 2−4x, which is 2−4-Lipschitz
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in the exact semantics, is only 1-Lipschitz in this approximate semantics. Indeed, there exist two

values that differ by just 2−32 and return a result that differ by 2−32. For example, take 1 and

1− 2−32: we have that f (1) = 2−4 and f (1− 2−32) = 2−4 − 2−36, but the second result will be

rounded down to 2−4 −2−32.

2. There are algorithms that have a desired precision e as a parameter and are considered correct as

long as the result differs by at most e from the results of the mathematical function they are meant

to implement. A program of this kind may be discontinuous (and therefore not k-Lipschitz) even

if it is considered to be a correct implementation of a k-Lipschitz function. The phenomenon is il-

lustrated by the following program f which is meant to compute the inverse of a strictly increasing

function g : R+ → R
+ whose inverse is k-Lipschitz for some k.

f(i){ y=0;

while(g(y) < i){

y = y+e; }

return y; }

The program f approximates g−1 with precision e in the sense that

∀x ∈ R
+ f (x)− e ≤ g−1(x) ≤ f (x)

Given the above inequality, we would like to consider the program f as robust, even though the

function it computes is discontinuous (and hence not k-Lipschitz, for any k).

These two observations lead us to define another property, P1
k,ε , to capture robustness:

∀i, i′ ∈R, | f (i)− f (i′)| ≤ k|i− i′|+ ε

This property amends the two previous problems by setting ε to 2−32 in the first example and to e in the

second example. It also extends the usual definition of the k-Lipschitz property, which can be expressed

as P1
k,0.

Now, we want to extend this definition to allow for several variables and for other metric spaces

besides R: e.g., probability distributions, intervals arithmetic etc. Thus, we consider, instead, two metric

spaces: one for input (I, dI) and the other for the return value (R,dR). Hence, our robustness property P2
k,ε

becomes

∀i, i′ ∈ I,dR( f (i), f (i′))≤ kdI(i, i
′)+ ε

Finally, since we are studying small deviation, it is not useful to get this property for any i and i′ in

I but rather when they are close: i.e., dI(i, i
′) ≤ δ , for suitable values δ ∈ R

+. In convex spaces, this

property can be easily extended to pairs of inputs having distance more than δ by using intermediate

values. So, finally, in this paper we propose the property Pk,ε ,δ , described in the following definition.

Definition 2.1. Let I and R be metric spaces with distance dI and dR respectively, f : I → R a function,

k,ε ∈ R
+, and let δ ∈R

+∪{+∞}. We define the property Pk,ε ,δ for the function f as follows:

∀i, i′ ∈ I, dI(i, i
′)≤ δ =⇒ dR( f (i), f (i′))≤ kdI(i, i

′)+ ε
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3 A schema and its correctness

The main characteristic of our schema is to subdivide the code into several parts instead of analyzing

it line by line. Our template, which we show in a moment, divides the data structures in an algorithm

into two parts, called A and B. Here, A is the witness to the progress of the algorithm: in particular, the

stopping condition will only depend on A (and the input). The structure B is used to accumulate results

that provide the answer when the stopping condition is satisfied.

3.1 The schema structure definition

Instead of presenting a formal definition of program schema and matching of code, we illustrate these

with the schema in Figure 1.

foo(i){

a = a0;

b = b0;

while(S(i,a)){

c = O(a,b,c,i);

a = M(a,c);

b = N(i,b,c);

}

return b; }

Figure 1: The main template

Here, the schema variables a, b, c, etc, denote tuples of

program variables such that no program variable occurs twice

among these schema variables. Program expressions such as

c = O(a,b,c,i);

denotes a program phrase that computes new values for the

variables denoted by c from values of variables in the tuples

a, b, c, and i. The actual computation here will be denoted

by O. This looping program initializes the variables in a and

b with the values in the tuples a0 and b0, respectively. The

stopping condition for the loop is given by the boolean valued

expression S(i,a) and the result of the program is the tuple

of values denoted by the variables in b.

We shall assume that all program variables are typed in the

usual way: variables may range over the values in their asso-

ciated type. Our analysis of the metric properties of a looping

program will, however, consider that tuples of variables, for example, a and b in Figure 1, range over

some metric space on the Cartesian product of the variables in the tuple.

3.2 A sufficient condition for robustness

ListFoo(i){

a = a0;

b = b0;

j = 0;

while(! S(i,a)){

c = O(a,b,c,i);

j = j+1;

l[j] = c;

a = M(a,c);

b = N(i,b,c); }

return l; }

Figure 2: Collecting c values in a list

We shall now prove that a program having the generic struc-

ture of foo given in Figure 1 has, under certain conditions, the

property Pk,ε ,δ for some k,ε ,δ .

The aim of our method is to postpone the analysis of the ex-

act semantics of commands as far as possible. In order to begin

the analysis without specific knowledge of this semantics, we

need to manipulate other programs made from the functions O,

M, and N that have been identified. For example, the program

listFoo in Figure 2 will be used to extract the list of values of

c obtained for a particular execution of foo with input i. The

new lines added to listFoo will assume the usual semantics for

natural numbers.

We now define two new programs. The first is the foob

program given below: it has the same shape as foo but instead
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of setting c by the computation of O(a,b,c,i), it sets cwith

the values of a list given in input. Naturally, the stop condition

for the loop is now that all elements of the list have been accessed. Note that since a was just used in the

computation of O, the commands affecting a are now useless and can be removed.

foo_b(l,i){

// a = a0;

b = b0;

for(int j = 0; j < l.length; j++ ){

c = l[j];

// a = M(a,c);

b = N(i,b,c); }

return b; }

We have used Java-style instructions such as l.length for the length of the list l and l[ j] for the jth

element of the list l. (The // syntax is used to form a comment.) We define the new function fooB(i, i
′) =

foob(listFoo(i), i′). Notice that fooB(i, i) = foo(i).
The second program fooa(l) is the same program as foob except that a is returned instead of b. In

this program, the lines where b is set are now useless.

foo_a(l){

a = a0;

// b = b0;

for(int j = 0; j < l.length; j++ ){

c = l[j];

a = M(a,c);

// b = N(i,b,c);

}

return a; }

Finally, we define fooA(i) = fooa(listFoo(i)). The two function fooA and fooB and relations between

them will be used to indirectly analyze the program foo.

In what follows, we use the following conventions: the domain of the variables a, b, c, and i are A,

B, C and I, respectively, and a0 and b0 are some determined constants of type A and B respectively. For

every type X , the expression X∗ denote the type of lists of type X .

We now introduce four conditions that need to hold to prove that the foo program satisfies Pk,ε ,δ for

appropriate values of k, ε , and δ . These conditions apply to eight parameters: namely, δ ,kN∗ ,εN∗ ,KA,ε2,

Ks,εs,εt . Condition C1 expresses the property PkN∗ ,εN∗ ,δ for the transformed program fooB, condition C2

expresses the fact that there is a relationship between the values stored in A and the values stored in B,

and condition C3 and C4 address the stability of the stop condition S(i,a).

Condition 3.1 (C1). ∀l ∈C∗.PkN∗ ,εN∗ ,δ (λ z.foob(l,z)).

The next condition states that whenever two inputs i and i′ are within a δ of each other then it is the

case that if their images in A (under fooa) are close, then their images in B (under foob) are close.

Condition 3.2 (C2).

∀i1, i ∈ I,dI(i, i1)≤ δ =⇒ dB(fooB(i, i), fooB(i1, i))≤ kAdA(fooA(i1), fooA(i))+ ε2

The stopping condition S should satisfy the following two conditions. The first expresses that the

boundary of the region {a | S(i,a)} cannot vary too much.
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Condition 3.3 (C3).

∀a ∈ A,∀i, i′ ∈ I,dI(i, i
′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,dA(a,a

′)≤ ksdI(i
′, i)+ εs ∧ S(i,a′)

The following condition on S states that the diameter of the region {a | S(i,a)} is as small as the

desired precision.

Condition 3.4 (C4).

∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ dA(a,a
′)≤ εt

Finally, our main theorem is the following.

Theorem 3.1. If the program foo terminates and the conditions C1, C2, C3, and C4 hold, then Pk0,ε0,δ

holds for the function computed by foo with k0 = kN∗ + kAks and ε0 = εN∗ + kA(εs + εt)+ ε2.

Proof In the proof, we will use these two observations:

1. Since listFoo(i) is obtained from the computation of foo(i), and since fooB(i, i
′) replaces the result

of O by this list, if we compute fooB(i, i) we are replacing each value for c by itself. Therefore we

have that foo(i) = fooB(i, i).

2. In the execution of foo(i), the final value of a that satisfies the stopping condition S(i,a) is fooA(i).

By the observation 1, proving the theorem is equivalent to proving

∀i, i0 ∈ I,dI(i, i0) ≤ δ =⇒ dB(fooB(i, i), fooB(i0, i0)) ≤ k0dI(i, i0)+ ε0.

By condition C1, choosing l = listFoo(i0), we have

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(foob(listFoo(i0), i0), foob(listFoo(i0), i)) ≤ kN∗dI(i, i0)+ εN∗ .

By definition of fooB, we have

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ dB(fooB(i0, i0), fooB(i0, i)) ≤ kN∗dI(i, i0)+ εN∗ . (1)

From observation 2, S(i0, fooA(i0)) holds. By condition C3 (instantiating i′ with i0) we derive that:

∀i, i0 ∈ I,dI(i, i0)≤ δ =⇒ ∃a′ ∈ A,dA(fooA(i0),a
′)≤ ksdI(i, i0)+ εs ∧ S(i,a′). (2)

Hence, by observations 2 and 1, S(i, fooA(i)) also holds. From inequality (2) and condition C4, we

derive

dA(a
′, fooA(i))≤ εt . (3)

From the last inequality and from inequality (2), we derive, using the triangle inequality

dA(fooA(i0), fooA(i))≤ ksdI(i, i0)+ εs + εt . (4)

From condition C2 and inequality (4), we have

∀i, i0 ∈ I,dI(i, i0) ≤ δ =⇒ dB(fooB(i0, i), fooB(i, i)) ≤ kA(ksdI(i, i0)+ εs + εt)+ ε2. (5)

From inequalities (1) and (5), using the triangle inequality, we derive

∀i, i0 ∈ I,dI(i, i0) ≤ δ

=⇒
dB(fooB(i, i), fooB(i0, i0)) ≤ kN∗dI(i, i0)+ εN∗ + kA(ksdI(i, i0)+ εs + εt)+ ε2.

Finally, we define ε0 = εN∗ + kA(εs + εt)+ ε2 and k0 = kN∗ + kAks.
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4 Example: the CORDIC algorithm for computing cosine

In this section we apply our method to a program implementing the CORDIC algorithm [13], and we

prove that it is Pk,ε ,∞.

CORDIC (COordinate Rotation DIgital Computer) is a class of simple and efficient algorithms to

compute hyperbolic and trigonometric functions using only basic arithmetic (addition, subtraction and

shifts), plus table lookup. The notions behind this computing machinery were motivated by the need to

calculate the trigonometric functions and their inverses in real time navigation systems. Still now-a-days,

since the CORDIC algorithms require only simple integer math, CORDIC is the preferred implementa-

tion of math functions on small hand calculators.

CORDIC is a successive approximation algorithm: A sequence of successively smaller rotations

based on binary decisions drives the algorithm towards the value we want to find. The CORDIC version

illustrated in the program below computes the cosine of any angle in [0,π/2].

double cos(double beta)

{

double x = 1, y = 0, x_new, theta = 0, sigma, e = 1E-10;

int Pow2=1;

while(|theta - beta| > e) {

Pow2 *= 2;

if(beta > theta)

sigma=1;

else

sigma=-1;

sigma=sigma/Pow2;

theta += atan(sigma); // Value stored

fact= cos(atan(sigma)); // Value stored

x_new = x + y*sigma;

y = fact * (y - x*sigma);

x = fact * x_new; }

return x; }

Note that this program makes call to trigonometric functions like cosine itself. But in the actual

implementation, as it is explained in the comments, these calls (that are done on values divided by

successive powers of two) are stored in a database so that no computation of these functions is actually

done.

4.1 Scheme instantiation

To apply our method, we have first of all to instantiate the schema variables A, B, C (cf. Section 3.1)

with a suitable partition of the variables of the program. The variables I are determined: they must be

instantiated with the variables which represent the input.

In this example the partition for the variables will be the following.

A := double theta;

B := double x,y;

C := double sigma;

I := double beta;
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We now must define a suitable metric on the types of the variables in A and B. We choose the

following:

• dA is the usual distance on R.

• dB is the L2 norm on R
2.

Now we need to identify the stopping condition S(i,a). This is given by:

S(beta,theta) := | theta - beta | <= e

Then, we need to instantiate the functions M(a,c), N(i,b,c), O(a,b,c, i) of the schema with suitable

regions of code. We choose these as follows:

O(theta,<x,y>,sigma,beta) {

Pow2 *= 2;

if(beta > theta)

sigma=1;

else

sigma=-1;

sigma=sigma/Pow2;

return sigma; }

M(theta,sigma) {

theta += atan(sigma);

return theta; }

N(beta,<x,y>,sigma) {

fact = cos(atan(sigma));

x_new = x + y*sigma;

y = fact * (y - x*Pow2);

x = fact * x_new;

return <x,y>; }

Finally, we need to prove that the conditions C1, C2, C3, and C4 (cf. Section 3.2) are satisfied.

4.2 Proofs of the conditions

C1: ∀l ∈C∗.PkN∗ ,εN∗ ,δ (λ z.foob(l,z)) This condition can be proved for the following program by such

standard techniques as abstract interpretation or Hoare triples.

double cos(double beta, int[] listFoo)

{

double x = 1, y = 0, x_new, theta = 0, sigma = 0,e = 1E-10;

int Pow2=1;

for(int j=O;j<listFoo.length;j++) {

sigma=listFoo[j];

fact = cos(sigma);

x_new = x + y*sigma;

y = fact * (y - x*sigma);

x = fact * x_new;
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}

return x*K;

}

C2: ∀i1, i ∈ I,dI(i, i1) ≤ δ =⇒ dB(fooB(i, i), fooB(i1, i)) ≤ kAdA(fooA(i1), fooA(i)) + ε2 This part of

the proof is rather technical. The interested reader can find it in the appendix of [4]. The proof of C2 is

the most difficult part of this example. We have proved it “by hand”, and we do not claim that there is an

easy way to automate it. However, this proof points out that we can prove the intended property without

considering the whole semantics of the program, but just the relevant properties.

C3: ∀a ∈ A,∀i, i′ ∈ I,dI(i, i
′) ≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,dA(a,a

′) ≤ ksdI(i
′, i)+ εs ∧ S(i,a′) The in-

stantiation of S(i,a) corresponds to |i−a| ≤ e, so C3 is given by the condition:

∀a ∈ A,∀i, i′ ∈ I, |i−a| ≤ e,∃a′ ∈ I, |a−a′| ≤ ks|i− i′|+ εs ∧ |i′−a′| ≤ e

We can satisfy this property by setting a′ = a+ i′− i, ks = 1, and εs = 0.

C4: ∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ dA(a,a
′) ≤ εt C4 can be rewritten, once we instantiate

S(i,a) to

∃εt ,∀a,a′ ∈ A,∀i ∈ I, |i−a| ≤ e ∧ |i−a′| ≤ e =⇒ |a−a′| ≤ εt

Which is true for εt = 2e.

5 Example: Dijkstra’s shortest path algorithm

In this section we apply our method to Dijkstra’s shortest path algorithm. This is an algorithm that,

given a graph, computes the shortest path between a source and any vertex of the graph. We will prove,

by instantiating our schema, that the following program implementing the Dijkstra’s algorithm can be

proved P1,0,0 in the semantic of real numbers using our theorem.

In the following program we use some conventions: the number of vertices is fixed to w, all vertices

are connected, and the maximum value for a path is 999 (some stand-in of infinity).

int[] dijkstra( int graph[w][w]){

int pathestimate[w],mark[w];

int source,i,j,u,predecessor[w],count=0;

int minimum(int a[],int m[],int k);

for(j=1;j<=w;j++){

mark[j]=0;

pathestimate[j]=999;

predecessor[j]=0;}

source=0;

pathestimate[source]=0;

while(count<w){

u=minimum(pathestimate,mark,w);

mark[u]=1;

count=count+1;
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for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

predecessor[i]=u;}}}

return pathestimate;}

int minimum(int a[],int m[],int k){

int mi=999;

int i,t;

for(i=1;i<=k;i++){

if(m[i]!=1){

if(mi>=a[i]){

mi=a[i];

t=i;}}}

return t;}

5.1 Scheme instantiation

To apply our theorem, we have to instantiate the scheme variables A, B, C with some variables of the

program. The variables of I are instantiated with the variables that represent the input. We choose the

following instantiation: A contains the variables count and mark, B the array of double pathestimate and

C the variable u which identify the current vertex to propagate.

A := int count;int mark[w];

B := pathestimate[w];

C := int u;

I := graph[w][w];

We now have to choose a suitable metric on the types of the variables, and we choose the following:

dI is the L1 norm on an array of real numbers, dB is the L∞ norm on array of real numbers and dA is the

identity metric: that is, the distance between two elements of A is 0 if they are the same elements and it

is ∞ otherwise.

Next, we identify the stopping condition:

S(graph,<count,mark>) := count >= w

Finally, we identify the functions M(a,c), N(i,b,c), O(a,b,c, i) with the following regions of code:

O (count, mark, pathestimate, u, graph) {

u=minimum(pathestimate,mark,w);

int minimum(int a[],int m[],int k){

int mi=999;

int i,t;

for(i=1;i<=k;i++){

if(m[i]!=1){

if(mi>=a[i]){

mi=a[i];

t=i;

}

}
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}

return t;

}

return u;

}

M (<mark, count>, u) {

mark[u]=1;

count=count+1;

return <mark,count>;

}

N (graph, pathestimate, u) {

for(i=1;i<=w;i++){

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

}

}

return pathestimate;

}

We now have to prove that the conditions C1, C2, C3 and C4 hold for the given instantiations.

5.2 Proof of the conditions

C1: ∀l ∈C∗.PkN∗ ,εN∗ ,δ (λ z.foob(l,z)) For all i0 ∈ I, fooa(i0, i) is k-Lipschitz and k does not depend on

i0. The proof of this condition can be done by using standard technical (such as Hoare triples or abstract

interpretation) on the following program.

int[] dijkstra( int graph[w][w], int[] listFoo)

{

int pathestimate[w],mark[w];

int source,i,j,u,predecessor[w],count=0;

int minimum(int a[],int m[],int k);

for(j=1;j<=w;j++){

mark[j]=0;

pathestimate[j]=999;

predecessor[j]=0;

}

source=0;

pathestimate[source]=0;

for(j=0;j<listFoo.length;j++){

u=listFoo[j];

for(i=1;i<=w;i++) {

if(pathestimate[i]>pathestimate[u]+graph[u][i]){

pathestimate[i]=pathestimate[u]+graph[u][i];

predecessor[i]=u;
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}

}

}

return pathestimate;

}

In an exact semantics (with real numbers), this program is 1-Lipschitz as any element of pathestimate

is the sum of some elements of graph. If the analysis is done with an exact semantics (with real numbers),

we are able to prove that this program is 1-Lipschitz.

C2: ∀i1, i ∈ I,dI(i, i1) ≤ δ =⇒ dB(fooB(i, i), fooB(i1, i)) ≤ kAdA(fooA(i1), fooA(i))+ ε2 The proof for

C2 is rather technical. The basic idea is however quite simple. Indeed, the A structure is a set in a discrete

space on which elements are added. So we prove that whatever the order of the element is B is constant.

This is done by showing that local transpositions do not change the result. So the principle should apply

in other algorithms with the same A structure. The complete proof can be found in the appendix of [4].

C3: ∀a ∈ A,∀i, i′ ∈ I,dI(i, i
′)≤ δ ∧ S(i′,a) =⇒ ∃a′ ∈ A,dA(a,a

′)≤ ksdI(i
′, i)+ εs ∧ S(i,a′) Since the

instantiation of S(i′,a) is count >= w, the stopping condition does not depend on i (when the number

of nodes w is fixed). Hence, the formula is satisfied for a′ = a with the constant ks = 0 and εs = 0.

C4: ∀a,a′ ∈ A,∀i ∈ I,S(i,a) ∧ S(i,a′) =⇒ dA(a,a
′)≤ εt Since {a|S(i,a)} is a singleton for every i (it

corresponds to the state where all the nodes are marked), the property holds for εt = 0.

6 Related Work

Static analysis via abstract interpretation can be an effective method for deriving precise bounds on

deviations [6, 7]. Since such static analysis is generally limited to analyzing code line-by-line, significant

over approximations might be necessary. For example, when encountering an “if” instruction (or a

looping construct), a static analyzer will have to assume that either the control flow is not perturbed by

the finite-precision errors (often unrealistic) or the results from the two branches of the conditional must

be merged (often causing significant over-approximation). In our examples here, control flow can be

perturbed a great deal by precision errors and merging both branches is not a solution as the program is

not locally continuous. Our method is useful for solving this problem since it avoids narrowly analyzing

the semantics of the conditional.

In the two papers [2, 1], robustness analysis is done for the Dijkstra’s algorithm. The authors split

their analysis into two parts: first they prove the continuity of the algorithm and second they prove

it is piecewise robust. The problem of discontinuity that can occur at some point of the execution is

solved through an abstract language syntax for loops. Like in our theorem, this syntax need additional

conditions (mainly the commutativity for two observable equivalent commands). However, their abstract

language is more specific than our theorem: CORDIC is not in the scope of these papers which also

means their conditions are simpler and their proofs are more directed than ours. The other distinction is

in the semantics of the language. Their paper aims at furnishing the whole semantics which is an exact

one and computational errors are treated qualitatively with the argument that a robust program is not

sensitive to small variations. With our analysis, we give a quantitative definition of what small enough
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means. The last difference is our design for analyzing non-local-robustness. We prefer to consider non-

local behaviors as happening and solving them by a program transformation using pattern than to rewrite

the program in a syntax that hide the non-local behavior.

7 Future work and conclusion

We have presented a theorem that allows us to prove the robustness of some floating point programs. This

theorem is abstract enough to be applicable in a number of rather different programs: here, we illustrate

its use with programs to compute cosine using the CORDIC method and to compute the shortest path in

a graph.

For future work, we would like to address a key possible weakness of our method: it is currently tied

to a particular template. Although that template is presented abstractly, there should certainly be ways to

improve the generality beyond the matching of a template. Also, since the property Pk,ε ,δ (Definition 2.1)

is more general than both k-Lipschitz and the other definitions of robustness [9, 10], we would like to

explore applications of this property to cases where neither of the other definitions work.

Condition C2 is, at least in the examples considered in this paper, the most difficult condition to

verify. This suggests that we might consider more restrictive conditions that would entail C2.
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