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Abstract

The study of rotor-stator interactions between blade-tips and outer casings
through direct contact in modern turbomachines is very time-consuming if
the classical finite element method is used. In order to improve the knowl-
edge over these interaction phenomena, faster methods have to be applied.
The construction of reduced-order models using component mode synthesis
methods generally allows for dramatic increase in computational efficiency.
Two of these methods, namely a fixed interface method and a free inter-
face methods are considered in an original manner to reduce the size of
a realistic two-dimensional model. They are then compared in a very spe-
cific contact case-study. The equations of motion are solved using an explicit
time integration scheme with the Lagrange multiplier method where friction
is accounted for. The primary goal of the present study is to investigate the
general behavior of such approaches in the presence of contact nonlinearities.
It will be shown that in our contact case, a good accuracy can be obtained
from a reduced models with very limited number of modes.

1 Introduction

In modern turbo machines such as aircraft jet engines, structural contacts
between the casing and bladed disk are nonlinear interactions that can be re-
sponsible for severe damage. Studying such interactions using finite element
methods can be very computationally expensive. One way to reduce the size
of the problem is to perform a modal analysis and truncate the new basis
to a few modes only [1][2]. A different and more accurate modal basis can
be constructed by using component mode synthesis methods (CMS). This
study will be focused on the use of two CMS methods: the Craig-Bampton
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method [3] which considers fixed interface component modes and the Craig-
Martinez method [4] which exploits free interface attachment modes. The
reduced system of equations of motion are solved using an explicit time in-
tegration scheme in conjunction with the Lagrange multiplier that account
for contact constraints in the normal as well as the tangential directions.
a component mode sensitivity analysis is conducted for each method and
respective results are compared to a reference - non reduced - solution.

2 Modeling

The 2D finite element models of the bladed disk and the casing are now
presented. The model is realistic in such a way that both normal contact
and friction forces treatment between the casing and the tip of the blades
are allowed. The work of Legrand [1] allows us to validate the reliability of
the description.

2.1 Bladed disk:

The description of the bladed disk is quite similar to the one used by Legrand
[1]. The main difference is the coupling of the 22 blades which is performed
through curved beams. The number of curved beams along the radius of the
disk is set to one in this study as depicted in Fig.1. Each blade is described
with the same number of 6 dof Euler-Bernoulli beams. The global curvature
of the blade is obtained by imposing an angle ai between beams i and i+ 1.
The angle between two blades is denoted by φ with φ = 2π/22.

xj−1

y0

yj−1

x0

xjyj

blade j + 1

blade j

blade j − 1

φ

Casing

Figure 1 – Two-dimensional model used in the study
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2.2 Casing:

The casing is a thin cylinder and is described in this study using two-nodes
curved beam finite elements. A polar coordinate system with unit vectors

lc

s
(Rc, θ

i
c)x0

θc

(Rc, θ
i+1
c )

vc

uc

erc

eθc

Figure 2 – Detail of a curved beam on the casing between node i and
i+ 1

erc
and eθc

is assigned to the casing. The finite element description involves
four dofs per node: uc, uc,s, vc and vc,s as shown on Fig. 2. The initial

location of node i is given by the doublet (Rc,θ
(i)
c ), Rc being the radius of

the casing and lc the length of the element.

2.3 Physical analysis of the model:
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Figure 3 – Distribution of the natural frequencies regarding to the number
of nodal diameters

To assess the physical model the repartition of the eigenfrequencies as a
function of the number of nodal diameters for the free vibration modes for
the blades is shown in Fig. 3. Each curve of this figure is associated with
an original bladed disk vibration mode. For instance, the line at 44 Hz
corresponds to the first bending mode of the blades. For higher frequencies,
the curves tend to incurve, which results from the apparition of the vibration
modes of the disk. One can also check that the lower eigenfrequencies values
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are contained by groups of 22 (the number of blades) close frequencies.

3 Numerical solving:

The numerical methods are introduced in this section and described in the
general framework of the finite element methods. This part is devoted to
the computation of the reference solution. Damping will not be considered
in this study in order to keep a good correspondence between the non re-
duced finite element solution and the reduced solution. The introduction
of damping in a reduced model will be done in further work. The general
problem to be solved may be written as:

Mü + Ku = F

u(t = t0) = u0

u̇(t = t0) = u̇0

(1)

The contact conditions, referred to as the Kuhn-Tucker optimality condi-
tions take the form:

∀x ∈ Γm
c , tN ≥ 0, g ≥ 0, tNg = 0 (2)

where Γm
c is the master surface (bladed disk) and tN stands for the contact

pressure, assumed positive, acting on the slave surface Γ(s)
c (casing). This

problem is solved using explicit central differences scheme and the forward
increment Lagrangian method for managing the contact interactions [5][6].
This procedure is detailed in the study of Legrand [1]. At each time step,
a displacement prediction is computed assuming that no contact occurs.
Then the gap function is determined between the casing and the bladed
disk. If the gap is found to be negative, a correction of the displacement is
made, through the contact forces. Friction forces, obtained thanks to the
Coulomb’s law are also applied.

4 Modal reduction

4.1 General aspect:

In most industrial applications, the finite element models contain a huge
number of degrees of freedom (dofs) leading to cumbersome computation
times. One way to reduce these computation times relies in the use of com-
ponent mode synthesis procedures. Many studies of these CMS methods
have been carried out by coupling them with substructuring approaches[7].
Only the modal reduction aspect is considered here: the bladed disk will be
reduced considering no substructures, we apply CMS method in the particu-
lar case where the whole structure is seen as a substructure. It first requires
the separation of the dofs of the structure within two distinct groups: the
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}

boundary dofsinternal dofs

u

v

Figure 4 – Decomposition of the blade between boundary and internal
dofs

internal dofs and the boundary dofs. The definition of these groups is closely
related to the loadings applied on the structures. In our case the boundary is
supposed to contain all the dofs that might be supporting any contact force
during the simulation. Increasing the set of boundary dofs would not have
any impact on the quality of the reduction but would lead to longer com-
putation times (see Fig. 4 for the description of the internal and boundary
dofs in our case). In order to maximize the reduction, the only dofs of dis-
placement u and v at the tip of the blades are kept in the model. The other
crucial aspect of CMS methods is the choice of the modes included in the
reduction basis. Classically, different kinds of modes are considered accord-
ing to the method used to obtain the transformation matrices. The reduced
matrices are then calculated with the transformation matrices and the finite
element matrices. In the case of the study of interaction between the casing
and the bladed disk as described in section 3, correction forces have to be
applied on the tips of the blades (Lagrange multiplier method). Therefore,
the corresponding dofs have to be directly accessible in the reduced space
in order to avoid permanent backward and forward mapping to the physical
space. This requires specific CMS methods such as the Craig-Bampton and
Craig-Chang-Martinez ones which are detailed in the following.

4.2 The Craig-Bampton method :

The Craig-Bampton method [3] is probably the most popular CMS method
from a numerical point of view. The reduction basis of the Craig-Bampton
method is composed of fixed interface modes and constraint modes:

- the fixed interface modes are obtained by solving the eigenvalue prob-
lem with fixed boundary.

- the constraint modes are as numerous as the number of dofs on the
boundary. The constraint mode i is the static response of the structure
to a unit displacement of dof i on the boundary while the other ones
on the boundary are set to ‘0’.
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All the constraint modes have to be included in the reduction basis but
the number of fixed interface modes kept is variable and its number can be
modified to increase the quality of the reduction. A reorganization of Eqn.
(1) is necessary, separating the dofs in two groups: the internal dofs (qI)
and the external dofs (on the boundary: qB). This yields:

[

MII MBI

MIB MBB

](

q̈I

q̈B

)

+

[

KII KBI

KIB KBB

](

qI

qB

)

=

(

FI

FB

)

(3)

The reduction matrix of the Craig Bampton method ΦCB is:

ΦCB = [ΦfixedΦconstraint] (4)
(

qI

qB

)

= ΦCB

(

uη

qB

)

(5)

The projection of the equations of motion in the reduced space consists in
the following operations:

K̂ = ΦT
CBKΦCB and M̂ = ΦT

CBMΦCB (6)

Consequently, the dynamic equation in the new space becomes:

M̂

(

üη

q̈B

)

+ K̂

(

uη

qB

)

=

(

Fη

FB

)

(7)

Figure 5 – Examples of fixed interface modes part of the bladed disk.
The squares located at the blade tips mean that the dofs of these nodes
are fixed.

4.3 The Craig-Chang-Martinez method:

This method is actually an enriched Craig-Martinez method [4][8]. The re-
duction basis is composed of free vibration modes (which number is variable)
and attachment modes:

- free vibration modes are obtained by solving the initial eigenvalue
problem.
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u = 1 v = 1

Figure 6 – Examples of constraint modes (for the dofs u and v on the
blade 2) composing the reduction basis of the bladed disk.

- attachment modes: their number is the same as the number of dofs
in the boundary. The attachment mode j is the static response of the
structure to a unit external loading on dof j.

From a theoretical point of view, there is no restriction in the choice of these
modes. From Eqn. (1), the projection of the displacements u onto the modal
coordinates leads to:

u = Φ1u1 + Φ2u2 (8)

where Φ1 represents the free vibration modes kept in the reduction basis and
Φ2 the modes that will not be retained for the reduction (high frequency
modes).

M(Φ1ü1 + Φ2ü2) + K(Φ1u1 + Φ2u2) = F (9)

Eqn. (9) is then multiplied by ΦT
1 then by ΦT

2 . The K and M-orthogonality
of modes Φi yields:

(Ω1 − ω2I)u1 = Φ1
TF

(Ω2 − ω2I)u2 = Φ2
TF

(10)

where Ω1 and Ω2 are the diagonal matrices containing the eigenvalues as-
sociated with matrices Φ1 and Φ2. The ‘pseudo-static’ approximation is
assumed considering that the lowest frequency of Φ2 is definitely higher
than the maximum frequency considered in the study of the structure:

∀ ω2 ∈ diag(Ω2), ω ≪ ω2 ⇒ Ω2u2 = ΦT
2 F (11)

Using the decomposition of u in a static formulation, we obtain:

Φ2u2 = K−1F−Φ1u1 (12)

Consequently Eqn. (10) become Ω1u1 = ΦT
1 F or, equivalently:

u1 = Ω−1
1 ΦT

1 F (13)

Then, plugging Eqn. (13) into Eqn. (12) yields:

Φ2u2 = (K−1 − Φ1Ω−1
1 ΦT

1 )F (14)
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The term K−1 − Φ1Ω−1
1 ΦT

1 is called residual static flexibility and is denoted
by R. We finally get:

u = Φ1u1 + RF (15)

Eqn. (15) is the starting point of the Craig-Martinez method. The goal of
this method is to obtain the boundary dofs in the parameters of the reduced
system. This is achieved by modifying the expression of the external forces F

in the previous equations. u will now be reorganized such as u = (qB,qI)T.
Then Eqn. (15) takes the from:

(

qB

qI

)

=

[

Φ1B

Φ1I

]

u1 +

[

RB

RI

]

F (16)

The notations will be simplified here, RB and RI are blocks of the square
matrix R. However, since F will only have coordinates on the external dofs
(the external dofs are chosen to be the only one being loaded) we can write:

[

RB

RI

]

F ⇔

[

RB1 RB2

RI1 RI2

](

F1

0

)

(17)

and from now on we denote: RB = RB1 and RI = RI1. Eqn. (16) becomes
then: (

qB

qI

)

=

[

Φ1B RB

Φ1I RI

](

u1

F

)

(18)

The first block of Eqn. (18) is:

F = RB
−1(qB − Φ1Bu1) (19)

This equation allows us to introduce the external dofs in the reduced system:
(

qB

qI

)

=

[

IBf 0

RIRB
−1 Φ1i − RIRB

−1Φ1f

]

︸ ︷︷ ︸

PCM

(

qB

u1

)

(20)

This way, PCM is defined as the reduction matrix for the Craig-Martinez-
method. The Craig-Chang-Martinez method is very similar to the Craig-
Martinez method, the only difference is in the definition of the reduction
basis Φ1 that is enriched by the attachement modes. The following list
details the coordinates of the force vectors applied in Fig. 7:

• Fy = 0 · x + 1 · y + 0 · z

• Fx = 1 · x + 0 · y + 0 · z
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x

y

z

Fy

Fx

Figure 7 – Examples of attachment modes (efforts applied on the second
blade) of the bladed disk.

Figure 8 – Examples of free vibration modes (3 and 11 diameters) of the
bladed disk.

5 Influence of the reduction modes

5.1 Parameters of the study:

The disk has 22 blades described by 10 beams each (one for the disk part
and 9 for the blade itself), table 1 gives the geometrical description of the
structure. The two-dimensional model contains 748 dofs: 44 external dofs
(displacements u and v on each tips of the blades) and 704 internal dofs.
The casing is described by 40 curved beams and cannot be reduced since
contact efforts can be exert anywhere on the structure. Initially, the clear-
ance between the tip of the blades and the casing is 1 mm, the bladed disk is
rotating at the speed ω = 310 rad · s−1. At time t = 0 a two-nodal diameter
external forcing F2d is applied on the casing over 2 · 10−4 s. The simulation
time is 20 ms, over which one we collect the data every 50 time steps. The
time step ∆t of the explicit central differences scheme is set to 5 · 10−7 s
with respect to the following condition which is classical in linear analysis:

∆t <
2

ωmax
= 8.49 · 10−7 s (21)

The goal of this study is to evaluate the influence of every component mode
used in CMS methods. We will also consider the computation time of each
method.
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Number of blades 22
Radius of the bladed disk 500 mm

Radius Rc of the casing 501 mm
Angular velocity 310 rad · s−1

Table 1 – Parameters of the contact study

Static deformation of the casing under F2d

Initial shape of the casing

Figure 9 – Deformation of the casing under the F2d load.

5.2 Craig-Bampton convergence

The constraint modes considered here are the ones linked with the displace-
ment dofs (u and v) at the tip of each blades. The parameter of the study
is the number η of fixed-interface modes in the reduction basis. In order to
outline the contact phenomena, the radial gap of the blade tip 1 is computed
using the Craig-Bampton method. This gap is denoted by ucb(η, t) and de-
pends on time and η.This gap is compared to the reference one obtained by
classical finite element analysis uef (t).

5.3 Craig-Chang-Martinez convergence

For the Craig-Chang-Martinez method, attachment modes are considered
relatively to the dofs used for the constraint modes in the Craig-Bampton
method meaning the number of attachment modes (44) is the same as the
number of constraint modes in the previous section. The choice of the
attachment is very sensitive in the Craig-Chang-Martinez method. This
method can be instable depending on the choice of these modes [9]: for
instance, in our specific case, the use of the attachment modes linked to
rotation dofs (θ) leads to ill-conditioned matrices. The parameter of the
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ucb(220, t)
ucb(88, t)
ucb(44, t)
ucb(0, t)
uef (t)

0 5 10 15 20
-1

0

1

2

3

4

5

6

t(ms)

mm

Contact limit

Figure 10 – Distance between blade tip 1 and the casing for the Craig-
Bampton method [0; 20ms].

study is the number of free vibration modes ψ kept in the reduction basis.
In the same way as for the Craig-Bampton study, we will represent the
radial gap between the blade tip 1 along the axis x1 (see Fig. 1). This gap
is denoted uccm(ψ, t) and compared to uef (t).

5.4 Comparison of the two CMS methods

The very principle of using component mode synthesis is reducing the di-
mension of the space while keeping accurate results. With the minimum
number of modes in each method (44 constraint modes for Craig-Bampton
and 44 attachment modes for Craig-Chang-Martinez), we can clearly dif-
ferentiate the results obtained by the two methods. The curve of ucb(0, t)
in Figs. 10 and 11 shows that the constraint modes cannot be used alone
to describe accurately the displacement of the blade. On the contrary the
curve of uccm(0, t) on Figs. 12 and 13 shows that the attachment modes give
a good approximation of the finite element solution. For higher number of
modes in each reduction basis (ψ > 0 and η > 0) both methods give similar
results converging through the finite element solution. In terms of calcula-
tion time, the decrease obtained with the use of CMS method is represented
in Fig. 14. On the computer used for the calculations, the reference time for
finite element calculation was 1031 s. The size of the model is still relatively
small. Better results are expected for large 3D models.

6 Conclusion

This study shows that linear component mode synthesis methods can be
used successfully in non-linear cases such as rotor-stator interaction. The
first results obtained without damping allow us to conclude that the attach-
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ucb(220, t)
ucb(88, t)
ucb(44, t)
ucb(0, t)
uef (t)

0 1 2 3 4 5
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0

1

2

3

4

5

6

t(ms)

mm

Contact limit

Figure 11 – Distance between blade tip 1 and the casing for the Craig-
Bampton method [0; 5 ms].

ment modes used in the Craig-Chang-Martinez method give a very good
approximation of the displacements at the top of the blades. In terms of
computation time, keeping only these attachment modes decreases compu-
tation time by 84.4% (see Fig.14) from the classical finite element solution
to the Craig-Chang-Martinez solution (the decreasing being 81.5% when 88
free vibration modes are added). For a larger number of modes, the solu-
tion given by the Craig-Bampton method and the Craig-Chang-Martinez
method are very similar even though the convergence speed of the Craig-
Bampton method seems higher. The gain in computation time will increase
when more realistic 3D models will be considered for industrial applications.
Further work has to be done for optimizing the selection of the modes in the
reduction basis for each CMS method and work is in progress to introduce
damping.
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Figure 13 – Distance between blade tip 1 and the casing for the Craig-
Chang-Martinez method [0; 5 ms].
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Figure 14 – Relative calculation times obtained for each CMS method.
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