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Abstract. We propose a framework to build formal developments for robot net-
works using the COQ proof assistant, to state and to prove formally various prop-
erties. We focus in this paper on impossibility proofs, as it is natural to take ad-
vantage of the COQ higher order calculus to reason about algorithms as abstract
objects. We present in particular formal proofs of two impossibility results for
convergence of oblivious mobile robots if respectively more than one half and
more than one third of the robots exhibit Byzantine failures, starting from the
original theorems by Bouzid et al.. Thanks to our formalization, the correspond-
ing COQ developments are quite compact. To our knowledge, these are the first
certified (in the sense of formally proved) impossibility results for robot networks.

⋆ This work was supported in part by the Digiteo Île-de-France project PACTOLE 2009-38HD.

ha
l-0

08
34

63
3,

 v
er

si
on

 1
 - 

18
 J

un
 2

01
3



1 Introduction

Networks of static and/or mobile sensors (that is, robots) [17] received increas-
ing attention in the past few years from the Distributed Computing community.
On the one hand, the use of cooperative swarms of inexpensive robots to achieve
various complex tasks in potentially hasardous environments is a promising op-
tion to reduce human and material costs and assess the relevance of Distributed
Computing in a practical setting. On the other hand, execution model differences
warrant extreme care when revisiting “classical results” from Distributed Com-
puting, as very small changes in assumed hypotheses may completely change
the feasibility of a particular problem. Negative results such as impossibility re-
sults are fundamental in Distributed Computing to establish what can and cannot
be computed in a given setting, or permitting to assess optimality results through
lower bounds for given problems. Two notorious examples are the impossibility
of reaching consensus in an asynchronous setting when a single process may
fail by stopping unexpectedly [16], and the impossibility of reliably exchanging
information when more than one third of the processes can exhibit arbitrary be-
haviour [27]. As noted by Lamport [23], correctly proving results in the context
of Byzantine (a.k.a. arbitrary behaviour capable) processes is a major challenge,
as [they knew] of no area in computer science or mathematics in which infor-

mal reasoning is more likely to lead to errors than in the study of this type of

algorithm.

An attractive way to assess the validity of distributed algorithm is to use
tool assisted verification, be it based process algebra [3, 18], local computa-
tions [25], Event-B [7], COQ [8], HOL [9], Isabelle/HOL [21], or TLA [23,
22] that can enjoy an Isabelle back-end for its provers [12]. Surprisingly, only
few works consider using mechanized assistance for networks of mobile enti-
ties, be it population protocols [13, 10] or mobile robots [14, 4]. In this paper,
our goal is to propose a formal provable framework in order to prove positive or
negative results for localised distributed protocols in mobile robotic networks,
based on recent advances in mechanical proving and related areas, and in partic-
ular on proof assistants. Proof assistants are environments in which a user can
express programs, state theorems and develop interactively proofs that will be
mechanically checked (that is machine-checked). They have been successfully
employed for various tasks such as the formalisation of programming language
semantics [24, 26], verification of cryptographic protocols [2], certification of
RSA keys [29], mathematical developments as involved as the 4-colours [19] or
Feit-Thompson [20] theorems.

3

ha
l-0

08
34

63
3,

 v
er

si
on

 1
 - 

18
 J

un
 2

01
3



Our contribution We developed a general framework relying on the COQ proof
assistant to prove possibility and impossibility results about mobile robotic net-
works. The key property of our approach is that its underlying calculus is of
higher order: instead of providing the code of the distributed protocols executed
by the robots, we may quantify universally on those programs/algorithms, or just
characterize them with an abstract property. This genericity makes this approach
complementary to the use of model-checking methods for verifying distributed
algorithms [6, 10, 14] that are highly automatic, but address mainly particular
instances of algorithms. In particular, quantifying over algorithms allows us to
express in a natural way impossibility results.

We illustrate how our framework allows such certification by providing COQ

proofs of two earlier impossibility and lower bound theorems by Bouzid et

al. [5], guaranteeing soundness of the first one, and of the SSYNC fair ver-
sion of the second one. More precisely, in the context1 of oblivious robots that
are endowed with strong global multiplicity detection and whose movements
are constrained along a rational line, and assuming that the demon (that is, the
way robots are scheduled for execution) is fair, the convergence problem cannot
be solved if respectively not less than one half (Theorem 1) and not less than
one third (Theorem 2) of robots are Byzantine.

The interestingly short size of the COQ proofs we obtained using our frame-
work not only makes it easily human-readable, but is also very encouraging for
future applications and extensions of our framework.

Related work. With reference to proof assistants, Küfner et al. [21] develop
a methodology to develop ISABELLE-checked proofs of properties of fault-
tolerant distributed algorithms in a asynchronous message passing style setting.
This work’s motivations are similar to ours, however the setting (message pass-
ing distributed algorithms) is different, moreover it focuses on positive results
only whereas we provide negative results, i.e. proofs of impossibility.

Chou [9] develops a methodology based on the HOL proof assistant to
prove properties of concrete distributed algorithms via proving simulation with
abstract ones. The methodology does not allow to prove impossibility results.
Casteran et al. [8] propose proofs of negatives results in COQ for some kinds of
distributed algorithms. Though very interesting, their approach is based on la-
beled graph rewriting and does not address robot networks. Another interesting
approach is that of Deng and Monin [13] that uses COQ to prove the correctness
of distributed self-stabilizing protocols in the population protocol model. This
model permits to describe interactions of an arbitrary large size of mobile enti-
ties, but the considered entities lack movement control and geometric awareness

1 Distributed Robot model assumptions are presented in Section 2.
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that are characteristic of robot networks such as those we envision, and is thus
not suitable for our purpose. This approach also only considers positive results.

Preliminary attempts for automatically proving impossibility results in robot
networks properties are due to Devismes et al. [14] and to Bonnet et al. [4]. The
first paper uses LUSTRE formalism and model-checking to search exhaustively
all possible 3-robots protocols that explore every node of a 3× 3 grid (and con-
clude that no such algorithm exists). The second paper uses an ad hoc tool to
generate all possible unambiguous protocols of k robots operating in an n-sized
ring (k and n are given as parameters) and check exhaustively the properties of
the generated protocols (and in the paper conclude that no protocol of 5 robots
on a 10 sized ring can explore all nodes infinitely often with every robot). Those
two proposals differ from our goal in several ways. Firstly, they are limited to a
so called discrete space, where the robots may only occupy a finite number of
positions, while we focus on the more realistic setting where an infinite number
of positions are possible for the robots. Also, contrary to both, we do not want to
restrict our tools to a particular setting (e.g. 3 robots on a 3× 3 grid), but rather
have results that are general with respect to all considered parameters. Then, un-
like the second proposal, we want universal impossibility results (i.e. consider
not only unambiguous protocols – that permit to limit combinatorial explosion
to some extend – but also ambiguous ones – resulting from symmetrical sit-
uations that are likely to occur in practice). Finally, we want to integrate the
possibility of misbehaving robots (e.g. robots crashing or exhibiting arbitrary
and potentially malicious behaviour), rather than assuming that all considered
robots are correct. This enables to state formally and assess the amount of faults
and attack resilience a given robot protocol may guarantee, which is crucial
when robots are deployed in dangerous areas as it is often the case.

Roadmap. The sequel of the paper is organized as follows. First, we recall the
context of robot networks in Section 2. Then, in Section 3 we give a brief de-
scription of COQ and its main principles. Section 4 contains the basis of our
formal model for robot networks, and some useful theorems. We show in Sec-
tion 5 how convenient it is to carry out formal proofs of various properties, as
we study previous results by Bouzid et al. [5]. We provide some concluding
remarks in Section 6.

Note that for the sake of readability we slightly simplified COQ notations
(mostly to avoid syntactic sugar). The actual development for COQ 8.4pl3 is
available at http://pactole.lri.fr/

5
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2 Robot Networks

We borrow most of the notions in this section from [28, 1, 17]. The network
consists in a set of n mobile entities, called robots, arbitrarily located in the
space. Robots cannot communicate directly by sending messages to each others.
Instead, their communication is based on vision: they observe the positions of
other robots, and based on their observations, they compute destination points
to which they move.

Robots are homogeneous and anonymous: they run the same algorithm (called
robogram), they are completely indistinguishable by their appearance, and no
identifier can be used in their computations. They are also oblivious, i.e. they
cannot remember any previous observation, computation or movement performed
in any previous step.

For simplicity, we assume that robots are without volume, i.e. they are mod-
eled as points that cannot obstruct the movement or vision of other robots. Vis-
ibility is global: the entire set of robots can always be seen by any robot at any
time. Robots that are able to determine the exact number of robots occupying
a same position enjoy strong multiplicity detection ; if they can only know if a
given position is inhabited or not, their multiplicity detection is said to be weak.
Each robot has its own local coordinate system and its own unit measure. They
do not share any origin, orientation, and more generally any frame of reference.

The multiset of positions of robots at a given time is called a configuration.
We assume that the actions of robots are controlled by a fictitious entity called
the demon (or adversary). Each time a robot is activated by the demon, it ex-
ecutes a complete three-phases cycle: Look, Compute and Move. During the
Look phase, using its visual sensors, the robot gets a snapshot of the current
configuration. Then, based only on this observed configuration, it computes a
destination in the Compute phase using its robogram and moves towards it dur-
ing the subsequent Move phase. Movements of robots are atomic, i.e. the demon
cannot stop them before they reach the destination.

A run (or execution) is an infinite sequence of rounds. During each round,
the demon chooses a subset of robots and activates them to execute a cycle. We
assume the scheduling to be fair, i.e. each robot is activated infinitely often in
any infinite execution, and atomic in the sense that robots that are activated at
the same round execute their actions synchronously and atomically. An atomic
demon is called fully-synchronous (FSYNC) if all robots are activated at each
round, otherwise it is said to be semi-synchronous (SSYNC). The impossibility
results we focus on are given in the FSYNC and SSYNC models, and hence
remain valid in less constrained ones (e.g. non-atomic, unfair scheduling, etc.).

6
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A robot is Byzantine (or faulty) if it does not comply with the robogram
and behaves in arbitrary and unpredictable way. We assume that the movements
of Byzantine robots are controlled by the adversary that uses them in order to
make the algorithm fail. Let f ∈ [0, n] be a parameter that denotes the number
of faulty robots. Robots that are not Byzantine are called correct. Correct robots
are supposed to know an upper bound on the number of Byzantine robots.

3 The COQ Proof Assistant

COQ is based on type theory. Its formal language can express objects, properties
and proofs in a unified way; all these are represented as terms of an expressive
λ-calculus: the Calculus of Inductive Constructions (CIC) [11]. λ-abstraction is
denoted fun x:T ⇒ t, and application is denoted t u. A proof development
with COQ consists in trying to build, interactively and using tactics, a λ-term
the type of which corresponds to the proven theorem (Curry-Howard style).

The kernel of COQ is a proof checker which checks the validity of proofs
written as CIC-terms. Indeed, in this framework, a term is a proof of its type,
and checking a proof consists in typing a term. Roughly speaking, the small
kernel of COQ simply type-checks λ-terms to ensure soundness.

A very powerful feature of COQ is the ability to define inductive types to
express inductive data types and inductive properties. For example the following
inductive types define the data type nat of natural numbers, O and S (successor)
being the two constructors, and the property even of being an even natural
number. In this setting the term even_S(S(S O))(even_S O (even_O)) is of
type even(S(S(S(S O)))) so it is a proof that 4 is even.

Inductive nat : Set := O : nat | S : nat → nat.

Inductive even : nat → Prop :=

| even_O : even O

| even_S : ∀ n : nat, even n → even (S(S n)).

We also make use of coinductive types to express infinite data types and
properties on them. For example in the robot networks setting a set of robots
has an infinite behaviour. For example one can define infinite streams of natural
numbers and the property all_even of being a infinite stream of even natural
number as follows:

CoInductive stm : Set :=

| scons : nat → stm → stm.

CoInductive all_even : stm → Prop :=

| Ceven_all: ∀ n s, even n → all_even s → all_even (scons n s).

7
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4 The formal model

We present our formal model and the relevant notations. Robots are anonymous,
however we need to identify some of them in the proofs. Thus, we consider the
union of two given disjoint finite sets of identifiers: G referring to robots that
behave correctly, and B referring to the set of Byzantine ones2. Note that those
sets are isomorphic to segments of N but we keep our formalisation as abstract
as possible. If needed in the model, we can make sure that names are not used
by the embedded algorithm, as shown below.

Variable G B : finite.

Inductive ident := Good : G → ident | Byz : B → ident.

Locations, Positions, Similarities. Robots are distributed in space, at places
called locations. We define a position as a function from a set of identifiers to
the space of locations. As the space of locations in the paper of Bouzid et al. [5]
is an infinite line, we use Q for locations. Note that going from one to many
dimensions is not a problem with respect to our formalisation. Throughout this
article, and unless specified otherwise gp denotes a position for correct robots,
and bp a position for Byzantine ones. The position of all robots is then given by
the combination gp ⊎ bp.

Record position:= { gp: G → location ; bp: B → location }.

(* Getting the location of a robot *)

Definition locate p (id: ident): location :=

match id with

| Good g ⇒ p.(gp) g

| Byz b ⇒ p.(bp) b end.

Robots compute their target position from the observed configuration of
their siblings in the considered space. We also define permutations of robots,
that is bijective applications from G ∪ B to itself, usually denoted hereafter by
Greek letters. Moreover, any correct robot is supposed to act as any other correct
robot in the same context, that is, with a similar perception of the environment.
For two rational numbers k 6= 0 and t, a similarity is a function mapping a loca-
tion x to k× (x− t), denoted [[k, t]]. Rational number k is called the homothetic
factor, and −k × t is called the translation factor. For simplicity we restrict this
definition to the uni-dimensional case; otherwise rotational factors may have
to be provided too. Similarities are invertible; they form a group for the law
of composition ([[k, t]]−1 = [[k−1,−k−1 × t]]). Similarities can be extended to
positions, by applying the similarity transform to the extracted location.

2 We will omit G and B most of the time, except in Section 5 where they characterise the
number of robots.

8
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Definition similarity (k t : Q) (p:position) : position := {

gp := fun n ⇒ k * (p.(gp) n - t) ;

bp := fun n ⇒ k * (p.(bp) n - t) }.

This operation will be (abusively) written [[k, t]](gp ⊎ bp). Similarities will be
used as transformations of frames of reference.

Robograms. We now model what an algorithm r embedded in a correct robot
is. For a robot r-idi, a computation takes as an input an entire position gp⊎ bp
as seen by r-idi, in its own frame of reference (scale, origin, etc.),3 and returns
a rational number li corresponding to a location (the destination point) in the
same frame.

Remark 1. Recall that robots in G cannot decide whether another robot is Byzan-
tine, and have no access to a symmetry breaking mechanism such as an identi-
fier. In such a case: the result of r must be invariant by permutations of robots.
This is a fundamental property that any embedded algorithm must fulfil.

Embedded computation algorithms verifying Remark 1 are called robo-

grams, they are naturally defined in our COQ model as follows, two sets (i.e.
objects of type finite). Note that this definition is completely abstract and
makes no use of concrete code whatsoever.

Record robogram := {

algo : position → location ;

AlgoMorph : ∀ p q σ, (q ≡ p ◦ σ
-1
) → algo p = algo q }.

Computation. So as to provide to r the locations of robots in terms of the con-
sidered robot’s local frame of reference, and to obtain an absolute location in
the global coordinate system from the result of r (thus local) we use the notion
of similarity. Let us consider a robot r-idi the location of which is at t, and the
scale of which is k times the global one, defining a similarity [[k, t]]. To obtain
the resulting location in terms of the global coordinate system:

1. We center the origin of the position in t, and we zoom according to the
homothetic factor k to express the position in the local frame of r-idi.

2. The algorithm r computes a local destination point.
3. We apply the inverse of the similarity to obtain the global destination point,

that is: according to the global coordinate system.

3 Note that the scale factor is taken anew at each cycle for oblivious robots; in the context of
Byzantine failures, it is convenient to consider it as chosen by some adversary.

9
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We denote this operation r[[k,t]](gp ⊎ bp) = [[k, t]]−1(r([[k, t]](gp ⊎ bp))). This
way we ensure that the global destination point does not depend on the individ-
ual frame of reference of robots.4

Demons and Properties. A demon provides the position for Byzantine robots,
and selects the correct robots to be activated at the current round. As noticed
in Footnote 3, we may consider that the demon, acting as an adversary, selects
also the scale of the frame of reference for each activated correct robot at each
round. A demonic action is thus a record

Record demonic_action:= {locate_byz: B → location; frame: G → Q}.

consisting of a position for Byzantine robots (locate_byz), and a function as-
sociating to each correct robot a rational number k such that k = 0 and the robot
is not activated, or k 6= 0 and the robot is activated with a scale factor.The actual
demon is simply an infinite sequence (stream) of demonic actions.

CoInductive demon := NextDemon: demonic_action → demon → demon.

Characteristic properties of demons include fairness and synchronous as-
pects. A demon (seen as a sequence) is locally fair for a robot (inductive prop-
erty LocallyFairForOne) if either this robot is activated during the first de-
monic action, or if the robot is not activated during the first round but the sequel
of the demon is locally fair for that robot. This is related to the classical notion
of accessibility. The demon will be fair if it is locally fair for all robots and if its
infinite sequel is fair.

Inductive LocallyFairForOne g (d : demon) : Prop :=

| ImmediatelyFair : ((demon_head d).frame g) 6= 0

→ LocallyFairForOne g d

| LaterFair : ((demon_head d).frame g) = 0

→ LocallyFairForOne g (demon_tail d)

→ LocallyFairForOne g d.

CoInductive Fair (d : demon) : Prop :=

AlwaysFair : Fair (demon_tail d)

→ (∀ g, LocallyFairForOne g d)

→ Fair d.

To be fully synchronous for a demon can be defined similarly. Recall that a
fully synchronous demon is a particular case of fair demon such that all correct
robots are activated at each round. This is done easily in our setting where we
only have to state that the demonic action’s frame never returns 0. An inductive
property FullySynchronousForOne states that the first demonic action activates

4 Note that in this presentation, any considered robot perceives itself as the origin of its local
frame of reference

10
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a given robot. A demon is then fully synchronous if FullySynchronousForOne
holds for all robots and this demon, and if its infinite sequel is fully synchronous.

CoInductive FullySynchronous d :=

NextfullySynch: FullySynchronous (demon_tail d)

→ (∀ g, FullySynchronousForOne g d) → FullySynchronous d.

Execution. Finally, given an initial position for correct robots gp0, and a demon

D = (locate_byzi, framei)i∈N

, we may define an infinite sequence (gpi)i∈N called the execution (from gp0
according to D) as

gpi+1(x) =

{

r[[framei(x),gpi(x)]](gpi ⊎ bpi) if framei(x) 6= 0

gpi(x) otherwise

Its type is thus:

CoInductive execution :=

NextExecution : (G → location) → execution → execution.

and its computation is reflected by the following corecursive function execute:

Definition round

(r : robogram) (da : demonic_action) (gp: G → location) :

G → location :=

fun g ⇒
let k := da.(frame) g in let t := g.(gp) in

if k = 0 then t

else t + 1

k * (algo r ( [[k,t ]]{gp := gp; bp := locate_byz da})).

Definition execute (r : robogram):

demon → (G → location) → execution :=

cofix execute d gp :=

NextExecution gp (execute (demon_tail d) (round r (demon_head d) gp)).

5 Case Study: Impossibility Proofs with Byzantine Behaviours

Let us illustrate how well-suited our formalisation is to prove impossibility re-
sults, with two theorems by Bouzid et al. [5]. Those results address the problem
known as convergence. Given any initial configuration of robots, the conver-
gence problem requires correct robots to approach asymptotically the same, but
unknown beforehand, location. That is, for every initial configuration, conver-
gence requires the existence a point c in space such that for every ε > 0, there
exists a time τε such that ∀τ > τε, all correct robots are within a distance of at
most ε of c at τ . The impossibility results in [5] are as follows:

11
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Theorem 1 ([5], Thm 4.3). It is impossible to achieve convergence if n ≤ 2f
in the FSYNC uni-dimensional model, where n denotes the number of robots

and f denotes the number of Byzantine robots.

Theorem 2 ([5], Thm 4.4). Byzantine-resilient convergence is impossible for

n ≤ 3f in the SSYNC uni-dimensional model and a 2-bounded demon.

Proofs of Impossibility. Providing a solution to a problem in robot networks
usually implies giving a robogram such that the expected property holds at some
point in the execution, whatever the demon (seen as an adversary, thus including
the Byzantine robots) might do. More precisely, it amounts to showing that there
exists a robogram such that for all demons, the property is eventually satisfied.
An immediate way of proving such a fact is to provide the actual code for the
robogram.

When it comes to impossibility proofs, one has to show instead that for all
robogram pretending to be a solution, there exists a demon such that the con-
sidered robogram will fail. In fact, the usual attempts to achieve this involve
looking for a stronger result: exhibiting a demon that will make any candidate
robogram for solution to fail. In both cases the statement of such a result is quan-
tified universally on robograms. Giving any concrete code will not help. How-
ever, working with higher-order mechanical theorem proving allows to consider
programs as abstract objects and to quantify over them. Robograms will be just
characterised by some invariants and the fact that they are supposed to be a
solution of a considered problem.

The Theorems in our Formal Model. First of all we need to define formally
the convergence problem. In the atomic FSYNC and SSYNC models, an execu-
tion (gpi)i∈N is said to be convergent when for any ε > 0 there exists a number
of rounds Nε ∈ N and a location lε (in the particular context of [5], lε ∈ Q)
such that for all n > Nε, all correct robots at round n are no further than ε from
lε.

∀ε > 0,∃Nε ∈ N, l ∈ Q,∀n > Nε,∀x ∈ G, |gpn(x)− lε| < ε

Convergence expresses that all correct robots will eventually be gathered forever
in a disc of radius ε. That is: robots stay gathered forever in a disc of radius ε

(the coinductive part). . .

CoInductive imprisonned (prison_center : location) (radius : Q)

(e : execution) : Prop :=

InDisk : (∀ g, [(prison_center - execution_head e g)] <= radius)

→ imprisonned prison_center radius (execution_tail e)

→ imprisonned prison_center radius e.

12
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. . . disc that they reach eventually (the inductive part)

Inductive attracted (pc: location) (radius: Q) (e: execution): Prop :=

| Captured : imprisonned pc radius e → attracted pc radius e

| WillBeCaptured : attracted pc radius (execution_tail e)

→ attracted pc radius e.

A solution to the Convergence problem is a robogram such that for any ini-
tial position and assuming a fair demon, the execution eventually imprisons all
correct robots.

Definition solution (r: robogram) : Prop :=

∀ (gp: G → location), ∀ d: demon, Fair d

→ ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp).

Remark 2. Our current model considers locations in Q, however the final des-
tination (limit) for convergence is allowed to be in R \ Q, in which case the
sequence of lεi is a sequence in Q which has a limit in R.

A formal version of Theorem 1. Let us focus on Theorem 1. As the premises
require the demon to be fully-synchronous (FSYNC model) we may as well de-
fine what a fully-synchronous demon is, as mentioned on page 10, and specialise
with it a version of solution. It is worth noticing that our development contains
a proof that a fully-synchronous demon is fair and that therefore a solution for
any fair scheduler is also a solution for a FSYNC one.

Definition solution_FSYNC (r : robogram) : Prop :=

∀ (gp : G → location), ∀ (d : demon), FullySynchronous d

→ ∀ ε: Q, 0 < ε → ∃ lim: location, attracted lim ε (execute r d gp).

Lemma solution_FAIR_FSYNC : ∀ r, solution r → solution_FSYNC r.

Theorem th1:

∀ (g b:finite) (g 6= ∅) → (r: robogram ({·} ⊎ g) (b ⊎ (g ⊎ {·}))),
¬ solution_FSYNC r.

It may seem surprising that we use g both for correct and Byzantine robots.
As a matter of fact, since unions are disjoint by construction, this notation just
ensures that the sets of names share the same cardinal. Adding another arbitrary
set b to the Byzantine part is thus a way of saying that there are at least as many
Byzantine robots as correct ones.

Further note that this expression of the theorem clearly states that there are

at least 2 correct robots; this is not implicit (as no assumption can be in COQ):
the considered set of correct robots is indeed a singleton added to a non-empty
set.

This theorem and its complete formal proof can be found in our develop-
ment, as Theorem no_solution in File NoSolutionFSYNC_2f.v. The file itself
is a hundred lines long and relies on various lemmas provided by our framework.
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A formal SSYNC fair version of Theorem 2. Akin to the previous theorem the
addition of an arbitrary set b denotes that the total number of robots is not more
than three times the number of Byzantine ones.

We prove in fact a sligthly different result, instead of assuming the demon
2-bounded (that is, the demon may execute a particular robot at most two times
between any two executions of any other robot [15]), we show that the impos-
sibility result holds for a demon that is fair in SSYNC, and for a number f of
Byzantine robots such that 2f < n ≤ 3f where n is the total number of robots.
The bound about f and n by Bouzid et al. can be obtained by combining this
theorem with the previous one and using lemma solution_FAIR_FSYNC above.

Theorem th2’:

∀ (g b: finite) (g 6= ∅) → (r : robogram ((b ⊎ g) ⊎ g ) (b ⊎ g)),

¬ solution r.

As before, the theorem and its complete formal proof can be found in our
development, as Theorem no_solution in File NoSolutionFAIR_3f.v. The file
itself is 125 lines long and relies on various lemmas provided by our framework.

6 Remarks and Perspectives

The choice of the usual topology of Q as the basic one is driven by three main
reasons. First, it allows arbitrary homotheties (which is not the case for N).
Then, it preserves arbitrary precision (thus excluding IEEE754 floating point
numbers). Finally, it is axiom-free, while R is not. As noticed in Remark 2,
considering rational numbers is not a handicap for convergence properties.

The total size of our development, including the framework and the proofs
of the aforementioned theorems is quite small, as it is approximately 450 lines
of specifications and 950 lines of proofs. This is encouraging with reference to
how adequate our framework is, as it indicates that proofs are not too intricate
and remain human readable.

It is worth noticing that our formalism is robust enough to take into account
several alternative models with few modifications. For instance, and thanks to
the high abstraction level of our framework, considering a multi-dimensional
space (instead of just a line) only amounts to considering tuples for locations
(and not simply rational numbers) and adding a rotation for some similarities.
The effort is thus put on the actual proof and not on the modeling tasks. Hence,
a first short-term perspective is to tackle impossibility proofs for convergence
on the rational plane or three dimensional space. Similarly, going from strong
multiplicity to weak multiplicity is only a redefinition of the equality relation be-
tween positions. . . The same remark applies to demons’ characteristics. Adding
constraints such as being fully-synchronous is just (i) Defining this constraint,
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and (ii) Adding this constraint as an assumption in the statement of a theorem.
Of course proofs may be very demanding in all those models, but we want to
emphasise that relevant adaptations of our framework are rather non-expensive.

An noteworthy added benefit of our abstract formalisations is that keeping
them as general as possible may lead to relaxing premises of theorems, thus
potentially discovering new results (e.g. formalizing weaker daemons [15] and
weaker forms of Byzantine behaviours could lead to stronger impossibility re-
sults).

Finally, we plan to use our development for positive results also, that is, to
prove properties of concrete algorithms. The language of COQ can handle data-
types, programs, and properties about them. Our general framework should al-
low for certification of embedded algorithms, as both concrete code for robots
and global properties of the network fit in. Notice that such proofs would guar-
antee the expected properties in infinite spaces, i.e. without limits on locations.
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