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Abstract

We give an instability estimate for the Gel’fand inverse boundary value

problem at high energies. Our instability estimate shows an optimality of

several important preceeding stability results on inverse problems of such

a type.

1 Introduction

In this paper we continue studies on the Gel’fand inverse boundary value prob-
lem for the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1)

where
D is an open bounded domain in R

d, d ≥ 2,

with ∂D ∈ C2,
(1.2)

v ∈ L
∞(D). (1.3)

As boundary data we consider the map Φ̂ = Φ̂(E) such that

Φ̂(E)(ψ|∂D) =
∂ψ

∂ν
|∂D (1.4)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D ∪ ∂D, where ν is the
outward normal to ∂D. Here we assume also that

E is not a Dirichlet eigenvalue for operator −∆+ v in D. (1.5)

The map Φ̂ = Φ̂(E) is known as the Dirichlet-to-Neumann map.
We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ̂ for some fixed E, find v.

This problem is known as the Gel’fand inverse boundary value problem for
the Schrödinger equation at fixed energy (see [7], [19]). At zero energy this
problem can be considered also as a generalization of the Calderon problem of
the electrical impedance tomography (see [5], [19]). Problem 1.1 can be also
considered as an example of ill-posed problem: see [14], [3] for an introduction
to this theory.

There is a wide literature on the Gel’fand inverse problem at fixed energy.
In a similar way with many other inverse problems, Problem 1.1 includes, in
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particular, the following questions: (a) uniqueness, (b) reconstruction, (c) sta-
bility.

Global uniqueness results and global reconstruction methods for Problem
1.1 were obtained for the first time in [19] in dimension d ≥ 3 and in [4] in
dimension d = 2.

Global logarithmic stability estimates for Problem 1.1 were obtained for the
first time in [1] in dimension d ≥ 3 and in [25] in dimension d = 2. A principal
improvement of the result of [1] was obtained recently in [24] (for the zero energy
case): stability of [24] optimally increases with increasing regularity of v.

Note that for the Calderon problem (of the electrical impedance tomography)
in its initial formulation the global uniqueness was firstly proved in [30] for d ≥ 3
and in [17] for d = 2. Global logarithmic stability estimates for this problem
were obtained for the first time in [1] for d ≥ 3 and [15] for d = 2. Principal
increasing of global stability of [1], [15] for the regular coefficient case was found
in [24] for d ≥ 3 and [28] for d = 2. In addition, for the case of piecewise real
analytic conductivity the first uniqueness results for the Calderon problem in
dimension d ≥ 2 were given in [13]. Lipschitz stability estimate for the case
of piecewise constant conductivity was obtained in [2] (see [27] for additional
studies in this direction).

The optimality of the logarithmic stability results of [1], [15] with their princi-
pal effectivizations of [24], [28] (up to the value of the exponent) follows from [16].
An extention of the instability estimates of [16] to the case of the non-zero en-
ergy as well as to the case of Dirichlet-to-Neumann map given on the energy
intervals was obtained in [8].

On the other hand, it was found in [20], [21] (see also [23], [26]) that for
inverse problems for the Schrödinger equation at fixed energy E in dimension
d ≥ 2 (like Problem 1.1) there is a Hölder stability modulo an error term
rapidly decaying as E → +∞ (at least for the regular coefficient case). In
addition, for Problem 1.1 for d = 3, global energy dependent stability estimates
changing from logarithmic type to Hölder type for high energies were obtained
in [12], [11]. However, there is no efficient stability increasing with respect
to increasing coefficient regularity in the results of [12]. An additional study,
motivated by [12], [24], was given in [18].

The following stability estimate for Problem 1.1 was recently proved in [11]:

Theorem 1.1 (of [11]). Let D satisfy (1.2), where d ≥ 3. Let vj ∈ Wm,1(D),
m > d, supp vj ⊂ D and ||vj ||Wm,1(D) ≤ N for some N > 0, j = 1, 2, (where
Wm,p denotes the Sobolev space of m-times smooth functions in Lp). Let v1, v2
satisfy (1.5) for some fixed E ≥ 0. Let Φ̂1(E) and Φ̂2(E) denote the DtN maps
for v1 and v2, respectively. Let s1 = (m − d)/d. Then, for any τ ∈ (0, 1) and
any α, β ∈ [0, s1], α+ β = s1,

||v2 − v1||L∞(D) ≤ A(1 +
√
E)δτ +B(1 +

√
E)−α

(

ln
(

3 + δ−1
))−β

, (1.6)

where δ = ||Φ̂2(E) − Φ̂1(E)||L∞(∂D)→L∞(∂D) and constants A,B > 0 depend
only on N , D, m, τ .

In particular cases, Hölder-logarithmic stability estimate (1.6) becomes co-
herent (although less strong) with respect to results of [21], [23], [24]. In this
connection we refer to [11] for more detailed infromation. Concerning two-
dimensional analogs of results of Theorem 1.1, see [20], [26], [28], [29].
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In a similar way with results of [9], [10], estimate (1.6) can be extended to
the case when we do not assume that condition (1.5) is fulfiled and consider an
appropriate impedance boundary map (or Robin-to-Robin map) instead of the
Dirichlet-to-Neumann map.

In the present work we prove optimality of estimate (1.6) (up to the values
of the exponents α, β) in dimension d ≥ 2. Our related instability results for
Problem 1.1 are presented in Section 2, see Theorem 2.1 and Proposition 2.1.
Their proofs are given in Section 4 and are based on properties of solutions of
the Schrödinger equation in the unit ball given in Section 3.

2 Main results

In what follows we fix D = Bd(0, 1), where

Bd(x0, ρ) = {x ∈ R
d : ||x− x0||Ed < ρ}, x0 ∈ R

d, ρ > 0. (2.1)

Let
||F || denote the norm of an operator

F : L∞(∂D) → L
∞(∂D).

(2.2)

We recall that if v1, v2 are potentials satisfying (1.3), (1.5) for some fixed E,
then

Φ̂2(E)− Φ̂1(E) is a compact operator in L
∞(∂D), (2.3)

where Φ̂1, Φ̂2 are the DtN maps for v1, v2, respectively, see [19], [22].
Our main result is the following theorem:

Theorem 2.1. Let D = Bd(0, 1), where d ≥ 2. Then for any fixed constants
A,B, κ, τ, ε > 0, m > d and s2 > m there are some energy level E > 0 and
some potential v ∈ Cm(D) such that condition (1.5) holds for potentials v and
v0 ≡ 0, simultaneously, supp v ⊂ D, ‖v‖L∞(D) ≤ ε, ‖v‖Cm(D) ≤ C1, where
C1 = C1(d,m) > 0, but

||v − v0||L∞(D) > A(1 +
√
E)κδτ +B(1 +

√
E)2(s−s2)

(

ln
(

3 + δ−1
))−s

(2.4)

for any s ∈ [0, s2], where Φ̂, Φ̂0 are the DtN map for v and v0, respectively, and
δ = ||Φ̂(E)− Φ̂0(E)|| is defined according to (2.2).

Theorem 2.1 shows, in particular, the optimality (at least for potentials in
the neighborhood of zero) of estimate (1.6) (up to the values of the exponents α,
β). As a corollary of Theorem 2.1, one can obtain an optimality of the stability
results of [20], [21], [23], [26].

In the present work Theorem 2.1 is proved by explicit instability example
with complex potentials. Examples of this type were considered for the first
time in [16] for showing the exponential instability in Problem 1.1 in the zero
energy case. An extention to the case of the non-zero energy as well as to the
case of Dirichlet-to-Neumann map given on the energy intervals was obtained
in [8].

Let us consider the cylindrical variables:

(r1, θ, x
′) ∈ R+ × R/2πZ× R

d−2,

r1 cos θ = x1, r1 sin θ = x2,

x′ = (x3, . . . , xd).

(2.5)
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Take φ ∈ C∞(R2) with support in B2(0, 1/3)∩{x1 > 1/4} and with ‖φ‖L∞ = 1.
For integers m,n > 0, define the complex potential

vnm = n−meinθφ(r1, |x′|). (2.6)

We recall that
‖vnm‖L∞ = n−m, ‖vnm‖Cm ≤ C1, (2.7)

where C1 = C1(d,m) > 0. Note that C1 is the same as in Theorem 2.1.
Estimates (2.7) were given in [16] (see Theorem 2 of [16]).

To prove Theorem 2.1 we use, in partucular, the following proposition:

Proposition 2.1. Let D = Bd(0, 1), where d ≥ 2. Let condition (1.5) hold with
v ≡ vnm (of (2.6)) and v ≡ v0 ≡ 0 for some E > 0 and some integers m > 0,
n > 20(1 +

√
E)2. Then, for any σ > 0,

‖Φ̂nm(E)− Φ̂0(E)‖H−σ(Sd−1)→Hσ(Sd−1) ≤ C2(1 +Q+ EQ)2−n/4, (2.8)

where Φ̂nm, Φ̂0 are the DtN map for vnm and v0, respectively, C2 = C2(d, σ) > 0,

Q = ‖(−∆+ v0−E)−1‖L2(D)→L2(D) + ‖(−∆+ vnm−E)−1‖L2(D)→L2(D), (2.9)

where (−∆ + v0 − E)−1, (−∆ + vnm − E)−1 are considered with the Dirichlet
boundary condition in D and H±σ =W±σ,2 denote the standart Sobolev spaces.

Analogs of estimate (2.8) (but without dependence of the energy) were given
in Theorem 2 of [16] for the zero energy case and in Theorem 2.4 of [8] for the
case of the non-zero energy and the case of the energy intervals.

We obtain Theorem 2.1, combining known results on the spectrum of the
Laplace operator in the unit ball (see formula (4.9) below), Proposition 2.1,
estimates (2.7) and the fact that

‖F‖L∞(Sd−1)→L∞(Sd−1) ≤ c(d, σ)‖F‖H−σ(Sd−1)→Hσ(Sd−1) (2.10)

for sufficiently large σ. The detailed proof of Theorem 2.1 and the proof of
Proposition 2.1 are given in Section 4. These proofs use, in particular, results,
presented in Section 3.

Remark 2.1. In a similar way with [16], [8], using a ball packing and covering
by ball arguments (see also [6]), the instability result of Theorem 2.1 can be
extended to the case when only real-valued potentials are considered and in the
neighborhood of any potential (not only v0 ≡ 0).

3 Some properties of solutions of the Schrödinger

equation in the unit ball

In this section we continue assume that D = Bd(0, 1), where d ≥ 2. We fix an
orthonormal basis in L2(Sd−1) = L2(∂D)

{fjp : j ≥ 0, 1 ≤ p ≤ pj},
fjp is a spherical harmonic of degree j,

(3.1)
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where pj is the dimension of the space of spherical harmonics of order j,

pj =

(

j + d− 1

d− 1

)

−
(

j + d− 3

d− 1

)

, (3.2)

where
(

n

k

)

=
n(n− 1) · · · (n− k + 1)

k!
for n ≥ 0 (3.3)

and
(

n

k

)

= 0 for n < 0. (3.4)

The precise choice of fjp is irrelevant for our purposes. Besides orthonormality,
we only need fjp to be the restriction of a homogeneous harmonic polynomial of
degree j to the sphere and so |x|jfjp(x/|x|) is harmonic. We use also the polar
coordinates (r, ω) ∈ R+ × Sd−1, with x = rω ∈ Rd.

Lemma 3.1. Let D = Bd(0, 1), where d ≥ 2. Let potential v satisfy (1.3) and
(1.5) for some fixed E. Let ||v||L∞(D) ≤ N , for some N > 0. Then for any
solution ψ ∈ C(D ∪ ∂D) of equation (1.1) the following inequality holds:

‖ψ‖L2(D) ≤
(

1 + (N + |E|)‖(−∆+ v − E)−1‖L2(D)→L2(D)

)

‖f‖L2(∂D), (3.5)

where f = ψ|∂D, (−∆ + v − E)−1 is considered with the Dirichlet boundary
condition in D.

Proof of Lemma 3.1. We expand the function f in the basis {fjp}:

f =
∑

j,p

cjpfjp. (3.6)

We have that
‖f‖2

L2(∂D) =
∑

j,p

|cjp|2. (3.7)

Let
ψ0(x) =

∑

j,p

cjpr
jfjp(ω). (3.8)

Note that
‖ψ0‖2L2(D) =

∑

j,p

|cjp|2‖rjfjp(ω)‖2L2(D) =

=
∑

j,p

|cjp|2
∫ 1

0

r2j+d−1dr ≤
∑

j,p

|cjp|2
(3.9)

Using (1.1) and the fact that ψ0 is harmonic, we get that

(−∆+ v − E)(ψ − ψ0) = (E − v)ψ0. (3.10)

Since ψ|∂D = ψ0|∂D = f , using (3.10), we find that

‖ψ − ψ0‖L2(∂D) ≤ (N + |E|)‖(−∆+ v − E)−1‖L2(D)→L2(D)‖ψ0‖L2(D). (3.11)

Combining (3.7), (3.9), (3.11), we obtain (3.5). �
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Let < ·, · > denote the scalar product in the Hilbert space L2(∂D):

< f, g >=

∫

∂D

f(x)ḡ(x)dx, (3.12)

where f, g ∈ L2(∂D).

Lemma 3.2. Let D = Bd(0, 1), where d ≥ 2. Let potentials v1, v2 satisfy
(1.3) and (1.5) for some fixed E. Let v1, v2 be supported in Bd(0, 1/3) and
||vi||L∞(D) ≤ N , i = 1, 2, for some N > 0. Then for any j1, j2 ∈ N ∪ {0},
1 ≤ p1 ≤ pj1 , 1 ≤ p2 ≤ pj2 and jmax = max{j1, j2} ≥ 10(1 +

√

|E|)2 the
following inequality holds:

∣

∣

∣

〈

fj1p1
,
(

Φ̂1(E)− Φ̂2(E)
)

fj2p2

〉∣

∣

∣
≤ C(d)

(

1 + (N + |E|)Q
)

2−jmax , (3.13)

where

Q = ‖(−∆+ v1 −E)−1‖L2(D)→L2(D) + ‖(−∆+ v2 −E)−1‖L2(D)→L2(D), (3.14)

Φ̂1, Φ̂2 are the DtN map for v1 and v2, respectively, and (−∆ + v1 − E)−1,
(−∆+ v2 − E)−1 are considered with the Dirichlet boundary condition in D.

Analogs of estimate (3.13) (but without dependence of the energy) were
given in Lemma 1 of [16] for the zero energy case and in Lemma 3.4 of [8] for
the case of the non-zero energy and the case of the energy intervals.

We prove Lemma 3.2 for E 6= 0 in Section 5, using expression of solutions
of equation −∆ψ = Eψ in Bd(0, 1) \Bd(0, 1/3) in terms of the Bessel functions
Jα and Yα with integer or half-integer order α.

4 Proofs of Proposition 2.1 and Theorem 2.1

We continue to assume that D = Bd(0, 1), where d ≥ 2 and to use the orthonor-
mal basis {fjp : j ∈ N ∪ {0}, 1 ≤ p ≤ pj} in L

2(Sd−1) = L
2(∂D). The Sobolev

spaces Hσ(Sd−1) can be defined by







∑

j,p

cjpfjp :
∥

∥

∥

∑

j,p

cjpfjp

∥

∥

∥

Hσ
< +∞







,

∥

∥

∥

∑

j,p

cjpfjp

∥

∥

∥

2

Hσ
=
∑

j,p

(1 + j)2σ|cjp|2,
(4.1)

see, for example, [16].
Consider an operator A : H−σ(Sd−1) → Hσ(Sd−1). We denote its matrix

elements in the basis {fjp} by

aj1p1j2p2
=< fj1p1

, Afj2p2
> . (4.2)

We identify in the sequel an operator A with its matrix {aj1p1j2p2
}. In this

section we always assume that j1, j2 ∈ N ∪ {0}, 1 ≤ p1 ≤ pj1 , 1 ≤ p2 ≤ pj2 .

6
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We recall that (see formula (12) of [16])

‖A‖H−σ(Sd−1)→Hσ(Sd−1) ≤ 4 sup
j1,p1,j2,p2

(1 + max{j1, j2})2σ+d|aj1p1j2p2
|. (4.3)

Proof of Proposition 2.1. In a similar way with the proof of Theorem 2 of [16]
we obtain that

< fj1p1
,
(

Φ̂mn(E)− Φ̂0(E)
)

fj2p2
>= 0 (4.4)

for jmax = max{j1, j2} ≤
[

n−1
2

]

(the only difference is that instead of the
operator −∆ we consider the operator −∆ − E), where [·] denotes the integer
part of a number. Note that

[

n− 1

2

]

+ 1 ≥ n/2 > 10(1 +
√
E)2, ‖vnm‖L∞(D) ≤ 1. (4.5)

Combining (4.3), (4.4), (4.5) and Lemma 3.2, we get that

‖Φ̂mn(E)−Φ̂0(E)‖H−σ(Sd−1)→Hσ(Sd−1) ≤

≤ 4C(d)
(

1 + (1 + E)Q
)

sup
jmax≥n/2

(1 + jmax)
2σ+d2−jmax ≤

≤ C2(d, σ)(1 +Q+ EQ)2−n/4,

(4.6)

where

Q = ‖(−∆+ v0−E)−1‖L2(D)→L2(D) + ‖(−∆+ vnm−E)−1‖L2(D)→L2(D). (4.7)

�

Let N(ρ) denote the counting function of the Laplace operator in D

N(ρ) = |{λ < ρ2 : λ is a Dirichlet eigenvalue of −∆ in D}|, (4.8)

where | · | is the cardinality of the corresponding set. We recall that according
to the Weyl formula (of [31]):

N(ρ) ≤ c1(d)ρ
d. (4.9)

Lemma 4.1. Let D = Bd(0, 1), where d ≥ 1. Then for any ρ > 1 there is some
E = E(ρ) ∈ (ρ2, 2ρ2) such that the interval

(

E(ρ)− c2ρ
2−d, E(ρ) + c2ρ

2−d
)

(4.10)

does not contain Dirichlet eigenvalues of −∆ in D, where c2 = c2(d) > 0.

Proof of Lemma 4.1. We put c2 = 2d−1/(c1(d) + 1). Then we can select k
disjoint intervals of the length 2c2ρ

2−d in the interval (ρ2, 2ρ2), where

k =

[

ρ2

2c2ρ2−d

]

= [(c1(d) + 1)ρd] > N(ρ). (4.11)

Thus, we have that at least one of these intervals does not contain Dirichlet
eigenvalues of −∆ in D = Bd(0, 1). �
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Proof of Theorem 2.1. Let E = E(ρ) be the number of Lemma 4.1 for some
ρ > 1. Using (4.10), we find that the distance from E to the Dirichlet spectrum
of the operator −∆ in D is not less than c2ρ

2−d. Using also that E ∈ (ρ2, 2ρ2),
we get that

‖(−∆− E)−1‖L2(D)→L2(D) ≤
1

c2ρ2−d
≤ E(d−2)/2/c2, (4.12)

where (−∆ − E)−1 is considered with the Dirichlet boundary condition in D.
Let

n = [20(1 +
√
E)2] + 1. (4.13)

Using (2.7) and (4.10), we find that the distance from E to the Dirichlet spec-
trum of the operator −∆+ vnm in D is not less than c2ρ

2−d − n−m, where vnm
is defined according to (2.6). Since m > d and E ∈ (ρ2, 2ρ2), using (4.13), we
get that

‖(−∆+ vnm − E)−1‖L2(D)→L2(D) ≤ c3E
(d−2)/2,

E = E(ρ), ρ ≥ ρ1(d,m) > 1,

c3 = c3(d,m) > 0,

(4.14)

where (−∆+ vnm − E)−1 is considered with the Dirichlet boundary condition
in D.

Combining Proposition 2.1 and estimates (2.10), (4.12), (4.14), we find that

δ = ‖Φ̂nm(E)− Φ̂0(E)‖L∞(Sd−1)→L∞(Sd−1) ≤ c4E
d/22−n/4,

E = E(ρ), ρ ≥ ρ1(d,m) > 1,

n = [20(1 +
√
E)2] + 1

c4 = c4(d,m) > 0.

(4.15)

Since s2 > m, taking ρ big enough and using (4.15), we obtain the following
inequalities:

n−m < ε, (4.16)

A(1 +
√
E)κδτ <

1

2
n−m, (4.17)

B(1 +
√
E)2(s−s2)

(

ln
(

3 + δ−1
))−s

<
1

2
n−m,

0 ≤ s ≤ s2,
(4.18)

where
E = E(ρ), n = [20(1 +

√
E)2] + 1. (4.19)

Combining (2.6), (2.7), (4.16) - (4.19), we get that

A(1 +
√
E)κδτ +B(1 +

√
E)2(s−s2)

(

ln
(

3 + δ−1
))−s

<

<
1

2
n−m +

1

2
n−m = ‖vnm − v0‖L∞(D)

‖vnm‖L∞(D) = n−m < ε,

‖vnm‖Cm(D) < C1,

supp vnm ⊂ D.

(4.20)

�
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5 Proof of Lemma 3.2

To prove Lemma 3.2 we need some preliminaries. Consider the problem of
finding solutions of the form ψ(r, ω) = R(r)fjp(ω) of equation (1.1) with v ≡ 0
and D = Bd(0, 1), where d ≥ 2. We recall that:

∆ =
∂2

(∂r)2
+ (d− 1)r−1 ∂

∂r
+ r−2∆Sd−1 , (5.1)

where ∆Sd−1 is Laplace-Beltrami operator on Sd−1,

∆Sd−1fjp = −j(j + d− 2)fjp. (5.2)

Then we obtain the following equation for R(r):

−R′′ − d− 1

r
R′ +

j(j + d− 2)

r2
R = ER. (5.3)

Taking R(r) = r−
d−2

2 R̃(r), we get

r2R̃′′ + rR̃′ +

(

Er2 −
(

j +
d− 2

2

)2
)

R̃ = 0. (5.4)

This equation is known as the Bessel equation. For E = k2 6= 0 it has two
linearly independent solutions Jj+ d−2

2

(kr) and Yj+ d−2

2

(kr), where

Jα(z) =
∞
∑

m=0

(−1)m(z/2)2m+α

Γ(m+ 1)Γ(m+ α+ 1)
, (5.5)

Yα(z) =
Jα(z) cosπα− J−α(z)

sinπα
for α /∈ Z, (5.6)

and
Yα(z) = lim

α′→α
Yα′(z) for α ∈ Z. (5.7)

We recall also that the system of functions

{ψjp(r, ω) = Rj(k, r)fjp(ω) : j ∈ N ∪ {0}, 1 ≤ p ≤ pj} ,
is complete orthogonal system (in the sense of L2) in the space

of solutions of equation (1.1) in D′ = B(0, 1) \B(0, 1/3)

with v ≡ 0, E = k2 and boundary condition ψ|r=1 = 0,

(5.8)

where

Rj(k, r) = r−
d−2

2

(

Yj+ d−2

2

(kr)Jj+ d−2

2

(k)− Jj+ d−2

2

(kr)Yj+ d−2

2

(k)
)

. (5.9)

For the proof of (5.8) see, for example, [8].

Lemma 5.1. For any ρ > 0, integers d ≥ 2, n ≥ 10(ρ+1)2 and z ∈ C, |z| ≤ ρ,
the following inequalities hold:

1

2

(|z|/2)α
Γ(α+ 1)

≤ |Jα(z)| ≤
3

2

(|z|/2)α
Γ(α+ 1)

, (5.10)
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|J ′
α(z)| ≤ 3

(|z|/2)α−1

Γ(α)
, (5.11)

1

2π
(|z|/2)−αΓ(α) ≤ |Yα(z)| ≤

3

2π
(|z|/2)−αΓ(α) (5.12)

|Y ′
α(z)| ≤

3

π
(|z|/2)−α−1Γ(α + 1) (5.13)

where ′ denotes derivation with respect to z, α = n+ d−2
2 and Γ(x) is the Gamma

function.

In fact, the proof of Lemma 5.1 is given in [8] (see Lemma 3.3 of [8]). It was
shown in [8] that inequalities (5.10) - (5.13) hold for any n > n0, where n0 is
such that























n0 > 3,

exp

(

ρ2/4

n0 + 1

)

− 1 ≤ 1/2,

3π
max

(

1, (ρ/2)2n0+1
)

Γ(n0)
+

ρ2

2n0 − ρ2
+

(ρ/2)2n0eρ
2/4

Γ(n0)
≤ 1/2,

(5.14)

(see formula (6.18) of [8]). The only thing to check is that n0 = [10(ρ+1)2]− 1
satisfy (5.14), where [·] denotes the integer part of a number, The first two
inequalities are obvious. The third follows from the estimate

Γ(n0) = (n0 − 1)! ≥
(

n0 − 1

e

)n0−1

. (5.15)

The final part of the proof of Lemma 3.2 consists of the following: first, we
consider the case when E = k2 6= 0 and

j1 = max{j1, j2} ≥ 10(1 + |k|)2. (5.16)

Let ψ1, ψ2 denote the solutions of equation (1.1) with boundary condition
ψ|∂D = fj2p2

and potentials v1 and v2, respectively. Using Lemma 3.1 for
v1 and v2, we get that

‖ψ1 − ψ2‖L2(D) ≤ 2
(

1 + (N + |E|)Q
)

, (5.17)

where

Q = ‖(−∆+ v1 −E)−1‖L2(D)→L2(D) + ‖(−∆+ v2 −E)−1‖L2(D)→L2(D), (5.18)

Note that ψ1−ψ2 is the solution of equation (1.1) in D′ = B(0, 1)\B(0, 1/3)
with potential v ≡ 0 and boundary condition ψ|r=1 = 0. According to (5.8), we
have that

ψ1 − ψ2 =
∑

j,p

cjpψjp in D′ (5.19)

for some cjp, where
ψjp(r, ω) = Rj(k, r)fjp(ω). (5.20)
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Since Rj(k, 1) = 0, we find that

∂Rj(k, r)

∂r

∣

∣

∣

∣

r=1

=
∂
(

r
d−2

2 Rj(k, r)
)

∂r

∣

∣

∣

∣

∣

∣

r=1

. (5.21)

For j ≥ 10(1 + |k|)2, using Lemma 5.1, we have that

∣

∣

∣

∣

∣

∣

∂Ri(k,r)
∂r

∣

∣

∣

r=1

Yα(k)Jα(k)

∣

∣

∣

∣

∣

∣

= |k|
∣

∣

∣

∣

Y ′
α(k)

Yα(k)
− J ′

α(k)

Jα(k)

∣

∣

∣

∣

≤

≤ 6|k|
(

(|k|/2)−α−1Γ(α+ 1)

(|k|/2)−αΓ(α)
+

(|k|/2)α−1Γ(α+ 1)

(|k|/2)αΓ(α)

)

= 6α,

(5.22)

( ||r− d−2

2 Yα(kr)||L2({1/3<|x|<2/5})

|Yα(k)|

)2

≥

≥
∫ 2/5

1/3

(

1

3

(|k|r/2)−αΓ(α)

(|k|/2)−αΓ(α)

)2

r dr ≥
(

2

5
− 1

3

)

1

3

(

1

3
(5/2)α

)2

,

(5.23)

(

||r− d−2

2 Jα(kr)||L2({1/3<|x|<2/5})

|Jα(k)|

)2

≤

≤
∫ 2/5

1/3

(

3
(|k|r/2)αΓ(α)
(|k|/2)αΓ(α)

)2

r dr ≤
(

2

5
− 1

3

)

1

3
(3(2/5)α)

2
,

(5.24)

where α = j + d−2
2 . Note that if j ≥ 10(1 + |k|)2 then j + d−2

2 > 3. Combining
(5.23) and (5.24), we get that

||ψjp||L2({1/3<|x|<2/5})

|Yα(k)Jα(k)|
≥

≥
(

(2

5
− 1

3

)1

3

)1/2(
1

3
(5/2)α − 3(2/5)α

)

>
6

1000
(5/2)α.

(5.25)

Combining (5.22) and (5.25), we find that

∣

∣

∣

∣

∂Rj(k, r)

∂r

∣

∣

∣

∣

r=1

∣

∣

∣

∣

≤ 1000α(5/2)−α||ψjp(E)||L2({1/3<|x|<1}). (5.26)

Proceeding from (5.19) and using the Cauchy-Schwarz inequality, we get that

|cjp| =

∣

∣

∣

∣

∣

∣

∣

〈

ψjp, ψ1 − ψ2

〉

L2({1/3<|x|<1})

||ψjp(E)||2
L2({1/3<|x|<1})

∣

∣

∣

∣

∣

∣

∣

≤ ||ψ(E) − ψ0(E)||L2(B(0,1))

||ψjp(E)||L2({1/3<|x|<1})
. (5.27)

Using (5.19), we find that

〈

fj1p1
,
(

Φ̂1(E)− Φ̂2(E)
)

fj2p2

〉

=

〈

fj1p1
,
∂(ψ1 − ψ2)

∂ν

∣

∣

∣

∣

∂D

〉

=

=

〈

fj1p1
,
∂Rj1(k, r)

∂r

∣

∣

∣

∣

r=1

fj1p1

〉

= cj1p1

∂Rj1(k, r)

∂r

∣

∣

∣

∣

r=1

(5.28)
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Combining (5.16), (5.26), (5.27) and (5.28), we obtain that
〈

fj1p1
,
(

Φ̂1(E)− Φ̂2(E)
)

fj2p2

〉

≤ C(d)2−j1 ||ψ1 − ψ2||L2(B(0,1)). (5.29)

Combining (5.17) and (5.29), we get (3.13) for j1 ≥ j2 and E 6= 0.
For j1 < j2 we use the fact that Φ∗

v(E) = Φv̄(Ē) in order to swap j1 and j2,
where Φ∗

v denotes the adjoint operator to Φv. Thus we complete the proof of
Lemma 3.2 for the non-zero energy case.

Estimate (3.13) for the zero energy case follows from Lemma 1 of [16].
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