
Efficient I/O using Dedicated Cores
in Large-Scale HPC Simulations

Matthieu Dorier (2nd year PhD student)
ENS Cachan Brittany, IRISA, Rennes, France – matthieu.dorier@irisa.fr

PhD advisors: Gabriel Antoniu (INRIA Rennes Bretagne-Atlantique – gabriel.antoniu@inria.fr),
Luc Bougé (ENS Cachan Brittany – luc.bouge@irisa.fr)

I. INTRODUCTION

Post-petascale HPC machines featuring now millions of
cores offer new opportunities to simulate physical phe-
nomenon at finer spacial and temporal grain. These sim-
ulations usually generate massive amounts of data that are
conventionally stored, moved off-site to be later analyzed
and visualized in order to produce scientific results.

A typical behavior of HPC simulations consists of al-
ternating between computation phases that solve physical
equations, and I/O phases during which all the processes
synchronously write the output of the last simulated time
step. Yet because of unmatched computation and I/O perfor-
mance, the scalability of these simulations starts being driven
by the performance of their I/O phases. Access contentions
at the level of the network and the parallel file system
produce substantial performance degradation as well as a
high variability, leading to unpredictable performance.

Additionally, it becomes harder and harder to move huge
amounts of data from a supercomputer to another, and
analysis tasks becoming heavily data-parallel start to suffer
from the same I/O bottleneck.

As the community considers designs for exascale systems,
there is a growing consensus that revolutionary new I/O and
data management approaches will be required. A promising
direction consists in leveraging the multicore architecture of
next-generation supercomputers to implement better I/O and
data processing methods.

Motivated by the aforementioned challenges in the context
of the NCSA’s BlueWaters supercomputer project [1], this
PhD research focuses on Damaris [2], an approach that
efficiently leverages a subset of dedicated cores on each
multicore SMP node to act as a data management service.

This paper summarizes design issues and results already
obtained with Damaris on several platforms, and showing its
efficiency in hiding the I/O-related costs as well as improv-
ing the performance and scalability of HPC simulations. We
also present current work and future directions leveraging
Damaris for in-situ data analysis, thus addressing several
aspects of this “Big Data” challenge.

II. BACKGROUND AND RELATED WORK

Two main approaches are traditionally implemented for
performing I/O in large-scale HPC simulations. Most high-
level I/O libraries such as HDF5 [3] or NetCDF provide

both approaches on top of the MPI-I/O layer, which allows
simulations to write their results in a format that can be
natively read by many analysis tools.

The file-per-process approach consists of having each
process write its data in an independent, relatively small
file. Whereas this avoids synchronization between processes,
it also introduces an important metadata management over-
head. Parallel file systems are usually ill-suited for this type
of load, in particular when they feature only one metadata
server, as in Lustre [4]. Besides, dealing with datasets spread
in many small files becomes a major issue when it comes
to reload them from a different number of processes for
analysis and visualization purposes.

The collective I/O approach introduces communication
steps between processes in order to re-organize the data
layout and better interact with the file system. Algorithms
termed as “two-phases I/O” [5] allow processes to better
aggregate data in order to match the file system’s parameters
or delegate actual writes to a subset of processes. This ap-
proach has the advantage of avoiding metadata redundancy
and produces bigger, shared files that are easier to read from
analysis software. Our experiments showed however that the
performance of collective I/O is often worse than that of the
file-per-process approach.

Yet both approaches create periodic peak loads in the file
system and a high variability in the time taken by each
process to complete its operations [6], [7]. This variability
can be observed between different processes in the same I/O
phase, but also for a given process between different I/O
phases, where the observed performance gap between the
slowest and the fastest processes can be of several orders
of magnitude. Besides, other applications running on the
platform and concurrently accessing the parallel file system
further increase this variability, leading to degraded overall
application performance.

III. THE DAMARIS APPROACH

In order to address the aforementioned I/O challenges, we
proposed the Damaris approach [8]. Its main idea consists
of dedicating one or a few cores to I/O and data processing
tasks in each SMP node. These cores do not run the
simulation’s code, but handle asynchronous I/O operations
on behalf of the other cores, which in turn hides the
performance impact of these operations. Such an approach,
though easy to express, raises many challenges as well as

ha
l-0

08
31

29
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

13
Author manuscript, published in "IPDPS PhD forum - International Parallel and Distributed Processing Symposium, PhD forum

(2013)"
 DOI : 10.1109/IPDPSW.2013.101

http://dx.doi.org/10.1109/IPDPSW.2013.101
http://hal.inria.fr/hal-00831296
http://hal.archives-ouvertes.fr


Figure 1. Design of the Damaris approach.

new opportunities that this thesis proposes to explore. This
section summarizes the key design choices of the Damaris
approach as well as implementation issues.
A. Design principles and challenges

Central to the Damaris approach is the use of shared
memory to communicate data from the cores running the
simulation to the cores running the data management ser-
vice. This communication model distinguishes Damaris from
other approaches that also use dedicated cores such as [9],
relying on message passing or kernel functionalities and
involving multiple copies of data. We attempt with Damaris
to have a finer control on the memory usage and to avoid
unnecessary copies.

The second strength of Damaris consists in a plugin
system which makes the design of custom data management
services straightforward. Plugins can be written in C or
C++ as dynamic libraries, or even in Python scripts, thus
leveraging high-level scientific libraries such as SciPy and
NumPy. This plugin system may simply be used to forward
I/O operations to the HDF5 [3] library, but it can also be (and
has been) used to integrate statistical analysis using Python
scripts, and visualization tasks using VTK or VisIt [10].

Finally, data management in Damaris is based on a high
level description of the data, coming from an external XML
file in a way similar to ADIOS [11]. This file contains the
description of variables, along with their relationships such
as dimension scales, meshes and data layouts. It also con-
tains the configuration of the different plugins that constitute
the data management service.

This design led us to investigate the efficient use of shared
memory when multiple cores access the same pieces of data,
the design of an API that is simple enough for users to
build their processing tasks and the right representation of
scientific datasets in an XML format.
B. Implementation

Damaris is implemented in C++ and is available as an
open-source middleware [2] that can be integrated in existing
C, C++ and Fortran simulations that uses MPI. Figure 1
shows the architecture of the middleware.

Its simulation-side API includes functions to directly
access the shared memory segment and copy or allocate
blocks of data. These blocks are identified by metadata
including a block identifier, the writer’s process identifier
(usually its MPI rank), and the associated time step of
the simulation. All data blocks are indexed in a metadata
structure that helps searching for particular blocks from data
management services.

A shared message queue is used for the simulation pro-
cesses to send events to he dedicated cores. These events
activate the user-provided plugins. The message queue is
also used for sending events that inform dedicated cores of
the state of the simulation, and help Damaris adapting its
behavior.

IV. EVALUATION AND RESULTS

To show the effectiveness of the Damaris approach in
addressing the I/O challenge of HPC simulations, we eval-
uated it with the CM1 atmospheric simulation [12], one of
the target applications of the BlueWaters project [1]. CM1
periodically writes either one file per process, or a single
shared file in a collective manner using Parallel HDF5.
Experiments were carried on several platforms including the
French Grid’5000 testbed [13] with 24 cores per nodes, the
Kraken Cray XT5 supercomputer [14] with 12 cores per
node, and a Power5 cluster featuring 16 cores per node.
The results of these experiments are detailed in [8], and
summarized below.

A. Making simulations scale

CM1 naturally achieves a very good weak scalability
when no I/O is performed. Its overall scalability thus mainly
depends on the I/O phase. The two state of the art approaches
have a large impact on this scalability. Our experiments
performed with up to 9216 processes on Kraken showed that
the I/O phase can take up to 800 seconds when collective I/O
is used, which represents 70% of the overall run time. The
file-per-process approach on the other hand achieves better
performance but leads to the creation of a huge amount of
files that are simply impossible to post-process.

Damaris manages to achieve a nearly perfect scalability,
with a slight impact du to the fact that some cores are not
performing computation anymore. This scalability does not
depend anymore and the I/O operations, since these opera-
tions are now asynchronous and overlap with computation.
A speedup of 3.5 was achieved on Kraken compared to
collective I/O.

B. Hiding the I/O variability

The computation phases in CM1 also have an extremely
predictable run time, therefore the unpredictability in run
time only comes from the effect of I/O variability. The
unpredictability in the duration of I/O phases can be up
to several hundreds of seconds, leading to several hours of
unpredictability for a one-month run and forcing scientists
to reserve more resources without the guaranty that their
simulation will complete in the required time.

ha
l-0

08
31

29
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

13



The Damaris approach, by moving I/O operations to
dedicated cores, manages to perfectly hide this I/O variabil-
ity, bringing back to the application its original run time
predictability. The time to write from the point of view of
the simulation is cut down to the time required to write in
shared-memory, which is in the order of 0.1 seconds, and
does not depend anymore on the scale. Besides, Damaris is
able to group the output of multiple processes into bigger
files without de communication overhead of a collective I/O
approach. Thus the output of dedicated cores can be easily
post-processed by analysis tools.

C. Increasing I/O throughput
By aggregating data into bigger files while avoiding

communication between processes, Damaris makes a more
efficient use of the storage system. While the aggregate
throughput was as low as 0.5 GB/s with a collective I/O
approach on Kraken, and less than 1.7 GB/s with a file-
per-process approach, Damaris was able to achieve up to
10 GB/s.
D. Saving time

Since Damaris uses dedicated cores for I/O and achieves
a very high throughput, these cores remain idle most of the
time. We measured that this idle time ranges from 92% to
99% on Kraken with the CM1 application. Thus, not only
does Damaris improve performance, throughput, scalability
and hides the variability, it also leaves room for integrated
data processing tasks.

In our previous work we used this spare time to add data
compression in files, and achieved a 600% compression ratio
without any overhead on the simulation. We also imple-
mented a better I/O scheduling schema to further increase
the throughput, achieving up to 12.7 GB/s of aggregate
throughput on Kraken.

Our current work plan is to investigate practical uses of
this spare time for in-situ data analysis and visualization, a
promising direction that we present in the following section.

V. DEVELOPMENT DIRECTIONS

As mentioned in the introduction, improving I/O at the
simulation level partially addresses the “Big Data” challenge
raised by post-petascale machines. Indeed the huge amounts
of data generated still have to be read and processed in
order to produce a scientific value. One promising trend
consists in bypassing the file system and producing results
“in-situ”, i.e. directly from the simulation as it is running.
This technique raises new challenges [15], [16], as it requires
a tight coupling between simulations and analysis codes.

A. In-situ analysis challenges
Despite the limitations of the traditional offline approach

to data management, it has been often pointed out that scien-
tists are seldom accepting in-situ analysis approaches [17],
[15]. This technique indeed often involves changing the code
of the simulation and diving into the programming interface
of analysis tools. Besides, the scalability and variability of
analysis algorithms may have a larger impact that simple

I/O. We here summarize four main challenges that have to
be addressed when designing an in-situ analysis framework.

1) The programming interface should have a low impact
on the code of the simulation. Besides, this interface
should be easy enough to be understood and used
without the assistance of a specialist.

2) The framework should be adaptable to different anal-
ysis and visualization tasks, and be generic enough to
be plugged into any simulation.

3) It should have a low impact on the simulation’s run
time and offer predictable performance bounds as well
as a good scalability.

4) Finally it should optimize resources utilization such as
local memory and CPU resources, and also leverage
GPUs when available.

Current analysis and visualization software offering in-
situ capabilities such as VisIt or ParaView [18] often do not
meet these requirements. They involve many code changes
and perform synchronously by periodically stoping the appli-
cation in order to compute images. Besides, their underlying
algorithms still lake a good scalability.

B. Providing in-situ capabilities to Damaris
Having proven the effectiveness of the Damaris approach

in improving I/O performance, this section presents how it
can help addressing the challenges of in-situ analysis and
visualization.

1) Through its plugin system and its simple API using
external description files, Damaris can be easily inte-
grated in existing applications to provide custom data
analysis operations.

2) We have embedded the VisIt visualization software
in Damaris and leveraged the high level description of
data structures in the XML files to seamlessly connect
any simulation to this visualization backend.

3) By using dedicated cores, all analysis and visualization
operations run in parallel with the simulation without
impacting it.

4) Finally the use shared memory in Damaris allows
visualization and analysis tasks to work directly on
the in-memory data. Besides, the presence of GPU in
the nodes of more and more recent platforms such
as BlueWaters can be leveraged when the simulation
itself does not use them.

C. Preliminary evaluation
We evaluated the use of Damaris for in-situ visualiza-

tion in several applications: in addition to the CM1 atmo-
spheric model already presented, we used the Nek5000 CFD
solver [19]. This experimental campaign aims at showing the
effectiveness of Damaris around two aspects.

1) Performance impact: While the use a software like
VisIt or ParaView requires the simulation to periodically stop
in order to perform analysis tasks, Damaris hides these tasks
in dedicated cores and has no performance impact on the
simulation. Experimentally, we managed to perform runs of
Nek5000 at a full cluster scale (800 cores) of Grid5000 with

ha
l-0

08
31

29
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

13



Damaris while using VisIt in a synchronous manner did not
scale that far.

A challenging problem arises when the analysis tasks
take more than the duration of a simulation’s time step to
complete. In this case it may happen that the shared memory
becomes full and blocks the simulation. Discussions with
visualization specialists led us to the choice of accepting
potential loss of data rather than blocking the simulation.
We thus implemented in Damaris a way to automatically
skip some iterations of data in order to keep up with the
simulation’s output rate. More elaborate techniques that will
select portions of data carrying important scientific values
are now being considered.

2) Usability: We compared the use of the Damaris in-
terface to the code instrumentation required to perform in-
situ visualization with VisIt. In order to do so, we took
all the examples provided with the VisIt source code and
rewrote them using Damaris. All these examples require
more than a hundred lines of code with the VisIt API.
Damaris only requires one line per data object that has to
be shared with dedicated cores, along with some external
XML descriptions, ending up with less than 10 lines of code
changes in every examples.

Thus, Damaris proves to be very easy to use and a good
candidate for the transparent integration of custom analysis
and visualization tasks in existing HPC simulations.

VI. CONCLUSION AND FUTURE WORK

As the number of cores in next-generation supercomputers
increases, the huge amounts of data produced by HPC
simulations running at large scale becomes problematic: it
becomes harder and harder to efficiently write such amounts
of data in an efficient manner and without an important
impact on the simulation. Reading back this data offline for
analysis and visualization is becoming intractable as well.

We summarized here our past and present research around
these “Big Data” challenges. This PhD research started with
the Damaris approach, which proposes to dedicate cores in
multicore SMP nodes to I/O, first, and then more generally
data management.

The Damaris middleware provides a good basis for the
development and evaluation of various data management
approaches that use dedicated cores. Its ease of integration
in existing applications, coupled with its plugin system and
an efficient use of shared memory so far allowed us to
(1) provide efficient jitter-free I/O and (2) support in-situ
asynchronous visualization with the VisIt software.

Our future work will focus on two directions: we plan to
implement “smart” behaviors in Damaris, by asynchronously
tracking and processing scientifically relevant subsets of
data as the data is being generated by the simulation. We
also plan to use Damaris to improve further the efficiency
of asynchronous I/O through more elaborate scheduling
strategies.

REFERENCES
[1] NCSA, “BlueWaters project, http://www.ncsa.illinois.edu/

BlueWaters/.”
[2] KerData, IRISA, INRIA Rennes, “Damaris, http://damaris.

gforge.inria.fr/.”
[3] “Hierarchical Data Format HDF5, http://www.hdfgroup.org/

HDF5/.”
[4] S. Donovan, G. Huizenga, A. J. Hutton, C. C. Ross, M. K.

Petersen, and P. Schwan, “Lustre: Building a file system for
1000-node clusters,” Citeseer, 2003.

[5] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and
Collective I/O in ROMIO,” Symposium on the Frontiers of
Massively Parallel Processing, p. 182, 1999.

[6] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kor-
denbrock, K. Schwan, and M. Wolf, “Managing Variability
in the IO Performance of Petascale Storage Systems,” in
Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. Washington, DC, USA: IEEE Com-
puter Society, 2010, pp. 1–12.

[7] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: Leveraging Multicore Parallelism to Mask I/O
Jitter,” Rapport de recherche RR-7706, Nov 2011. [Online].
Available: http://hal.inria.fr/inria-00614597

[8] ——, “Damaris: How to Efficiently Leverage Multicore
Parallelism to Achieve Scalable, Jitter-free I/O,” in Cluster
Computing (CLUSTER), 2012 IEEE International Conference
on, sept. 2012, pp. 155 –163.

[9] M. Li, S. Vazhkudai, A. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman, “Functional partitioning
to optimize end-to-end performance on many-core architec-
tures,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, 2010, pp.
1–12.

[10] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ
Coupling of Simulation with a Fully Featured Visualization
System,” in Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV). Eurographics Association,
2011.

[11] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible IO and integration for scientific codes
through the adaptable IO system (ADIOS),” in Proceedings
of the 6th international workshop on Challenges of large
applications in distributed environments, ser. CLADE ’08,
2008, pp. 15–24.

[12] G. H. Bryan and J. M. Fritsch, “A Benchmark Simulation for
Moist Nonhydrostatic Numerical Models,” Monthly Weather
Review, vol. 130, no. 12, pp. 2917–2928, 2002.

[13] INRIA, “Aladdin grid’5000 http://www.grid5000.fr.”
[14] NICS, “Kraken Cray XT5, http://www.nics.tennessee.edu/

computing-resources/kraken.”
[15] K.-L. Ma, “In Situ Visualization at Extreme Scale: Challenges

and Opportunities,” Computer Graphics and Applications,
IEEE, vol. 29, no. 6, pp. 14 –19, nov.-dec. 2009.

[16] E. Bethel and H. Childs, High Performance Visualization:
Enabling Extreme-Scale Scientific Insight. Chapman & Hall,
2012, vol. 16.

[17] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova, “In-situ pro-
cessing and visualization for ultrascale simulations,” Journal
of Physics: Conference Series, vol. 78, no. 1.

[18] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion,
B. Geveci, M. Rasquin, and K. Jansen, “The ParaView
Coprocessing Library: A Scalable, General Purpose In Situ
Visualization Library,” in LDAV, IEEE Symposium on Large-
Scale Data Analysis and Visualization, 2011.

[19] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web
page,” 2008, http://nek5000.mcs.anl.gov.

ha
l-0

08
31

29
6,

 v
er

si
on

 1
 - 

6 
Ju

n 
20

13


