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Abstract

If X is a contact Anosov vector field on a smooth compact manifold M and
V ∈ C∞ (M) it is known that the differential operator A = −X + V has some
discrete spectrum called Ruelle-Pollicott resonances in specific Sobolev spaces. We
show that for |Imz| → ∞ the eigenvalues of A are restricted to vertical bands and in
the gaps between the bands, the resolvent of A is bounded uniformly with respect to
|Im (z)|. In each isolated band the density of eigenvalues is given by the Weyl law.
In the first band, most of the eigenvalues concentrate to the vertical line Re (z) =
〈D〉M , the space average of the function D (x) = V (x) − 1

2divX|Eu(x)where Eu is
the unstable distribution. This band spectrum gives an asymptotic expansion for
dynamical correlation functions.
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Résumé

Titre : “Structure en bandes du spectre de Ruelle des flots Anosov de

contact” .
Si X est un champ de vecteur Anosov de contact sur une variété compacte lisse

M et si V ∈ C∞ (M), il est connu que l’opérateur différentiel A = −X + V a
du spectre discret appelé résonances de Ruelle-Pollicott dans des espaces de Sobolev
spécifiques. On montre que pour |Imz| → ∞ les valeurs propres de A sont inclues dans
des bandes verticales and que dans les gaps entre ces bandes la résolvante de A est
bornée uniformément par rapport à |Im (z)|. Dans chaque bande isolée, la densité des
valeurs propres est donnée par une loi de Weyl. Dans la première bande, la plupart
des valeurs propres se concentrent sur la ligne verticale Re (z) = 〈D〉M , qui est la
moyenne spatiale de la fonction D (x) = V (x)− 1

2divX|Eu(x) où Eu est la distribution
instable. Ce spectre en bande permet d’exprimer le comportement asymptotique des
fonctions de correlations dynamiques.

1 Introduction

In this paper we announce some results concerning the Ruelle-Pollicott spectrum of transfer
operators associated to contact Anosov flows [7]. Let X be a smooth vector field on a
compact manifold M and suppose that X generates a contact Anosov flow.

The Ruelle-Pollicott spectrum of contact Anosov flows has been studied since a long
time due to its importance to describe the precise behavior and decay of time correlation
functions for large time. From this, one can deduce fine statistical properties of the dy-
namics of the flow such as exponential convergence towards equilibrium (i.e. mixing) or
central limit theorem for the Birkhoff average of functions. The Ruelle-Pollicott spectrum
is also useful to get some precise asymptotic counting of periodic orbits.

Recent results show that the Ruelle-Pollicott resonances are the discrete eigenvalues
of the generator (−X) seen as a differential operator in some specific Sobolev spaces of
distributions H ⊂ D′ (M) [1, 6, 9]. A more precise description of the structure of this
spectrum has been obtained in [15, 16] where it is shown that in the asymptotic limit
|Imz| → ∞ the spectrum is on the domain Re (z) ≤ γ+

0 with some explicit “gap” γ+
0 < 0

given below. More generally these results can be extended to the operator A = −X + V
where V ∈ C∞ (M) is a smooth function called “potential”.

In this paper we improve the description of the structure of this Ruelle-Pollicott spec-
trum. The main results are stated in Theorem 5.1. They show that the Ruelle-Pollicott
spectrum of the first order differential operator A = −X + V has some band structure
in the asymptotic limit |Imz| → ∞, i.e. is contained in the union of vertical bands
Bk =

{
z ∈ C,Re (z) ∈

[
γ−
k , γ

+
k

]}
, k ≥ 0 with γ±

k+1 < γ±
k . The values γ+

k , γ
−
k are given

explicitly in (5.1) by the maximum (respect. minimum) of the time averaged along trajec-
tories of a function D ∈ C∞ (M) called “damping function” given by D = V − 1

2
divX|Eu

.
If the band Bk is isolated from the others by an asymptotic spectral gap (i.e. γ+

k+1 < γ−
k )

then the norm of resolvent of A is bounded in this gap uniformly with respect to |Im (z)|.
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Theorem 5.1 shows that the spectrum in every isolated band Bk satisfies a Weyl law,
i.e. the number N (b) of eigenvalues z ∈ Bk satisfying Im (z) ∈ [b, b+ bε] is given by1

N (b) /bε ≍ bd as b → ∞ for any ε > 0, where dimM = 2d + 1. The assumption that the
band is isolated is not needed for the upper bound. A better result for the upper bound
of this Weyl law is given in [2]: it is shown that for any radius C0 > 0, the number of
resonances in the disk D (ib, C0) of center ib is O

(
bd
)

(i.e. this is the case ε = 0).
Concerning the most interesting “external band” B0 =

{
z ∈ C,Re (z) ∈

[
γ−
0 , γ

+
0

]}
, sup-

posing that it is isolated (γ+
1 < γ−

0 ), it is shown in Theorem 5.3 that most of the resonances
in the band B0 accumulate on the vertical line Re (z) = 〈D〉M given by the space average
of the function D. This is due to ergodicity. This problem is then closely related to the
description of the spectrum of the damped wave equation [13]. Finally Corollary 5.4 shows
that dynamical correlation functions can be expanded over the infinite spectrum contained
in the first band B0.

In the forthcoming paper [7] we will consider the special case V = V0 = 1
2
divX|Eu

for
which the damping function vanishes D = 0, γ±

0 = 0, i.e. the Ruelle-Pollicott resonances
of the external band accumulate on the imaginary axis. However, V0 is not smooth and
this requires an extension of the theory.

From Selberg theory and representation theory, this particular band structure is known
for a long time in the case of homogeneous hyperbolic manifolds M = Γ\SO1,n/SOn−1 ≡
Γ\T ∗

1H
n where Γ is a discrete co-compact subgroup. In that case, the contact Anosov flow

is the geodesic flow on the hyperbolic manifold surface N = Γ\Hn = Γ\SO1,n/SOn.
Technically we use semiclassical analysis to study the spectrum of the differential oper-

ator A = −X + V [11, 17]. We consider the associated “canonical dynamics” in the phase
space T ∗M which is simply the lifted flow. The key observation is that this canonical
dynamics has a non-wandering set or “trapped set” which is a smooth symplectic subman-
ifold K ⊂ T ∗M and which is normally hyperbolic. This is the origin of the band structure
of the spectrum. The results presented in this paper have been already obtained (among
others) for a closely related problem, namely the band structure of prequantum Anosov
diffeomorphisms [8]. This approach has been originally developed on a simple model in [5].

In a recent paper [4], Semyon Dyatlov shows a band structure for resonances for a
similar problem motivated by scattering by black holes. The band structure he obtains
also comes from the property that the trapped set in his problem is symplectic and normally
hyperbolic but he assumes some smoothness for the (un)stable foliations. One difficulty we
have to deal with for Anosov flows is the non smoothness of the (un)stable foliations. An
other related recent work is the paper of Nonnenmacher-Zworski [12] where they obtain
Theorem 3.5 below but for more general models including contact Anosov flow.

1The notation N (b) ≍ |b|d+ε
means that ∃C > 0 independent of b s.t. 1

C
|b|d+ε ≤ N (b) ≤ C |b|d+ε

.
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Figure 2.1: Anosov flow.

2 Contact Anosov flow

Definition 2.1. On a smooth Riemannian compact manifold (M, g), a smooth vector
field X generating a flow φt : M → M, t ∈ R, is Anosov (see Fig. 2.1), if there exists an
φt−invariant decomposition of the tangent bundle TM = Eu ⊕Es ⊕E0, where E0 = RX
and C > 0,λ > 0 such that for every t ≥ 0

∥
∥Dφt/Es

∥
∥
g
≤ Ce−λt,

∥
∥Dφ−t/Eu

∥
∥
g
≤ Ce−λt. (2.1)

Remark 2.2. In general the map x ∈ M → Eu (x) , Es (x) are only Hölder continuous. The
“structural stability theorem” shows that Anosov vector field is a property robust under
perturbation.

Definition 2.3. The Anosov one form α ∈ C (T ∗M) is defined by Kerα = Eu ⊕ Es,
α (X) = 1. X is a contact Anosov vector field if α is a smooth contact one form i.e.
(dα)|Eu⊕Es

is non degenerate (symplectic).

Remark 2.4. If the case of a contact Anosov vector field we have that dimEu = dimEs = d,
with dimM = 2d+ 1 and that dx = α ∧ (dα)d is smooth volume form on M preserved by
the flow φt.

As an example, the geodesic flow on a compact manifold N with negative sectional
curvature (not necessary constant) defines a contact Anosov flow on T ∗

1N . In that case
the Anosov one form α coincides with the canonical Liouville one form ξdx on T ∗N .

We will assume that X is a contact Anosov vector field on M in the rest of this paper.
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3 The transfer operator

Let V ∈ C∞ (M) be a smooth function called “potential”.

Definition 3.1. The transfer operator is the group of operators

F̂t :

{

C∞ (M) → C∞ (M)

v → etAv
, t ≥ 0

with the generator
A := −X + V

which is a first order differential operator.

Remark 3.2.

• Since X generates the flow φt we can write F̂tv =
(

e
∫ t
0
V ◦φ−sds

)

v (φ−t (x)), hence F̂t

acts as transport of functions by the flow with multiplication by exponential of the
function V averaged along the trajectory.

• In the case V = 0, the operator F̂t is useful in order to express “dynamical correlation
functions” between u, v ∈ C∞ (M), t ∈ R:

Cu,v (t) :=

∫

M

u · (v ◦ φ−t) dx = 〈u, F̂tv〉L2 (3.1)

The study of these time correlation functions permits to establish the mixing proper-
ties and other statistical properties of the dynamics of the Anosov flow. In particular
u = cste is an obvious eigenfunction of A = −X with eigenvalue z0 = 0. Since
divX = 0 we have that F̂t is unitary in L2 (M, dx) and iA = (iA)∗is self-adjoint
and has continuous spectrum on the imaginary axis Rez = 0. In the next theorem
we consider more interesting functional spaces where the operator A has discrete
spectrum but is non self-adjoint.

Theorem 3.3 ([1][6]). ”discrete spectrum”. If X is an Anosov vector field and V ∈
C∞ (M) then for every C > 0, there exists a Hilbert space HC with C∞ (M) ⊂ HC ⊂
D′ (M), such that

A = −X + V : HC → HC

has discrete spectrum on the domain Re (z) > −Cλ, called Ruelle-Pollicott reso-

nances, independent on the choice of HC .
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Remark 3.4. Concerning the meaning of these eigenvalues, notice that with the choice
V = 0, if (−X) v = zv, v is an invariant distribution with eigenvalue z = −a + ib ∈ C,
then v ◦ φ−t = e−tXv = e−ateibtv, i.e. a = −Re (z) contributes as a damping factor and
b = Im (z) as a frequency in time correlation function (3.1). See corollary 5.4 below for a
precise statement. Notice also the symmetry of the spectrum under complex conjugation
thatAv = zv implies Av = zv.

We introduce now the following function that will play an important role2

V0 (x) :=
1

2
divX|Eu

. (3.2)

From (2.1) we have V0 (x) ≥
1
2
d · λ. Since Eu (x) is only Hölder in x so is V0 (x). We will

also consider the difference
D (x) := V (x)− V0 (x) (3.3)

and called it the “effective damping function”. For simplicity we will write:

(∫ t

0

D

)

(x) :=

∫ t

0

(D ◦ φ−s) (x) ds, x ∈ M,

for the Birkhoff average of D along trajectories.

Theorem 3.5 ([15, 16]). ”asymptotic gap”. If X is a contact Anosov vector field on
M and V ∈ C∞ (M), then for any ε > 0 the Ruelle-Pollicott eigenvalues (zj)j ∈ C of
A = −X + V are contained in

Re (z) ≤ γ+
0 + ε

up to finitely many exceptions and with

γ+
0 = lim

t→∞
sup
x∈M

1

t

(∫ t

0

D

)

(x) . (3.4)

Remark 3.6. See Figure 5.1(b). Notice that in the case V = 0 we have γ+
0 ≤ −1

2
d · λ < 0.

2Let µg be the induced Riemann volume form on Eu (x) defined from the choice of a metric g on M .
As the usual definition in differential geometry [14, p.125], for tangent vectors u1, . . . ud ∈ Eu (x), divX|Eu

measures the rate of change of the volume of Eu and is defined by

(
divX|Eu

(x)
)
· µg (u1, . . . ud) = lim

t→0

1

t
(µg (Dφt (u1) , . . . , Dφt (ud))− µg (u1, . . . ud))

Equivalently we can write that divX|Eu
(x) = d

dt

(

det (Dφt)|Eu

)

t=0

.
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4 Example of the geodesic flow on constant curvature

surface

A simple and well known example of contact Anosov flow is provided by the geodesic flow
on a surface S with constant negative curvature. Precisely let Γ < SL2R be a co-compact
discrete subgroup of G = SL2R (i.e. such that M := Γ\SL2R is compact). We suppose
that (−Id) ∈ Γ. Then we have a natural identification that M ≡ T ∗

1S is the unit cotangent
bundle of the hyperbolic surface S := Γ\SL2R/SO2 ≡ Γ\H2. Let X be the left invariant

vector field on M given by the element Xe = 1
2

(
1 0
0 −1

)

∈ sl2R = TeG. Then X is

an Anosov contact vector field on M and can be interpreted as the geodesic flow on the
surface S. Using representation theory, it is known that the Ruelle-Pollicott spectrum of
the operator (−X) coincides with the zeros of the dynamical Fredholm determinant. This
dynamical Fredholm determinant is expressed as the product of the Selberg zeta functions
and gives the following result; see figure 5.1(a). We refer to [7] for further details.

Proposition 4.1. If X is the geodesic flow on an hyperbolic surface S = Γ\H2 then the
Ruelle-Pollicott eigenvalues z of (−X) are of the form

zk,l = −
1

2
− k ± i

√

µl −
1

4
(4.1)

where k ∈ N and (µl)l∈N ∈ R+ are the discrete eigenvalues of the hyperbolic Laplacian ∆
on the surface S. There are also zn = −n with n ∈ N∗. Each set (zk,l)l with fixed k will be
called the line Bk. The “Weyl law” for ∆ gives the density of eigenvalues on each vertical
line Bk, for b → ∞,

♯ {zk,l, b < Im (zk,l) < b+ 1} ≍ |b| (4.2)

5 Band spectrum for general contact Anosov flow

Proposition 4.1 above shows that the Ruelle-Pollicott spectrum for the geodesic flow on
constant negative surface has the structure of vertical lines Bk at Rez = −1

2
− k. In each

line the eigenvalues are in correspondence with the eigenvalues of the Laplacian ∆. We
address now the question if this structure persists somehow for geodesic flow on manifolds
with negative (variable) sectional curvature and more generally for any contact Anosov
flow. In the next Theorem, for a linear invertible map L, we note ‖L‖max := ‖L‖ and

‖L‖min := ‖L−1‖
−1

.
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Theorem 5.1. [7]“asymptotic band structure”. If X is a contact Anosov vector field
on M and V ∈ C∞ (M) then for every C > 0, there exists an Hilbert space HC with
C∞ (M) ⊂ HC ⊂ D′ (M), such that for any ε > 0, the Ruelle-Pollicott eigenvalues
(zj)j ∈ C of the operator A = −X + V : HC → HC on the domain Re (z) > −Cλ are
contained, up to finitely many exceptions, in the union of finitely many bands

z ∈
⋃

k≥0

[
γ−
k − ε, γ+

k + ε
]
× iR

︸ ︷︷ ︸

Band Bk

with

γ+
k = lim

t→∞

∣
∣
∣
∣
sup
x

1

t

((∫ t

0

D

)

(x)− k log
∥
∥
∥Dφt (x)/Eu

∥
∥
∥
min

)∣
∣
∣
∣
, (5.1)

γ−
k = lim

t→∞

∣
∣
∣
∣
inf
x

1

t

((∫ t

0

D

)

(x)− k log
∥
∥
∥Dφt (x)/Eu

∥
∥
∥
max

)∣
∣
∣
∣

(5.2)

and where D = V −V0 is the damping function (3.3). In the gaps (i.e. between the bands)
the norm of the resolvent is controlled: there exists c > 0 such that for every z /∈

⋃

k≥0Bk

with |Im (z)| > c
∥
∥(z − A)−1

∥
∥ ≤ c.

For some k ≥ 0, if the band Bk is “isolated”, i.e. γ+
k+1 < γ−

k and γ+
k < γ−

k−1 (this last
condition is for k ≥ 1) then the number of resonances in Bk obeys a “Weyl law”: ∀b > c,

1

c
|b|d <

1

|b|ε
· ♯ {zj ∈ Bk, b < Im (zj) < b+ bε} < c |b|d (5.3)

with dimM = 2d+ 1. The upper bound holds without the condition that Bk is isolated.

Remark 5.2. We can compare Theorem 5.1 with Proposition 4.1 in the special case of the
geodesic flow on a constant curvature surface S = Γ\H2: we have Dφt (x)/Eu

≡ et hence

V0 =
1
2
. The choice of potential V = 0 gives the constant damping function D = −1

2
, hence

(5.1) gives γ+
k = γ−

k = −1
2
− k as in Proposition 4.1.

In the forthcoming paper [7] we will show that for a general contact Anosov vector field
it is possible to choose the potential V = V0 (non smooth), giving γ+

0 = γ−
0 = 0, i.e. the

first band is reduced to the imaginary axis and is isolated from the second band by a gap,
γ+
1 < 0.
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−1
2

−5
2

−3
2

z0,lz1,l

0

B0B2 B1

Im(z)

Re(z)

z̄0,l

(a)

Im(z)

Re(z)

B2 B1 B0

0

γ−
0 γ

+
0

(b)

γ+
2 γ−

1 γ+
1

〈D〉

Figure 5.1: (a) For an hyperbolic surface S = Γ\H2, the Ruelle-Pollicott spectrum of the
geodesic vector field −X given by Proposition 4.1. It is related to the eigenvalues of the
Laplacian by (4.1). (b) For a general contact Anosov flow, the spectrum of A = −X + V
and its asymptotic band structure given by Theorems 5.1 and 5.3.

Theorem 5.3. [7]If the external band B0 is isolated i.e. γ+
1 < γ−

0 , then most of the
resonances accumulate on the vertical line

Re (z) = 〈D〉 :=
1

Vol (M)

∫

M

D (x) dx

in the precise sense that

1

♯Bb

∑

zi∈Bb

|zi − 〈D〉| −→ 0
b→∞

, with Bb := {zi ∈ B0, |Im (zi)| < b} . (5.4)

Consequence for correlation functions expansion

We mentioned the usefulness of dynamical correlation functions in (3.1). Let Πj denotes
the finite rank spectral projector associated to the eigenvalue zj . The following Corollary
provides an expansion of correlation functions over the spectrum of resonances of the first
band B0. This is an infinite sum.
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Corollary 5.4. Suppose that γ+
1 < γ−

0 . Then for any ε > 0, there exists Cε, for any
u, v ∈ C∞ (M) and t ≥ 0,

∣
∣
∣
∣
∣
∣

〈u, F̂tv〉L2 −
∑

zj ,Re(zj)≥γ+

1
+ε

〈u, F̂tΠjv〉

∣
∣
∣
∣
∣
∣

≤ Cε ‖u‖H′

C
· ‖u‖HC

· e(γ
+

1
+ε)t. (5.5)

The infinite sum above converges fast because for arbitrary large m ≥ 0 there exists

Cm,ε (u, v) ≥ 0 such that
∣
∣
∣〈u, F̂tΠjv〉

∣
∣
∣ ≤ Cm,ε (u, v) · e(

γ+

0
+ε)t · |Im (zj)|

−m (except for a

finite number of terms).

Eq.(5.5) is a refinement of decay of correlation results of Dolgopyat [3], Liverani [10],
Tsujii [15, 16, Cor.1.2] and Nonnenmacher-Zworski [12, Cor.5] where their expansion is a
finite sum over one or a finite number of leading resonances.

Outline of the proof

The band structure and all related results presented above have already been proven for
the spectrum of Anosov prequantum map in [8]. An Anosov prequantum map f̃ : P → P
is an equivariant lift of an Anosov diffeomorphism f : M → M on a principal bundle
U (1) → P → M such that f̃ preserves a contact one form α (a connection on P ). Therefore
f̃ : P → P is very similar to the contact Anosov flow φt : M → M considered in this paper,
that also preserves a contact one form α. Our proof of Theorem 5.1 is directly adapted
from the proof given in [8]. We refer to this paper for more precisions on the proof and
we use the same notations below. The techniques rely on semiclassical analysis adapted
to the geometry of the contact Anosov flow lifted in the cotangent space T ∗M . In the
limit |Imz| → ∞ of large frequencies under study, the semiclassical parameter is written
~ := 1/ |Imz|. We now sketch the main steps of the proof.

Global geometrical description. A = −X + V is a differential operator. Its principal
symbol is the function σ (A) (x, ξ) = Xx (ξ) on phase space T ∗M (the cotangent bundle). It
generates an Hamiltonian flow which is simply the canonical lift of the flow φt on M . Due to
Anosov hypothesis on the flow in Definition 2.1, the non-wandering set of the Hamiltonian
flow is the continuous sub-bundle K = Rα ⊂ T ∗M where α is the Anosov one form. K
is normally hyperbolic. This analysis has already been used in [6] for the semiclassical
analysis of Anosov flow (not necessary contact). With the additional hypothesis that α is
a smooth contact one form, this makes K\ {0} a smooth symplectic submanifold of T ∗M
(usually called the symplectization of the contact one form α) and normally hyperbolic.
Let ρ = (x, ξ) ∈ K be a point on the trapped set. Let ~−1 = Xx (ξ) be its “energy”. Let
Ω =

∑

j dx
j ∧dξj be the canonical symplectic form on T ∗M and consider the Ω-orthogonal

10
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splitting of the tangent space at ρ ∈ K:

Tρ (T
∗M) = TρK ⊕ (TρK)⊥ (5.6)

Due to hyperbolicity assumption, we have an additional decomposition of the space

(TρK)⊥ = E(2)
u ⊕E(2)

s

transverse to the trapped set into unstable/stable spaces.

Partition of unity. We decompose functions on the manifold using a microlocal partition
of unity of size ~1/2−ε with some 1/2 > ε > 0, that is refined as ~ → 0. In each chart
we use a canonical change of variables adapted to the decomposition (5.6), and construct

an escape function adapted to the local splitting E
(2)
u ⊕ E

(2)
s above. This escape function

has “strong damping effect” outside a vicinity of size O
(
~1/2

)
of the trapped set K. We

use this to define the anisotropic Sobolev space HC . At the level of operators, we perform
a decomposition similar to (5.6) and obtain a microlocal decomposition of the transfer
operator F̂t as a tensor product F̂t|TρK ⊗ F̂t|(TρK)⊥. The first operator F̂t|TρK is unitary

whereas the second one F̂t|(TρK)⊥ has discrete spectrum of resonances indexed by an integer
k ∈ N. This is due to the choice of the escape function. We can construct explicitly some
approximate local spectral projectors Πk for every value of k, and patching these locals
expression together we get global spectral operators for each band. The positions γ±

k of

the band Bk come from estimates on the discrete spectrum of the local operator F̂t|(TρK)⊥

restricted by the projector Πk. We obtain results on the spectrum of the generator A from
the results on the transfer operator F̂t = etA by standard arguments.

The proof of the Weyl law is similar to the proof of J.Sjöstrand about the damped wave
equation [13] but needs more arguments. The accumulation of resonances on the value 〈D〉
in Theorem 5.3 given by the spatial average of the damping function, Eq.(5.4), uses the
ergodicity property of the Anosov flow and is also similar to the spectral results obtained
in [13] for the damped wave equation.
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