
2nd International Conference on Engineering Optimization

September 6-9, 2010, Lisbon, Portugal

Noisy Expected Improvement and On-line Computation Time Allocation for
the Optimization of Simulators with Tunable Fidelity

V. Picheny1, D. Ginsbourger2, Y. Richet3

1Ecole Centrale de Paris, Chatenay-Malabry, France, victor.picheny@ecp.fr
2Department of Mathematics and Statistics, University of Bern, Switzerland, david.ginsbourger@stat.unibe.ch
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Abstract

This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these
simulators depends on factors that tune the level of precision of the response, the gain in accuracy be-
ing at a price of computational time. The contribution of this work is two-fold: firstly, we propose a
quantile-based criterion for the sequential choice of experiments, in the fashion of the classical Expected
Improvement criterion, which allows a rigorous treatment of heterogeneous response precisions. Secondly,
we present a procedure that allocates on-line the computational time given to each measurement, allow-
ing a better distribution of the computational effort and increased efficiency. Finally, the optimization
method is applied to an original application in nuclear criticality safety.
Keywords: Noisy optimization, Kriging, Tunable fidelity.

1. Introduction

Using metamodels for facilitating optimization and statistical analysis of computationally expensive sim-
ulators has become commonplace. In particular, the kriging-based EGO algorithm [10] and its underlying
expected improvement (EI) criterion have been recognized as efficient tools for deterministic black-box
optimization. However, most simulators return approximate solutions to the considered mathematical
model rather than exact ones. The way a simulator response follows the function of interest is called
fidelity. Oftentimes, a large range of response fidelities is available by tuning factors that control the com-
plexity of numerical methods. For instance, the precision of a finite element analysis can be controlled by
the meshing density or element order. Another example is when the response stems from Monte Carlo
methods: the accuracy (measured by response variance) is inversely proportional to sample size.
Such simulators are often referred to as noisy simulators, since they return approximate solutions that
depart from the exact value by an error term. Optimization in this context raises critical issues. Having
noise in the responses requires a proper adaptation of criteria and algorithms. Furthermore, for each
simulation run, the user has to set a trade-off between computational cost and response precision. The
choice of this trade-off greatly impacts the efficiency of the optimization.
Using metamodels for noisy optimization has been already addressed by several authors. Many ap-
proaches consider only two fidelity levels, and the low-fidelity model is used as a helping tool to choose
the high-fidelity evaluations [1, 4]. In that case, metamodels are used to estimate the difference between
simulators. More integrated approaches have also been proposed, based on modifications of the EGO al-
gorithm. Huang et al. [7] proposed a criterion for hierarchical kriging models with finitely many levels of
fidelity, that chooses at the same time the observation point and the fidelity. Forrester et al. [3] proposed
a re-interpolation technique to filter out the noise, allowing the use of the standard EGO algorithm.
This work proposes two contributions to this framework. First, we define an extension of EI based on
quantiles that enables a rigorous treatment of continuous fidelities. The proposed criterion not only de-
pends on the noise variances from the past, but also on the fidelity of the new candidate measurement.
Hence, this criterion allows to choose both an input space point and a fidelity level at each iteration.
Second, we study a procedure taking advantage of this additional degree of freedom. Once an input
space point has been selected, computation time is invested on it until a stopping criterion is met. One
of the advantages of such procedure is that it prevents from allocating too much time to poor designs,
and allows spending more credit on the best ones.
In the next section, we describe the classical kriging-based optimization procedure, and its limitation
with noisy functions. Then, the quantile-based EI criterion is proposed, followed by the on-line allocation
procedure. Finally, an original application in nuclear criticality safety is implemented in the Promethee
workbench and applied to the Monte Carlo criticality simulator MORET5 [2].
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2. Notations and concepts

We consider a single objective, unconstrained optimization problem. The deterministic objective func-
tion y : x ∈ D ⊂ Rd −→ y(x) ∈ R is here observed in noise. For a measurement at some x ∈ D, the
user doesn’t have access to the exact y(x), but to an approximate response y(x) + ǫ. ǫ is assumed to
be one realization of a ”noise” random variable ε, whose probability distribution may depend on x and
other variables, and which realizations might differ for different measurements of y at the same x. So
instead of referring to the measurements of y in terms of x’s, we will denote by ỹi = y(xi) + ǫi the noisy
measurements, where the xi’s are not necessarily all distinct.
Simulation noise can have many sources, as detailed in [3], including finite sample size (Monte-Carlo
methods), and discretization error or incomplete convergence (Finite Element methods). In our context
of simulations with tunable fidelity, we consider furthermore the case where for every measurement i
(1 ≤ i ≤ n), the noise variance τ2i is controllable and decreases monotonically with the allocated compu-
tational time ti. Then, the actual (inaccessible) objective function y is the response given by the simulator
with an infinite computational time allocated at every x ∈ D. The difference between the simulated and
actual phenomena is not considered here. Following the particular case of Monte Carlo simulations, we
finally make the assumption that εi ∼ N (0, τ2i ) independently.
Kriging is a functional approximation method originally coming from geosciences, and having been popu-
larized in machine learning (Gaussian Process paradigm [14]) and in numerous application fields. Kriging
simultaneously provides an interpolator of the partially observed function y, the Kriging mean predic-

tor m(.), and a measure of prediction uncertainty at every x, the Kriging variance s2(.). The ba-
sic idea is to see y as one realization of a square-integrable real-valued random process indexed by
D, and to make optimal linear predictions of Y (x) given the Y values at the already evaluated in-
put points Xn := {xi, 1 ≤ i ≤ n}. Of course, this prediction depends on the two first moments
of the process Y , which are generally assumed to be known up to some coefficients. Here we as-
sume that Y has an unkwown trend µ ∈ R, and a stationary covariance kernel k, i.e. of the form
k : (x,x′) ∈ D2 −→ k(x,x′) = σ2r(x− x′;ψ) for some admissible correlation function r with parameters
ψ. This is the framework of Ordinary Kriging (OK) [11]. Additionally, assuming further that Y |µ is a
Gaussian Process (GP) and µ has an improper uniform distribution over R leads to the convenient result
that OK amounts to conditioning Y on the measurements, thus ensuring that m(.) and s2(.) coincide
respectively with the conditional mean and variance functions. We stick here to this set of assumptions,
in order to get explicit conditional distributions for Y (x) knowing the observations, and to be in position
to use generalizations of this to the heterogeneously noisy case.
Let us indeed come back to our noisy observations ỹi = y(xi) + ǫi (1 ≤ i ≤ n). If we suppose that y is a
realization of a GP following the OK assumptions above, the ỹi’s can now be seen as realizations of the
random variables Ỹi := Y (xi) + εi, so that Kriging amounts to conditioning Y on the heterogeneously

noisy observations Ỹi (1 ≤ i ≤ n). As shown earlier in [6], provided that the process Y and the gaussian
measurement errors εi are stochastically independent, the process Y is still gaussian conditionally on
the noisy observations Ỹi (1 ≤ i ≤ n), and its conditional mean and variance functions are given by the
following slightly modified OK equations:

mn(x) = E[Y (x)|Ãn] = µ̂n + kn(x)
T (Kn +∆n)

−1(ỹn − µ̂n1n), (1)

s2n(x) = Var[Y (x)|Ãn] = σ2 − kn(x)
T (Kn +∆n)

−1kn(x) +

(
1− 1T

n (Kn +∆n)
−1kn(x)

)2

1T
n (Kn +∆n)−11n

, (2)

where | means ”conditional on”, ỹn = (ỹ1, . . . , ỹn)
T , Ãn is the event

{
Y (xi) + εi = ỹi, 1 ≤ i ≤ n

}
,

Kn =
(
k(xi,xj)

)
1≤i,j≤n

, kn(x) = (k(x,x1), . . . , k(x,xn))T , ∆n is a diagonal matrix of terms τ21 . . . τ
2
n,

1n is a n × 1 vector of ones, and µ̂n =
1
T

n
(Kn+∆n)

−1
ỹ
n

1T
n
(Kn+∆n)−11n

is the best linear unbiased estimator of µ. m(.)

and s2(.) are indexed by n in order to bring to light the dependence on the design of experiments, and
to prepare the ground for the algorithmic developments needing sequential Kriging updates.
The only difference compared to OK equations is the replacement of Kn by Kn+∆n at every occurence.
Specific properties of this generalization of OK include that mn(.) is not interpolating noisy measure-
ments, that s2n(.) doesn’t vanish at that points and is globally inflated compared to the noiseless case.
Note that although s2n(.) now depends on both the design Xn and the noise variances τ 2 := {τ21 , . . . , τ

2
n},

it still does not depend on the observations.
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3. Kriging-based optimization; limitations with noisy functions

Optimization (say minimization) based on Kriging with noiseless observations has truly become a hit
following the publication of the EGO algorithm [10]. EGO consists in sequentially evaluating y at a point
maximizing a figure of merit relying on Kriging, the Expected Improvement criterion (EI), and updating
the metamodel at each new observation. As illustrated in [9], directly minimizing mn(.) is inefficient
since it may lead the sequence of good points to get trapped in an artificial basin of minimum, whereas
maximizing EI provides a right trade-off between exploitation and exploration in order to converge to a
global minimizer. Our goal here is to adapt EI to the heterogeneously noisy case. Let us previously recall
the definition and analytical expression of EI in the noiseless case.
Let yi = y(xi) (1 ≤ i ≤ n), yn = (y1, . . . , yn)

T , An denote the event
{
Y (xi) = yi, 1 ≤ i ≤ n

}
, and mn

and s2n still refer to the Kriging mean and variance. The idea underlying EI is that sampling at x will
bring an improvement of min(y(Xn))−y(x) if y(x) is below min(y(Xn)), and 0 otherwise. Of course, this
quantity cannot be known in advance since y(x) is unknown. However, the GP model and the available
information An make it possible to define and derive the following conditional expectation:

EIn(x) := E

[
(min(Y (Xn))− Y (x))

+ |An

]
= E

[
(min(yn)− Y (x))

+ |An

]
(3)

An integration by parts yields the well-known analytical expression:

EIn(x) := (min(yn)−mn(x)) Φ

(
min(yn)−mn(x)

sn(x)

)
+ sn(x)φ

(
min(yn)−mn(x)

sn(x)

)
, (4)

where Φ and φ are respectively the cumulative distribution function and the probability density function
of the standard gaussian law. The latter analytical expression is very convenient since it allows fast
evaluations of EI, and even analytical calculation of its gradient and higher order derivatives. This used
in particular in the DiceOptim package [15] for speeding up EI maximization.
Let us now state why the classical EI is not well adapted to Kriging with noisy observations. Coming
back to the previous notations, we have indeed:

EIn(x) = E




min(Y (Xn))︸ ︷︷ ︸

unknown

− Y (x)︸ ︷︷ ︸
unreachable




+ ∣∣∣∣∣Ãn


 , (5)

which is not very satisfactory for at least two reasons. The first one is that the current minimum
min(Y (Xn)) is not deterministically known conditionally on the noisy observations, contrarily to the
noiseless case. This prevents one from getting an analytical formula for EI. The second reason is that the
EI is based on the improvement that could bring a deterministic evaluation of y at the candidate point
x. Now, if the next evaluation is noisy, Y (x) will remain non-exactly known. It would hence be more
adapted to have a criterion taking the precision of the next measurement into account.
One temptation in order to keep a tractable criterion could be to plug in min(ỹn) in EI instead of the
unkown min(yn). However, it could be greatly misleading since the noisy minimum is a biased estimate
of the noiseless minimum, and it sufficies to have one highly noisy observation with a low value to deeply
underestimate min(yn). A rule of thumb proposed by Vazquez et al. [16] is to plug in the minimum of
the Kriging mean predictor min(mn(X

n)) instead of min(ỹn), which seems to be a more sensible option
in order to smooth out the noise fluctuations. In the same fashion, Forrester et al. [3] proposed to replace
the noisy observations by the kriging best predictor mn(X

n), and fit a noise-free kriging on such data,
which is used for the standard EGO algorithm. A more rigorous alternative consists of estimating the
EI based on Monte-Carlo simulations involving the joint distribution of (min(Y (Xn), Y (x)) conditional

on Ãn; however, such estimates are noisy and numerically costly, which makes the EI maximization chal-
lenging. The Augmented Expected Improvement (AEI) is another variant of EI for noisy optimization [8],
with min(Y (Xn)) being replaced by the best predictor at the training point with smallest kriging quan-
tile, and the EI being multiplicated by a penalization function to account for the diminishing return of
additional replicates. Huang et al. generalized their AEI [7] to the case of a finitely many simulators with
heterogeneous fidelity, and proposed a criterion that depends on both the next point x and its associated
response precision. This is one of the fundamental properties of the EI criterion with tunable fidelity pro-
posed in the next section, which additionally differs from AEI by its transparent probabilistic fundations.
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4. Quantile-based EI

We now introduce a variant of EI for the case of a deterministic objective function with heterogeneously
noisy measurements. Our aim is to get a Kriging-based optimization criterion measuring which level of
improvement can be statistically expected from sampling y at a new x with a noise of given variance τ2.
A first question to be addressed is of decision-theoretic nature: what does the term ”improvement” mean
when comparing two sets of noisy observations? According to what kind of criterion should we judge
that a set of noisy observations, or the associated metamodel, is better (in terms of minimization) after
the (n+ 1)th measurement than before it?
Here we chose to use the β-quantiles given by the Kriging conditional distribution, for a given level
β ∈ [0.5, 1[: a point is declared ”best” whenever it has the lowest quantile, which defines a natural
and tunable trade-off between performance and reliability. Let us recall that under the GP assumptions
above, the β-quantile surface at step k (k ≤ n+ 1) can be explicitely derived based on mn and sn:

qn(x) := inf{u ∈ R : P(Y (x) ≤ u|Ãn) ≥ β} = mn(x) + Φ−1(β)sn(x) (6)

As in [8], we restrict our choice here to the already tried points, thus forbidding to end the optimization
process with a point at which no measurement has ever been done. Such a restriction greatly simplifies
calculations, and is compatible with good practices: who would trust a metamodel so much to propose
a final candidate minimizer without any measurement at that point? So we propose to define the im-
provement in terms of decrease of the lowest β-quantile at the available design of experiments, between
the present and the forthcoming step. Of course, like in the classical EI case, this improvement cannot
be known in advance, but can be predicted based on the GP model.
Let us denote by Qi(x) the the kriging quantile qi(x) (i ≤ n + 1) where the measurements are still in
their random form, and define the quantile Expected Improvement as:

EIn(x
n+1, τ2n+1) := E

[(
min
i≤n

(Qn(x
i))−Qn+1(x

n+1)

)+
∣∣∣∣∣Ãn

]
(7)

where the dependence on τ2n+1 appears through Qn+1(x)’s distribution. The randomness of Qn+1(x)

conditional on Ãn is indeed a consequence from Ỹn+1 := Y (xn+1) + εn+1 having not been observed yet

at step n. However, following the fact that Ỹn+1|Ãn is gaussian with known mean and variance, one

can show that Qn+1(.) is a GP conditional on Ãn (see proof and details in appendix). As a result, the
proposed quantile EI is analytically tractable, and we get by a similar calculation as in Eq. 4:

EIn(x
n+1, τ2n+1) =

(
min(qn)−mQn+1

)
Φ

(
min(qn)−mQn+1

sQn+1

)
+ sQn+1

φ

(
min(qn)−mQn+1

sQn+1

)
(8)

where:





qn := {qn(xi), i ≤ n} is the set of current quantile values at the already visited points,

mQn+1
:= E[Qn+1(x

n+1)|Ãn] is Qn+1(x
n+1)’s conditional expectation —seen from step n,

s2Qn+1
:= V ar[Qn+1(x

n+1)|Ãn] is its conditional variance, both derived in appendix.

As in the noiseless case, the proposed EI criterion is hence known in closed form, which is a desirable
feature for its maximization. τ2 and β are to be considered here as parameters, and EI maximization is
done with respect to x only. An illustration of the dependence of the criterion on τ2 is provided in section
7. β tunes the level of reliability wanted on the final result; with β = 0.5, the design points are compared
based on the kriging mean predictor only, while high values of β (i.e. near to 1) penalize designs with
high uncertainty, which is a more conservative approach.
A simple algorithm can be defined at this point, by choosing a unique value for τ2 and making observa-
tions iteratively with uniform noise variances where the EI criterion is maximum. However, the choice of
τ2 is non-trivial, and such strategy hinders greatly the potential of tunable fidelity. The next section is
dedicated to a method of dynamically choosing τ2 during optimization.

5. On-line allocation of resource

For many ”noisy” simulators such as those relying on Monte Carlo or on iterative solvers, the response
corresponding to a given fidelity is not obtained directly but more as a limit of intermediate responses of
lower fidelities. It is assumed here that the evolution of these responses can be monitored on-line, and
that the noise variance is a known decreasing function of computation time

τ2 : t ∈ [0,+∞[−→ τ2(t) ∈ [0,+∞[ (9)
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For each measurement, the noisy response ỹi is thus obtained as last term of a sequence of measurements
ỹi[1], . . . , ỹi[bi] with decreasing noise variances, τ2i [1] > . . . > τ2i [bi], where bi ∈ N is the number of calcu-
lation steps at the ith measurement. Furthermore, each step is supposed to correspond to one elementary
computation time te ∈]0,+∞[, so that ∀j ∈ {1, . . . , bi}, τ2i [j] = τ2(j × te).
We propose a procedure that, instead of fixing the computational resource (and thus, noise level) prior
to the measurements, adapts it on-line by looking at the evolution of the response. The objective of
such procedure is to obtain a better distribution of the computational resource. Indeed, it seems natural
that more time should be allowed to designs close to the actual minimizer, and less to designs with high
values of the cost function. However, knowing that a design is poor is also a valuable information, since
it allows us to remove its neighbourhood from the searching region. In the following, we propose to use
the quantile-based EI to measure the value of additional calculations.

5.1 On-line update of the quantile-based EI
Let us focus without loss of generality on the ith measurement, made at xi, initially chosen with noise
level τ2i [bi] = τ2(Ti) where Ti := bi × te. After j ≤ bi calculation steps, the current observation is ỹi[j],
with variance τ2i [j] = τ2(j × te). We propose an update of the EI in order to measure the potential
improvement if the measurement process is carried on until the noise level τ2(Ti) is reached.
The EI criterion has first to take into account the current noisy measurement, which requires a straight-
forward update of the kriging model. If j = 1, the new point has to be added to the DoE and the kriging
equations modified accordingly; otherwise, it only requires to replace the previous values of response
and noise ỹi[j − 1] and τ2i [j − 1] by ỹi[j] and τ2i [j] in the kriging equations 1 and 2. The future noise
level τ2(Ti) also has to be modified; if not, the EI would estimate the value of a new measurement with
variance τ2(Ti), regardless of the fact that the measurement has already started.
To do so, we use the fact that it is equivalent for the kriging model to have at the same point several
measurements with independent noises or a single equivalent measurement that is the weighted average
of the observations. For instance, let ỹi,1 and ỹi,2 be two measurements with respective noise levels τ2i,1

and τ2i,2. They are equivalent to a single measurement ỹi,eq =
(
τ−2
i,1 + τ−2

i,2

)−1 (
τ−2
i,1 ỹi,1 + τ−2

i,2 ỹi,2
)
with

variance τ2i,eq , given by:

1

τ2i,eq
:=

1

τ2i,1
+

1

τ2i,2
=⇒ τ2i,eq =

τ2i,1τ
2
i,2

τ2i,1 + τ2i,2
(10)

Now, to update the EI, we make the assumption that it is equivalent to carry the measurement process
until the noise level τ2i [bi] is reached, or to make a new measurement with noise variance:

τ2i [j → bi] :=
τ2i [j]τ

2
i [bi]

τ2i [j]− τ2i [bi]
=

τ2(j × te)τ
2(Ti)

τ2(j × te)− τ2(Ti)
=: τ2(j × te → Ti) (11)

Such hypothesis implies that the increment between the current and final values ỹi[j] and ỹi[bi] is a re-

alization of a variable following the law N (0, τ2i [j → bi]) independently of Ỹi[j], which is exact in Monte
Carlo, and may be acceptable in partially converged iterative solvers, provided that the frequence of
sampling is low compared to the oscillations of convergence around the actual solution.
The updated EI indicates the expected quantile improvement if the observation variance is reduced to

τ2(Ti). Such quantity tends by construction to decrease when computation time is added, since (1) the
kriging uncertainty reduces at the observation point and (2) it decreases when τ2(j × te → Ti) increases.
However, if the measurement converges to a good (small) value, EI can increase temporarily. Inversely, if
the measurement converges to a high value, EI decreases faster. Hence, we can define a (”point switch-
ing”) stopping criterion for resource allocation based on EI. If the EI decreases below a certain value,
carrying on the calculations is not likely to help the optimization, so the observation process should stop
and another point be chosen. Here, we propose to interrupt a measurement and search for a new point
when the current value of the EI is less than a proportion of the initial EI value (that is, the value of EI
when starting the measurement process at that point), for instance 50%.

5.2 Optimization with finite computational budget
In many practical applications, the total computational budget is bounded, and prescribed by indus-
trial constraints such as time and power limitations. In the case of Monte Carlo-based simulators, this
computational budget can be defined in terms of sample size. i.e. total number of drawings. Taking
into account this limitation may modify the optimization strategy: depending on the total budget, the
optimization process may be more or less exploratory, with more or less noisy measurements. Integrating
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this limitation in the algorithm would result in improved efficiency and prevent the user from having to
make manual trade-offs between accuracy and rapidity. Mokus [12] followed by Ginsbourger et al. [5]
demonstrated the relevance of such approach for the deterministic case.
In fact, it is possible to take into account such computational boundedness in the proposed algorithm.
Indeed, the future noise level τ2n+1, which is a parameter of the EI criterion, will stand here for the finite
resource. Given a computational budget Tn+1, the smallest noise variance achievable for a new measure-
ment is τ2(Tn+1), assuming that all the remaining budget will be attributed to this measurement. In the
course of the optimization process steps j ≤ bn+1, the remaining budget decreases, so τ2 (j × te → Tn+1)
increases. By setting τ2n+1 = τ2(Tn+1), the new experiment is chosen knowing that even if all the remain-
ing budget is attributed to the same observation, the noise variance will not decrease below a certain
value. Consequently, the EI will behave differently at the beginning and the end of the optimization.
When the budget is high, EI will be highest in unexplored regions, since it is where accurate measure-
ments are likely to be most efficient. At the end of the optimization, when the remaining time is small,
the EI will be small in those regions since that even if the actual function is low, there is not enough
computational time to obtain a lower quantile than the current best one. In that case, the EI will be
highest close to the current best point.

6. Algorithm overview

This section summarizes the optimization algorithm we propose, which features all the elements proposed
in section 4 and 5. The principal of the following algorithm is to choose the point with highest quantile
expected improvement given the whole remaining budget, to store the corresponding EI value as refer-
ence, and to invest new elementary measurement at this point until the EI with updated data falls under
a given proportion γ ∈]0, 1[ of the reference EI value. The operation of choosing the most promizing
point is then started again, and so on until the total computational budget has been spent. Note that
the final number of measurements is not determined beforehand but adapts automatically to the budget
and resource distribution. The complete algorithm is presented in pseudo-code form in table 1.
The total computational budget T needs to be defined before optimization, and discretized in incremental
steps {te, 2 × te, . . . , b× te}, where b =

T
te
. Smaller steps (i.e. a smaller te) result in increased precision,

but requires more Kriging updates and EI maximization, which can become computationally intensive.
A prescribed fraction T0 of this budget is allocated to build an initial DoE, which should be designed in
order to fit a realistic Kriging model. Based on previous numerical experiments, it has been found that
using 30 to 50% of the total budget on a space-filling DoE (for instance, an LHS design) with uniform
observation variances is a reasonable option.

Table 1: Quantile EI algorithm with on-line resource allocation

- Build initial DoE Xn0 , generate observations ỹn0 using T0 computational time, fit Kriging model

- Set n = n0 and Tn = T − T0

while Tn > 0

- Choose new design point xn+1 that maximizes EIn
(
., τ 2(Tn)

)

- Generate ỹn+1[1] with one time increment

- Augment DoE: Xn+1 =
{
Xn,xn+1

}

- Update Kriging model with ỹn+1 = ỹn+1[1] and τ 2
n+1 = τ 2(te)

- Set Tn+1 = Tn − te, j = 1, and t = te

while EIn+1

(
xn+1, τ 2(t → Tn)

)
> γEIn

(
xn+1, τ 2(Tn)

)

- Generate ỹn+1[j + 1] by adding one time increment

- Update Kriging model with: ỹn+1 = ỹn+1[j + 1], τ 2
n+1 = τ 2(t)

- Set Tn+1 = Tn+1 − te, j = j + 1, and t = t+ te

end while

- Set n = n+ 1

end while

- Choose final design based on the Kriging quantile

Here, the variance level depends only on computational time; however, the algorithm writes similarly if
the variance is design-dependent, by replacing τ2(t) by τ2(t;x). Also, a minimum achievable noise can
be set by the user or the simulator itself. In that case, τ2 should be bounded by a τ2min = τ2(Tmax), and
Tn replaced by min(Tn, Tmax) in all EI expressions above.
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7. Experiments

Two examples are proposed in this section: a one-dimensional analytical example, for illustrative purpose,
and a three-dimensional nuclear safety problem.

7.1 One-dimensional example
First, we study a one-dimensional problem, with objective function defined over [0, 1] by:

y(x) =
1

2

(
sin(20x)

1 + x
+ 3x3cos(5x) + 10(x− 0.5)2 − 0.6

)
(12)

The noise is here inversely proportional to computational time, and independent of x: τ2(t) = 0.1
t
.

First, we represent the quantile EI criterion (with β = 0.9) for the initial DoE and kriging model, for three
different τ2 values : 1, 0.1 and 0.01. The initial DoE consists of four equally-spaced measurements, with
noise variances equal to 0.02 (the 95% confidence interval at a measurement point is approximately 25%
of the range of y). The kriging model has a gaussian covariance kernel with parameters σ = 1 and θ = 0.1.
The true function, kriging model, and EI are shown on Figure 1. We can see that the choice of the future
noise level has a great influence on the criterion. With small noise variance, the quantile-EI behaves like
the classical EI, with highest values in regions with high uncertainty and low mean predictions. With
higher noise variances, the criterion becomes very conservative since is it high only in the vicinity of
existing measurements. Indeed, a very noisy future observation can only have a very limited influence on
the kriging model, so adding such observation in an uncertain region is insufficient to lower enough the
quantile to have a high quantile EI.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1

2 Kriging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4 EI criterion

 

 τ2=1

τ2=0.1

τ2=0.01

Figure 1: quantile-EI for three different future noise levels.

Then, an optimization is performed with a total computational budget of T = 100, starting from the
DoE described above. T is divided in 100 time increments. Each initial DoE measurement has required
five time units (te = 1), so the DoE used 25% of the computational budget. Figure 2 represents the final
DoE and kriging model. Nine measurement points have been added, with computational times varying
from one to 41. The final DoE consists of highly noisy observations space-filling the design region and a
cluster of accurate observations in the region of the global optimum.

7.2 Application to a 3D benchmark from nuclear criticality safety assessments
In this section, the optimization algorithm is applied to the problem of safety assessment of a nuclear sys-
tem involving fissile materials. The benchmark system used is a heterogeneous uranium sphere partially
moderated by water. The safety of this system is measured by the criticality coefficient (called k-effective
or keff), which models the nuclear chain reaction trend:

- keff > 1 is an increasing neutrons production leading to an uncontrolled chain reaction,
- keff = 1 means a stable neutrons population as required in nuclear reactors,
- keff < 1 is the safety state required for all unused fissile materials, like for fuel storage.

The criticality coefficient depends on the composition of fissile materials, and on operational parameters
such as water (as a moderator for the kinetic energy of neutrons), structure materials, fissile geometry,
and heterogeneity characteristics. For a given set of parameters, the value of keff can be evaluated using
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Figure 2: Observations and kriging after optimization. The best measurement point is circled in red.

the MORET stochastic simulator [2, 13], which is based on Markov Chain Monte-Carlo simulation tech-
niques. The precision of the evaluation depends on the amount of simulated particles (neutrons), which
is tunable by the user. When assessing the safety of a system, one has to ensure that, given a set of
admissible values D for the parameters x, there are no physical conditions under which the keff can reach
the critical value of 1.0 (minus a margin, usually chosen as 0.05):

max
x∈D

keff(x) ≤ 1.0−margin (13)

If this relation is not ensured, then D is reduced and safety checked again. The search for the worst
combination of parameters x defines a noisy optimization problem which is often challenging in practice,
due to the possible high computational expense of the MORET simulator. An efficient resolution tech-
nique of this problem is particularly crucial since this optimization may be done numerous times. In this
article, we focus on the maximization of keff with respect to three parameters (the other possible inputs
being fixed to their nominal values):

- mmf, the whole fissile mass of the system, with range [11, 20] kg,
- α, the ratio of moderated mass of fissile, with range [0.05, 0.5] (after a preliminary rescaling)
- mmod, the moderator mass, with range [0.22, 1.3] kg.

Hence: x = (mmf, α,mmod), and y(x) = −keff(x). Simulation time is assumed proportional to the
number of particles simulated (the entry cost of a new simulation being neglected). The variance of
the keff estimate is inversely proportional to the number of particles. The variance slightly varies with
input parameters, but this dependence can be considered negligible here. For practical considerations,
the optimization space D is discretized in a 10 × 10 × 10 grid, and for each new measurement the EI
maximization is performed by exhaustive search on the grid. The incremental time step te is defined by
the simulation of 4000 particles, which takes about half of minutes on a 3 GHz CPU. The response noise
standard deviation can take values between 1.69×10−3 (one time step) and 2.38×10−3 (fifty time steps).
The keff range is approximately [0.8, 1.0], so with one time step, the measurement 95% confidence interval
length is 4× 0.0169 = 0.068, which is 33% of the response range. With fifty time steps, the length is 5%
of the range. The total computational budget considered here is T = 200, which corresponds to only four
points of highest accuracy. The initial DoE consists of 50 points randomly chosen on the grid, with one
time step used for each measurement (so 25% of the budget is allocated to the initial DoE).
After the optimization, 11 measurements have been added and one measurement of the initial DoE has
been refined. Four new measurements used one time step, two used 50, the others used intermediate
values. The best design (with lowest kriging quantile) has second lowest measurement, and used 50 time
steps. Its kriging standard deviation is 1.6× 10−3, which is less than 1% of the response range.
Figure 3 presents the final sequence of measurements. The first 50 points are the inital DoE, and only
the 28-th point presents a better accuracy due to further enrichment during optimization. The last 11
points are the new points added by the algorithm. The first three measurements added have a very
high precision; however, the computational resource was not attributed to these points all at once, but
the algorithm switched to other points and came back to enrich the measurement several times during
the optimization. The five last measurements have very large noises and kriging quantiles; these designs
correspond to exploration points, which measurements were stopped early when they were detected to be
poor designs. On the other hand, the three best points (in terms of kriging quantile) are the ones where
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most of the computational time have been allocated.
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 Initial DOE measurements

Added measurements

Kriging quantiles
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Figure 3: DoE after optimization. The vertical bars are the measurements confidence intervals ỹi±2×τi.

8. Conclusion and perspectives

In this paper, we have proposed a quantile-based expected improvement for the optimization of noisy
back-box simulators. This criterion allows a rigorous treatment of heterogeneous noise and takes into
account the noise level of the candidate measurements. In the context of simulators with tunable fidelity,
we proposed an on-line procedure for an adapted distribution of the computational effort. One of the
advantages of such procedure is that it prevents from allocating too much time to poor designs, and allows
spending more credit on the best ones. Another remarkable property of this algorithm is that, unlike
EGO, it takes into account the limited computational budget. Indeed, the algorithm is more exploratory
when there is much budget left, and favours a more local search when running out of computational
credit. The online allocation optimization algorithm was tested on two problems: an analytical function,
and an original application in nuclear criticality safety, the Monte Carlo criticality simulator MORET5.
On both problems, the algorithm showed promising results, using coarse measurements for exploration
and accurate measurements at best designs. Future work may include comparison of the quantile-based
EI to other criteria for point selection, analysis of the effect of on-line allocation compared to a uniform
allocation strategy, and a comparison of our algorithm to classical noisy optimization algorithms.
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A1. 1-step ahead conditional distributions of the mean, variance, and quantile processes

Let xn+1 be the point to be visited at the (n+1)th step, τ2n+1 and Ỹn+1 = Y (xn+1)+εn+1 the correspond-
ing noise variance and noisy response, respectively. We will now discuss the properties of the Kriging
mean and variance at step n + 1 seen from step n. Let Mn+1(x) := E[Y (x)|Ãn, Ỹn+1] be the kriging

mean function at the (n + 1)th step and S2
n+1(x) := V ar[Y (x)|Ãn, Ỹn+1] the corresponding conditional

variance. Seen from step n, both of them are ex ante random processes since they are depending on the
not yet observed measurement Ỹn+1. We will now prove that they are in fact Gaussian Processes |Ãn,
as well as the associated quantile Qn+1(x) = Mn+1(x) + Φ−1(β)Sn+1(x). The key results are that the
Kriging predictor is linear in the observations, and that the Kriging variance is independent of them, as
can be seen from Eqs. 1 and 2. Writing

Mn+1(x) =




n∑

j=1

λn+1,j(x)Ỹj


+ λn+1,n+1(x)(Y (xn+1) + εn+1), where (14)

(λn+1,.(x)) :=

(
kn+1(x)

T +
(1 − kn+1(x)

T (Kn+1 +∆n+1)
−11n+1)

1T
n+1(Kn+1 +∆n+1)−11n+1

1T
n+1

)
(Kn+1 +∆n+1)

−1, (15)

it appears that Mn+1 is a GP |Ãn, with the following conditional mean and covariance kernel:

E[Mn+1(x)|Ãn] =

n∑

j=1

λn+1,j(x)ỹi + λn+1,n+1(x)mn(x) and (16)

Cov[Mn+1(x),Mn+1(x
′)|Ãn] = λn+1,n+1(x)λn+1,n+1(x

′)(s2n(x
n+1) + τ2n+1). (17)

Using that Qn+1(x) = Mn+1(x) + Φ−1(β)Sn+1(x), we observe that seen from the nth step, Qn+1(.) is a

GP as sum of a GP and a deterministic process conditional on Ãn. We finally get:

E[Qn+1(x)|Ãn] =

n∑

j=1

λn+1,j(x)ỹi + λn+1,n+1(x)mn(x) + Φ−1(β)sn+1(x), (18)

Cov[Qn+1(x), Qn+1(x
′)|Ãn] = λn+1,n+1(x)λn+1,n+1(x

′)
(
s2n(x

n+1) + τ2n+1

)
, (19)

and the values used in the quantile Expected Improvement (equation 8) are:

mQn+1
= E[Qn+1(x

n+1)|Ãn] (20)

s2Qn+1
= V ar

[
Qn+1(x

n+1)|Ãn

]
=

(
λn+1,n+1(x

n+1)
)2 (

s2n(x
n+1) + τ2n+1

)
(21)
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