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Abstract

A graph G = (V,E) is arbitrarily partitionable (AP) if for any
sequence τ = (n1, . . . , np) of positive integers adding up to the order
of G, there is a sequence of mutually disjoints subsets of V whose sizes
are given by τ and which induce connected graphs. If, additionally,
for given k, it is possible to prescribe l = min{k, p} vertices belonging
to the first l subsets of τ , G is said to be AP+k.

The paper contains the proofs that the kth power of every traceable
graph of order at least k is AP+(k − 1) and that the kth power of
every hamiltonian graph of order at least 2k is AP+(2k−1), and these
results are tight.
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1 Introduction

Consider a simple graph G = (V,E) of order n. A sequence τ = (n1, . . . , np)
of positive integers is called admissible for G if it is a partition of n, i.e.,
n1 + . . . + np = n. If additionally there exists a partition (V1, . . . , Vp) of
the vertex set V such that each Vi induces a connected subgraph of order
ni in G, then we say that τ is realizable in G, while (V1, . . . , Vp) is called a
realization of τ in G. If every admissible sequence is also realizable in G,
then we say that this graph is arbitrarily partitionable (or arbitrarily vertex
decomposable) and we call it an AP graph for short.

The notion of AP graphs was first introduced by Barth, Baudon and
Puech in [2], and motivated by the following problem in computer science.
Consider a network connecting different computing resources; such a network
is modelled by a graph. Suppose there are p different users, where the ith

one needs ni resources from our network. The subgraph induced by the set
of resources attributed to each user should be connected and each resource
should be attributed to one user. So we are seeking a realization of the
sequence τ = (n1, ..., np) in this graph. Suppose that we want to do it for
any number of users and any sequence of request. Thus, such a network
should be an AP graph.

Independently (see [7] or [9]), this problem was also considered as a natu-
ral analogy of the similar notion in which vertices are replaced by edges (see
for instance [1] or [8]).

The problem of deciding whether a given graph is arbitrarily vertex de-
composable has been considered in several papers. Obviously, a graph needs
to be connected in order to be AP. The investigation of AP trees gained
lots of attention in this context, since a connected graph is AP if one of its
spanning trees is AP. It turned out, however, that the structure of AP trees
is not obvious in general (see for instance [3], [4], [5] or [14]).

Since each traceable (i.e. containing a hamiltonian path) graph is evi-
dently AP, each condition implying the existence of a hamiltonian path in a
graph also implies that the graph is AP. So, AP graphs may be considered as
a generalization of traceable (or hamiltonian) graphs (see for instance [10]).

Suppose now that as managers of the computer network we have a num-
ber of at most k specially privileged clients (users), so called vip’s, each of
whom may choose one computing resource which must be attributed to their
connected subnetwork. It might be a powerful or conveniently located com-
puter, which may serve our vip as an administrative center for managing
the subnetwork. Then we naturally obtain the following modification of our
model on graphs: Let G = (V,E) be a graph of order n and let n > k.
The graph G is said to be AP+k if for any partition τ = (n1, . . . , np) of
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n and any sequence (u1, . . . , uk′) of k′ pairwise distinct vertices of G with
k′ ≤ min{k, p}, there exists a realization (V1, . . . , Vp) of τ in G such that
u1 ∈ V1, . . . , uk′ ∈ Vk′ .

Observe that we have adopted the convention that the numbers represent-
ing the sizes of subnetworks attributed to vip’s are listed in the beginning of
the sequence τ .

If the number of subnetworks (users) is limited, say by r, i.e. we can
realize in G each sequence τ = (n1, . . . , np) with p ≤ r, we say that G is
r-AP. So, a graph is AP if it is r-AP for r = 1, 2, . . . (see [12], [13] and [15]
for algorithmic approach for small k).

If additionally for a given s ≤ r, each of the first s′ users for any s′ ≤
min{s, p} is allowed to choose a vertex belonging to their subnetwork, then
the corresponding graph G of order n > r is called r-AP+s.

The most significant result concerning these notions is the following fa-
mous result on k-AP+k graphs by Győri [6] and, independently, Lovász [11].

Theorem 1 Every k-connected graph G is k-AP+k.

It is straightforward to notice that the converse is also true. Indeed, re-
moval of k − 1 vertices v1, . . . , vk−1 cannot disconnect a k-AP+k graph G,
since otherwise there would not exist a realization (V1, . . . , Vk) of an admis-
sible sequence (1, . . . , 1, n− k + 1) in G such that v1 ∈ V1, . . . , vk−1 ∈ Vk−1.

Analogously, by analyzing an admissible sequence (1, . . . , 1, n − k), one
can easily see that the following observation holds.

Observation 2 Every AP+k graph has to be (k + 1)-connected.

It is worth noting that if we change the requirement concerning the num-
ber of parts we partition our network into (from bounded to arbitrary case),
this may have dramatical consequences. For instance, consider the complete
bipartite graph Kk,k. Since it is k-connected, then by Theorem 1, it is also
k-AP+k. On the other hand, if we remove two vertices on the “same side” of
Kk,k, we obtain the graph Kk,k−2, which evidently does not contain a perfect
matching. In other words, with the above choice of two vip’s, the sequence
(1, 1, 2, . . . , 2) is not realizable. In consequence, the graph Kk,k is not even
AP+2.

Given a graph G = (V,E), its kth power Gk is the graph obtained from
G by adding the edge between every pair of vertices with distance at most
k in G. In this paper we prove that kth powers of traceable graphs are
AP+(k− 1), see Corollary 7, and that kth powers of hamiltonian graphs are
AP+(2k − 1), see Corollary 9. These results are sharp.
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2 Results

Given a path Pn (or a cycle Cn), its consecutive vertices v1, v2, . . . , vn define
a natural orientation of the path (or the cycle). We shall call them also the
consecutive vertices of its kth power P k

n (or Ck
n). Similarly, v1 and vn will be

called the first and the last vertices of P k
n (Ck

n), respectively.
In both cases, for a vertex x, we shall also use the notation x+ and x−

in order to denote the next or the previous vertex to x, respectively, with
respect to the natural orientation. For two vertices a and b of the cycle Cn,
we denote by aCnb the set of all consecutive vertices of Cn starting from a

and ending at b with respect to the natural orientation of the cycle.
First, we prove that kth powers of paths are AP+(k − 1). We shall

use Lemma 5 below, which is even stronger than required for this purpose.
The both results however will be then necessary to show that kth powers
of cycles are AP+(2k − 1). Since the property of being AP+k is monotone
with respect to adding edges, the results for paths and cycles immediately
imply the corresponding properties for traceable and hamiltonian graphs, i.e.,
Corollaries 7 and 9. Note here also that our results for paths (hence also for
the family of traceable graphs) and for cycles (thus for hamiltonian graphs)
are tight, since the connectivity of the kth power of a path Pn, n ≥ k + 1,
is k, and the connectivity of the kth power of a cycle Cn, n ≥ 2k + 1, is 2k.
This is obvious for paths, while for cycles it is sufficient to notice that so that
we could disconnect two vertices u, v of Ck

n, these must be at distance more
than k in Cn. Then we have to remove (at least) k consecutive vertices from
each of the two paths joining u and v in Cn.

Below we state two basic observations concerning the operation of re-
moving a vertex from a graph G = P k

n being the kth power of a path Pn.
Let v1, . . . , vn be the consecutive vertices of Pn. By a graph obtained by
removing the first (respectively, the last) vertex of G we mean the graph
G \ {v1} (respectively, G \ {vn}) with consecutive vertices given by v2, . . . , vn
or v1, . . . , vn−1, respectively. By a graph obtained by removing other than
the first or the last vertex of G, say x, we mean the graph G \ {x} with
consecutive vertices given by v1, . . . , x

−, x+, . . . , vn.

Observation 3 A graph obtained by removing the first or the last vertex of
any kth power of a path is also a kth power of a path.

Observation 4 A graph obtained by removing from P k
n , k ≥ 2, a vertex

subset whose vertices are pairwise at distance at least k in the underlying
path Pn, contains a spanning P

(k−1)
n′ for some n′ < n. Power of a path.

Moreover, if we do not remove the last vertex of P k
n , then it is also the last

vertex of the obtained (k − 1)th power of a path.
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Proof. Suppose v1, . . . , vn are the consecutive vertices of Pn. Then the result
is obvious, since for each vertex vi which has not been removed, all but at
most one of its neighbours vj from P k

n with j < i (j > i) belong to the
obtained graph.

Lemma 5 Let G = (V,E) be a kth power of a path Pn with consecutive
vertices v1, v2, . . . , vn, n ≥ k. For every partition τ = (n1, . . . , np) of n into
p ≥ k parts and every list of k vertices vi1 , . . . , vik ∈ V with i1 < i2 < . . . < ik,
we have: if ik = n (or i1 = 1), then there exists a realization (V1, . . . , Vp) of
τ in G such that vi1 ∈ V1, . . . , vik ∈ Vk.

Proof. First observe that without loss of generality, we may suppose that
ik = n, for, if ik = 1 we can change the orientation of Pn. We prove the
theorem by induction with respect to k. For k = 1 the result is obvious.
Assume then that k ≥ 2 and that the theorem holds for (k − 1)th powers of
paths.

Denote by r1, . . . , rk−1 the residues modulo k of i1, i2, . . . , ik−1, respec-
tively, and let r be an unused residue, i.e., any element of the non-empty
set {0, 1, . . . , k − 1} r {r1, . . . , rk−1}. We shall construct a sequence σ =
(vj1 , . . . , vjq) of pairwise distinct vertices of our P k

n with the following prop-
erties:

(1) vj1 = vi1 and vi2 , . . . , vik do not belong to σ,

(2) any initial block of σ induces a connected subgraph in G,

(3) after removing any initial subsequence of vertices of σ from G, the
remaining graph contains a (k − 1)th power of a path as a spanning
subgraph with the last vertex vn,

(4) each vertex of G is either a neighbour of some vertex from σ or belongs
to σ.

First we choose every kth vertex from the sequence v1, . . . , vi1 starting from
vi1 and then “jumping back” as long as we can, i.e., we set vj1 = vi1 , vj2 =
vi1−k, vj3 = vi1−2k, . . . , vja = vi1−(a−1)k, where i1 − (a − 1)k ∈ [1, k]. Note
that so far rule (2) and, by Observation 4, rule (3) are fulfilled. Then one
after another we choose the consecutive yet not chosen vertices from the
sequence v1, . . . , vi1 as elements of σ starting from the one with the lowest
index, i.e. v1 or v2. By Observation 3, rule (3) (and obviously rule (2))
has not been broken this way. Note also that the remaining vertices induce
now a kth power of a path in G. Then to finalize the construction of σ we
make a “short jump forward” from the last vertex of the subsequence of σ
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constructed so far to vb, where b is the smallest index with residue r modulo
k which is greater than i1 and smaller than n (if such b exists), followed by
choosing every kth element of the sequence vb, . . . , vn−1 starting from vb, i.e.,
we set vji1+1

= vb, vji1+2
= vb+k, vji1+3

= vb+2k, . . . , vji1+c
= vb+(c−1)k, where

b + (c − 1)k ∈ [n − k, n − 1]. By Observation 4, rule (3) (and rule (2)) is
obeyed. Moreover, by the choice of r and our construction, property (1) also
holds. Finally, since the constructed sequence σ contains “every kth” vertex
from the sequence v1, . . . , vn−1, rule (4) is also satisfied.

Now if n1 is at most as big as the number of vertices in σ, i.e. n1 ≤ q,
then the set V1 = {vj1 , . . . , vjn1

} has n1 vertices including vi1 = vj1 . By rule
(2), this set induces a connected subgraph in G. Then we let G′ = G[V rV1]
and τ ′ = (n2, . . . , np). By rule (1), vi2 , . . . , vik ∈ V (G′), and by rule (3), G′

contains a (k − 1)th power of a path as a spanning subgraph with vn being
its last vertex. By induction we therefore may find a realization (V2, . . . , Vp)
of τ ′ in G′ such that vi2 ∈ V2, . . . , vik ∈ Vk.

On the other hand, if n1 > q, then we set V ′

1 = {vj1 , . . . , vjq}, G′′ =
G[V r V ′

1 ] and τ ′′ = (n2, . . . , np, n1 − q). Then analogously as above we may
find a realization (V2, . . . , Vp, V

′′

1 ) of τ ′′ in G′′ such that vi2 ∈ V2, . . . , vik ∈ Vk

by induction. Then by rules (2) and (4), the set V1 := V ′

1 ∪ V ′′

1 induces a
connected subgraph in G, vi1 ∈ V1.

In both cases we obtain a desired realization of τ in G.

Corollary 6 Every P k
n with n ≥ k is AP+(k − 1).

Proof. Assume that v1, . . . , vn are the consecutive vertices of our graph. For
partitions into at most k parts, the result follows by Theorem 1. Consider
then a partition τ = (n1, . . . , np) of n with p > k, together with associated
vertices vj1 , . . . , vjk−1

, j1 < j2 < . . . < jk−1. Since n ≥ k, it is possible to find
an increasing sequence (i1, . . . , ik) of integers with ik = n, which contains all
terms of the sequence (j1, . . . , jk−1).

Corollary 7 For every traceable graph G with at least k vertices, Gk is
AP+(k − 1).

Theorem 8 Every Ck
n with n ≥ 2k is AP+(2k − 1).

Proof. We assume that k ≥ 2, since Cn is obviously AP+1. Let Cn be
a cycle, n ≥ 2k, with consecutive vertices denoted by v0, v1, . . . , vn−1 and
consider its kth power G = (V,E) = Ck

n. Since G is a 2k-connected graph
(for n > 2k), then by Theorem 1, it is sufficient to consider partitions into
more than 2k parts. Assume then that τ = (n1, . . . , np) is a partition of n
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with p > 2k, and vi1 , . . . , vi2k−1
, where i1 < i2 < . . . < i2k−1, are the vertices

associated with the first 2k − 1 elements of this partition, respectively. (We
allow the situation where the i2k−1 = 0.)

For each such vertex vij , j = 1, . . . , 2k − 1, denote by Dj the set of
vertices which are between vij−1

and vij along the cycle Cn together with vij ,
i.e., Dj = v+ij−1

Cnvij for j ≥ 2 and D1 = v+i2k−1
Cnvi1 , where the indices (here

and further) should be understood modulo n, and let dj = |Dj| denote the
distance between vij−1

and vij (or, if j = 1, between vi2k−1
and vi1) along the

cycle Cn (according to its orientation). Let further

sj := dj+1 + . . . + dj+k−1 and mj := nj+1 + . . . + nj+k−1

for j = 1, . . . , 2k−1, where the indices are counted modulo 2k−1. Note that
d1 + . . .+ d2k−1 = n, and since p > 2k, then n1 + . . .+ n2k−1 < n. Therefore,
there must exist j for which mj < sj, since otherwise we would obtain the
following contradiction:

(k − 1)n > (k − 1)
2k−1∑

j=1

nj =
2k−1∑

j=1

mj ≥
2k−1∑

j=1

sj = (k − 1)
2k−1∑

j=1

dj = (k − 1)n.

Set W := {vi1 , vi2 , . . . , vi2k−1
} and assume first that there exists some j′

such that mj′ ≥ sj′ . Without loss of generality we may assume that j′ = 1
and j = 2k − 1 (i.e., m2k−1 < s2k−1 and m1 ≥ s1), and v+i2k−1

= v1. We thus
have:

n1 + . . . + nk−1 ≤ d1 + . . . + dk−1 − 1 = |{v1, v2, . . . , v
−

ik−1
}| and

n1 + n2 + . . . + nk ≥ 1 + d2 + . . . + dk = |{vi1 , vi1+1, . . . , vik}|.

Then there exists t, 1 ≤ t ≤ i1 such that for U := {vt, vt+1, . . . , vik} we have:

n1 + . . . + nk−1 ≤ |U | − 1 and (1)

n1 + . . . + nk ≥ |U |. (2)

Note that U ∩ W = {vi1 , vi2 , . . . , vik}. Thus if |U | = n1 + . . . + nk,
then by Lemma 5 and Corollary 6 we may find a realization (V1, . . . , Vk) of
(n1, . . . , nk) in the kth power of a path induced in G by U , and a realization
(Vk+1, . . . , Vp) of (nk+1, . . . , np) in the remaining part of G in such a way that
vi1 ∈ V1, . . . , vi2k−1

∈ V2k−1. If on the other hand n1 + . . .+nk > |U |, then by
(1) there exist positive integers n′

k, n
′′

k such that n1+. . .+nk−1+n′

k = |U | and
n′

k + n′′

k = nk. Let G′, G′′ be the kth powers of paths induced, respectively,
by U, V r U in G, and let va be the first vertex after vik (according to
the orientation of the cycle Cn) such that va ∈ (V r U) r W . Note that
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since |(V r U) ∩ W | = k − 1, then va must be a neighbour of vik in G.
By Lemma 5 there exist realizations (V1, . . . , Vk−1, V

′

k), (V ′′

k , Vk+1, . . . , Vp) of
(n1, . . . , nk−1, n

′

k), (n′′

k, nk+1, . . . , np) in G′, G′′, respectively, such that vi1 ∈
V1, . . . vik−1

∈ Vk−1, vik ∈ V ′

k and va ∈ V ′′

k , vik+1
∈ Vk+1, . . . , vi2k−1

∈ V2k−1.
Then (V1, . . . Vk−1, V

′

k ∪ V ′′

k , Vk+1, . . . , Vp) is a desired realization of τ in G.
Assume now that mj < sj for every j ∈ {1, . . . , 2k − 1}. Thus, in par-

ticular, there is no k consecutive vertices of the cycle Cn in W . Note also
that since n2 + . . . + nk = m1 < s1 = d2 + . . . + dk, then there must exist
i′ ∈ {2, . . . , k} such that ni′ < di′ . Without loss of generality we may assume
that i′ = k and vi2k−1

= v0. Then Vk := {vik−nk+1, vik−nk+2 . . . , vik}, then
|Vk| = nk and Vk ∩W = {vik}. Moreover, the sets U1 := {v1, v2, . . . , vik−nk

},
U2 := V r (U1 ∪ Vk) induce kth powers of paths G1, G2 in G such that
W ∩ U1 = {vi1 , vi2 . . . , vik−1

}, W ∩ U2 = {vik+1
, vik+2

. . . , vi2k−1
} and

n1 + . . . + nk−1 = m2k−1 < s2k−1 = d1 + ... + dk−1 < |U1|,

nk+1 + ... + n2k−1 = mk < sk = dk+1 + ... + d2k−1 = |U2|.

If we then are able to divide the remaining elements n2k, . . . , np of
τ into two groups, i.e. fix I1, I2 with I1 ∩ I2 = ∅ and I1 ∪ I2 =
{2k, 2k + 1, . . . , p}, such that

∑k−1
i=1 ni +

∑
i∈I1

ni = |U1| and
∑2k−1

i=k+1 ni +∑
i∈I2

ni = |U2|, then the result follows by Corollary 6. Otherwise, there
exist r ∈ {2k, . . . , p} and two integers n′

r, n
′′

r ≥ 1 such that nr = n′

r + n′′

r

and
∑k−1

i=1 ni +
∑r−1

i=2k ni + n′

r = |U1|. Let vc be the first vertex of U1

that does not belong to W , and let vd be the last vertex of U2 that
does not belong to W . Since W cannot contain k consecutive vertices of
Cn, then vc and vd are neighbours in G. By Lemma 5 there exist re-
alizations (V1, . . . , Vk−1, V

′

r , V2k, . . . , Vr−1), (Vk+1, . . . , V2k−1, V
′′

r , Vr+1, . . . , Vp)
of (n1, . . . , nk−1, n′

r, n2k, . . . , nr−1), (nk+1, . . . , n2k−1, n
′′

r , nr+1, . . . , np), re-
spectively, such that vi1 ∈ V1, . . . , vik−1

∈ Vk−1, vc ∈ V ′

r and vik+1
∈

Vk+1, . . . , vi2k−1
∈ V2k−1, vd ∈ V ′′

r . Then (V1, . . . , Vr−1, V
′

r ∪ V ′′

r , Vr+1, . . . , Vp)
is a desired realization of τ .

Corollary 9 For every hamiltonian graph G with at least 2k vertices, Gk is
AP+(2k − 1).
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