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Abstract: We consider the steady case of a nonlinear model for a thermoelastic beam
that can enter in contact with obstacles. We first prove the well-posedness of this problem.
Next, we propose a finite element discretization and perform the a priori and a posteriori
analysis of the discrete problem. Some numerical experiments confirm the interest of this
approach.

Résumé: Nous considérons le cas stationnaire d’un modèle non linéaire pour une poutre
thermoélastique qui peut entrer en contact avec des obstacles. Nous prouvons que ce
problème est bien posé. Puis nous écrivons une discrétisation par éléments finis et effec-
tuons l’analys a priori et a posteriori du problème discret. Quelques expériences numériques
confirment l’intérêt de cette approche.
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1. Introduction.

We consider in this work a homogeneous, thermoviscoelastic thick beam whose ref-
erence configuration is the interval I =]0, 1[. The beam is rigidly attached at its left end
while its right end is free to come into frictionless contact with two pointed reactive ob-
stacles located at the vertical positions g1 and g2. A nonlinearity of Kirchhoff type taking
into account changes in tension due to variations in the displacement is incorporated in
the model and the temperature of the beam is prescribed at both ends.

Let u(x, t), φ(x, t) and θ(x, t) denote the vertical displacement, the angular rotation of
cross section and the temperature along the transversal direction of the beam, respectively.
Thus, the motion and thermal evolution of the beam are described by the system of
equations

utt = uxx − φx + ζ(uxxt − φxt) +

(
β + ρ

∫ 1

0

u2
xdx

)
uxx, x ∈ I, t > 0,

φtt = φxx + ux − φ+ ζ(φxxt + uxt − φt)− aθx, x ∈ I, t > 0,

θt = θxx − aφxt, x ∈ I, t > 0,

(1.1)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ I,
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ I,
θ(x, 0) = θ0(x), x ∈ I,

(1.2)

and the boundary conditions

u(0, t) = φ(0, t) = 0, t > 0,

φx(1, t) + ζφxt(1, t) = 0, t > 0,

θ(0, t) = θA, θ(1, t) = 0, t > 0,

σ(1, t) = −1

ε

(
[u(1, t)− g2]+ − [g1 − u(1, t)]+

)
, t > 0.

(1.3)

Here, the stress field is given by σ = ux − φ + ζ(uxt − φt) +
(
β + ρ

∫ 1

0
u2
xdx

)
ux, where

ζ > 0 is a viscosity coefficient, β accounts for an axial force at rest and ρ > 0 is a constant
related to the material. Finally, we assume that g1 ≤ 0 ≤ g2. The symbol [f ]+ denotes the
positive part max{f, 0} of a function f.

The boundary condition in the fourth line of (1.3) with ε > 0 is called normal compli-
ance condition. In the limit ε→ 0 the obstacles become rigid and a Signorini condition is
obtained. The condition in the first line of (1.3) is assumed at x = 0 on the two unknowns
u and φ, it means that the beam is clamped at this point. We remark that the temperature
acts on the motion of φ directly and indirectly on the displacement u through the coupling
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of the equations. We refer to the works of Lagnese, Leugering and Schmidt [7], Sapir and
Reiss [10] and Anh and Stewart [1] for details on the modelling.

In this work, we are only interested in the steady situation. Indeed, stationary prob-
lems for nonlinear, elastic, Euler–Bernoulli beams were considered previously in [9], [12],
[8]. An algorithm based on the Galerkin method was proposed by Peradze [9] to solve
an equation for a simply supported beam, while the influence of an external load was
investigated by Zelati, Giorgi and Pata [12]. In [8], Ma included a nonlinear boundary
condition, established existence of solutions and presented a numerical algorithm using
the finite difference method. A dynamic, nonlinear, elastic, Timoshenko beam problem
was studied by Sapir and Reiss [10]. In particular, stationary solutions were described and
their stability investigated. Recently, the quasi-static thermoviscoelastic nonlinear contact
problem for an Euler–Bernoulli beam was numerically studied by Copetti and Fernández
[4]; in the latter case, a finite element discretization was proposed and analyzed and some
numerical experiments were performed. However, to our knowledge, the present paper is
the first work to consider a nonlinear, thermoelastic, Timoshenko beam model with contact
boundary conditions.

It can be noted that problem (1.1) when suppressing all time derivatives, results into
a system of ordinary differential equations. However in view of the discretization we write
its variational formulation. Even if the problem is simpler, proving its well-posedness is
not at all obvious due to the nonlinear terms. We study first the linear problem, next
we establish the well-posedness of the nonlinear problem under some conditions on the
coefficients.

Next, we propose a finite element discretization of this problem. We then perform
its a priori and a posteriori analysis. For both of them, the approach is the same: first
studying the linear problem, next extending by hand the results to the nonlinear problem.
All this justifies the choice of the discretization that we have made. Finally, we present and
analyze an iterative algorithm for solving the nonlinear discrete problem. Some numerical
experiments confirm the interest of our approach.

The outline of this article is as follows.
• In Section 2, we present the steady problem and its variational formulation. We prove
its well-posedness.
• Section 3 is devoted to the description and a priori analysis of the discrete problem.
• The a posteriori analysis of the discretization is performed in Section 4.
• An iterative algorithm for solving the discrete problem is studied in Section 5.
• In Section 6, we present a few numerical experiments.

Acknowledgement: The work of M.I.M. Copetti was partially supported by the Brazil-
ian institution CAPES under grant 8659-11-7. She also wishes to thank the Laboratoire
Jacques-Louis Lions of Université Pierre et Marie Curie for the hospitality during the
course of this work.
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2. The continuous problem and its well-posedness.

When forgetting all dependency with respect to t of the unknowns, we observe that
the temperature θ satisfies θxx = 0, so that in view of the boundary conditions in the third
line of (1.3) it is given by

θ(x) = θA(1− x).

So we are led to consider the system with two unknowns, where I stands for the interval
]0, 1[, 

−uxx + φx −N(u)uxx = 0 in I,
−φxx − ux + φ = aθA in I,
u(0) = φ(0) = 0,
φx(1) = 0, σ(u, φ)(1) = g(u)(1),

(2.1)

where the quantity σ(u, φ) is defined by

σ(u, φ) = ux − φ+N(u)ux.

The nonlinear term N(u) reads

N(u) = β + ρ |u|2H1(I),

where the constant ρ is positive. We also recall that the boundary quantity g(u) is equal
to, with g1 ≤ 0 ≤ g2,

g(u)(1) =

−
1
ε (u(1)− g2) if u(1) ≥ g2,

0 if g1 ≤ u(1) ≤ g2,
− 1
ε (u(1)− g1) if u(1) ≤ g1.

Let H1
∗ (I) stand for the space of functions in H1(I) which cancel at 0. We now

consider the variational problem

Find (u, φ) in H1
∗ (I)2 such that

∀w ∈ H1
∗ (I), (ux, wx)− (φ,wx) + (N(u)ux, wx) = g(u)(1)w(1),

∀χ ∈ H1
∗ (I), (φx, χx)− (ux, χ) + (φ, χ) = (aθA, χ).

(2.2)

Indeed, the next lemma is an easy consequence of the density of D(]0, 1]) in H1
∗ (I).

Lemma 2.1. Problem (2.2) is equivalent to system (2.1) (when satisfied in the distribution
sense).

2.1. The linear problem.

3
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In a first step, we assume that N(u) is zero and we take g(u)(1) equal to a constant
g. We set: X = H1

∗ (I)2 and we equip it with the semi-norm

‖(u, φ)‖X =
(
|u|2H1(I) + |φ|2H1(I)

) 1
2 .

Indeed, it follows from the Poincaré–Friedrichs inequality that this quantity is a norm on
X, equivalent to ‖ · ‖H1(I)2 . For all (u, φ) and (w,χ) in X, we introduce the bilinear form

a(u, φ;w,χ) = (ux, wx)− (φ,wx) + (φx, χx)− (ux, χ) + (φ, χ),

so that problem (2.2) can equivalently be written

Find (u, φ) in X such that

∀(w,χ) ∈ X, a(u, φ;w,χ) = gw(1) + (aθA, χ). (2.3)

The continuity of the form a(·; ·) on X × X is obvious. In the next lemma, we study its
ellipticity.

Lemma 2.2. The form a(·; ·) satisfies the following ellipticity property, for a constant
α > 0,

∀(u, φ) ∈ X, a(u, φ;u, φ) ≥ α ‖(u, φ)‖2X.

Proof: We have
a(u, φ;u, φ) = ‖ux − φ‖2L2(I) + |φ|2H1(I).

Since
‖ux − φ‖2L2(I) = ‖ux‖2L2(I) − 2(ux, φ) + ‖φ‖2L2(I),

the Young’s inequality yields, for 0 < η < 1,

‖ux − φ‖2L2(I) ≥ (1− η)‖ux‖2L2(I) +
η − 1

η
‖φ‖2L2(I).

Owing to the Poincaré–Friedrichs inequality, we have ‖φ‖L2(I) ≤ 1√
2
|φ|H1(I), whence

a(u, φ;u, φ) ≥ (1− η)|u|2H1(I) + (1− 1

2

1− η
η

)|φ|2H1(I).

An appropriate choice of η (more precisely, taking η = 1
2 ) gives the desired result with

α = 1
2 .

The well-posedness of problem (2.3) is a direct consequence of this lemma, combined
with the Lax–Milgram lemma.

Proposition 2.3. For any constants g, a and θA, problem (2.3) admits a unique solution.

4
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2.2. The full problem.

We go back to problem (2.2) and first prove a boundedness propety for its solution.

Lemma 2.4. For all β > −α, the part u of any solution (u, φ) of problem (2.2) satisfies

|u|H1(I) ≤ c |aθA|, (2.4)

where the constant c only depends on α and α+ β.

Proof: Combining the ellipticity property of the form a(·, ·), see Lemma 2.2, with the
definition of the nonlinear term N(u) gives

(α+ β)|u|2H1(I) + α|φ|2H1(I) − g(u)(1)u(1) ≤ |aθA|‖φ‖L2(I).

It is readily checked that, in all cases, the quantity −g(u)(1)u(1) is nonnegative. Thus the
desired result follows from the Poincaré–Friedrichs inequality.

Let us now introduce the mapping Φ from X into itself by

〈Φ(u, φ), (w,χ)〉 = a(u, φ;w,χ) + (Nz(u)ux, wx)− g(u)(1)w(1)− (aθA, χ),

where the quantities Nz(u) and N∗z (u) are defined, for a function z in H1
∗ (I), by

Nz(u) = β + ρ |(zx, ux)|, N∗z (u) = ρ |(zx, ux)|.

In a first step, we wish to prove that the problem

∀(w,χ) ∈ X, 〈Φ(u, φ), (w,χ)〉 = 0, (2.5)

has a solution. The key idea for this consists in applying Brouwer’s fixed point theorem.

Proposition 2.5. There exists a real number β0 > −1 such that, for all β > β0 and
all data g1, g2, a and θA, and also for any function z in H1

∗ (I), problem (2.5) admits a
solution.

Proof: We proceed in three steps.
1) The mapping Φ is clearly continuous from X into itself. To go further, we use Lemma
2.2 combined with the imbedding of H1

∗ (I) in C0([0, 1]). We also recall that the quantity
−g(u)(1)u(1) is nonnegative. All this yields that, for all (u, φ) satisfying |u|H1(I) = µ and
|φ|H1(I) = µ,

〈Φ(u, φ), (u, φ)〉 ≥ (2α+ β)µ2 − c µ,

where c only depends on the product |aθA|. So, for β > β0 > −2α, and µ equal to 2c
2α+β ,

the quantity 〈Φ(u, φ), (u, φ)〉 is positive on the tensorized sphere of X with radius µ.
2) Since H1

∗ (I) is separable, there exists an increasing sequence (Xn)n of finite-dimensional

5
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subspaces of X such that their union is dense in X. The properties of the mapping Φ on
Xn being exactly the same as on X, Brouwer’s theorem [6, chap. IV, cor. 1.1] implies that
there exists a unique (un, φn) in the tensorized ball of Xn with radius µ satisfying

∀(w,χ) ∈ Xn, 〈Φ(un, φn), (w,χ)〉 = 0. (2.6)

3) Since the sequence (un, φn)n is bounded in X, there exists a subsequence, still denoted
by (un, φn)n for simplicity, which converges to a pair (u, φ) weakly in X. The sequence
(Xn)n being increasing, equation (2.5) can be re-written, for all m ≤ n,

∀(wm, χm) ∈ Xm, 〈Φ(un, φn), (wm, χm)〉 = 0,

We now pass to the limit on n (indeed, the problem only contains linear terms), then on
m. This yields that (u, φ) is a solution of problem (2.5).

We are now in a position to prove the main result of this section. However a technical
lemma is needed for that.

Lemma 2.6. For all functions u1 and u2 in H1
∗ (I), the quantity

X(u1, u2) = −
(
g(u1)(1)− g(u2)(1)

)
(u1 − u2)(1),

is nonnegative.

Proof: Owing to the symmetry property X(u2, u1) = X(u1, u2), we assume without
restriction that: u1(1) ≥ u2(1). We now consider the different values of u2(1).
1) If u2(1) ≥ g2, the quantity X(u1, u2) satisfies

X(u1, u2) =
1

ε
(u1 − u2)(1)(u1 − u2)(1) ≥ 0.

2) If g1 ≤ u2(1) ≤ g2, it is readily checked that g(u2)(1) = 0. The quantity −g(u1)(1)
is either equal to 1

ε (u1 − g2) when u1(1) ≥ g2 or to zero otherwise. In all cases, we have
X(u1, u2) ≥ 0.
3) If u2(1) ≤ g1, we observe that

X(u1, u2)

(u1 − u2)(1)

= −1

ε
(u2(1)− g1) +


1
ε (u1(1)− g1) = 1

ε (u1 − u2)(1) if u1(1) ≤ g1,
0 = 1

ε (g1 − u2(1)) if g1 ≤ u1(1) ≤ g2,
1
ε (u1(1)− g2) = 1

ε ((u1 − u2)(1) + g1 − g2) if u1(1) ≥ g2.

By noting that (u1 − u2)(1) ≥ g2 − g1 in this last case, we also derive that X(u1, u2) ≥ 0.

Theorem 2.7. There exists a real number ρ0 > 0 such that, for all ρ < ρ0 and β > β0

and all data g1, g2, a and θA, problem (2.2) admits at least a solution.

6
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Proof: Let Ψ denote the mapping from H1
∗ (I) into itself which associates with z the part

u of the solution (u, φ) of problem (2.5) exhibited in Proposition 2.5. For all functions z1

and z2 in H1
∗ (I), we set: u1 = Ψ(z1) and u2 = Ψ(z2). We see that, for any (w,χ) in X,

and with obvious notation for φ1 and φ2,

a(u1 − u2, φ1 − φ2;w,χ) + β(u1x − u2x, wx)− g(u1)(1)w(1) + g(u2)(1)w(1)

= −
(
N∗z1(u1)u1x −N∗z2(u2)u2x, wx

)
.

We now take (w,χ) equal to (u1 − u2, φ1 − φ2). We deduce from Lemmas 2.2 and 2.6

(α+ β) |u1 − u2|H1(I) ≤ |N∗z1(u1)u1 −N∗z2(u2)u2|H1(I).

If µ is the real number introduced in the proof of Proposition 2.5, we now assume that z1

and z2 belong to the ball B of X with radius µ, and we observe that u1 and u2 belong to
this same ball; then, several triangle inequalities lead to

(α+ β) |u1 − u2|H1(I) ≤ ρcµ2
(
|u1 − u2|H1(I) + |z1 − z2|H1(I)

)
.

Next, we choose ρ0 such that ρ0cµ
2 < α+β

2 . We thus derive

|u1 − u2|H1(I) ≤ C |z1 − z2|H1(I),

for a constant C < 1. Consequently, the mapping Ψ is a contraction of B and then admits
a unique fixed point u dans B. The pair (u, φ), where φ is the solution of the second line of
(2.2) for the datum ux (its existence and uniqueness are obvious), is a solution of problem
(2.2).

It can be noted that the conditions on β and ρ which appear in the statement of
Theorem 2.6 seem too strong for the existence result (think of applying a Cauchy–Lipschitz
theorem). We conclude this section with the uniqueness result.

Theorem 2.8. For all β > −α and all data g1, g2, a and θA, problem (2.2) admits at
most a solution.

Proof: Let (u1, φ1) and (u2, φ2) be two solutions of problem (2.2). The same arguments
as in the previous proof imply that

a(u1 − u2, φ1 − φ2;w,χ) + β(u1x − u2x, wx)− g(u1)(1)w(1) + g(u2)(1)w(1)

+
(
N∗u1

(u1)u1x −N∗u2
(u2)u2x, wx

)
= 0.

We now take (w,χ) equal to (u1 − u2, φ1 − φ2). Lemma 2.6 implies that the quantity
−
(
g(u1)(1) − g(u2)(1)

)
(u1 − u2)(1) is nonnegative. On the other hand, we have the in-

equalities, see [3, Proposition 1] for their proof,

N∗u1
(u1)

(
u1x, u1x − u2x

)
≥ 1

4
|u1|4H1(I) −

1

4
|u2|4H1(I),

−N∗u2
(u2)

(
u2x, u1x − u2x

)
≥ 1

4
|u2|4H1(I) −

1

4
|u1|4H1(I).

(2.7)

7
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Combining all this with Lemma 2.2 yields

(α+ β) |u1 − u2|2H1(I) ≤ 0,

so that u1 and u2 coincide. The functions φ1 and φ2 then, satisfy

∀χ ∈ H1
∗ (I), (φ1x − φ2x, χx) + (φ1 − φ2, χ) = 0.

Taking χ equal to φ1 − φ2 yields that they also coincide. This proves the uniqueness of
the solution of problem (2.2).

8
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3. The finite element discrete problem and its a priori analysis.

We introduce a regular family (Th)h of triangulations of I by closed intervals in the
sense that, for each h,
• The closure I = [0, 1] of I is the union of all elements of Th;
• The intersection of two different elements of Th is either empty or an endpoint of both
of them;
• If two intervals K and K ′ of Th are adjacent, i.e. share an endpoint, their lengths hK
and hK′ satisfy

hK ≤ σ hK′ ,

for a constant σ independent of h.
As usual, h stands for the maximum of the lengths hK , K ∈ Th. In what follows, c, c′, . . .
stand for generic constants that may vary from line to line but are always independent of
the parameter h.

For a positive integer k and each K in Th, we introduce the space Pk(K) of restrictions
to K of polynomials with one variable and degree ≤ k. Then, we define the discrete spaces

Yh =
{
µh ∈ H1

∗ (I); ∀K ∈ Th, µh|K ∈ Pk(K)
}
, Xh = Y2

h. (3.1)

Due to the imbedding of Yh into H1
∗ (I), the discretization that we consider is fully con-

forming.

3.1. The linear problem.

As previously, we assume that N(u) is zero and we take g(u)(1) equal to a constant
g. The discrete problem is constructed from the variational problem (2.3) by the Galerkin
method. So, it reads

Find (uh, φh) in Xh such that

∀(wh, χh) ∈ Xh, a(uh, φh;wh, χh) = gwh(1) + (aθA, χh). (3.2)

It follows from the imbedding of Xh into X that the ellipticity property of the form
a(·; ·) established in Lemma 2.2 still holds on Xh. This leads to the following result.

Proposition 3.1. For any constants g, a and θA, problem (3.2) admits a unique solution.

Another consequence of the ellipticity is the following version of the Strang’s lemma:

‖(u− uh, φ− φh)‖X ≤ c inf
(vh,ψh)∈Xh

‖(u− vh, φ− ψh)‖X. (3.3)

9
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So, the following result is easily derived from the approximation properties of the space
Xh, see [2, chap. IX, lemma 1.2] for instance.

Proposition 3.2. If the solution (u, φ) of problem (2.3) belongs to Hs+1(I)2 for a real
number s, 0 ≤ s ≤ k, the following a priori estimate holds between this solution and the
solution of problem (3.2)

‖u− uh‖H1(I) + ‖φ− φh‖H1(I) ≤ c hs (‖u‖Hs+1(I) + ‖φ‖Hs+1(I)). (3.4)

Remark 3.3. Clearly, the results stated in Propositions 3.1 and 3.2 are still valid when
the right-hand side of problem (2.3) and its analogue for problem (3.2) are replaced by

gw(1)− (f, wx) + (aθA, χ),

for any function f in L2(I).

3.2. The full problem.

There also, the discrete problem associated with problem (2.2) is constructed by the
Galerkin method and is stated as follows

Find (uh, φh) in Xh such that

∀wh ∈ Yh, (uhx, whx)− (φh, whx) + (N(uh)uhx, whx) = g(uh)(1)wh(1),

∀χh ∈ Yh, (φhx, χhx)− (uhx, χh) + (φh, χh) = (aθA, χh).
(3.5)

The existence of a solution for problem (3.5) can be derived by the same arguments
as in Section 2. However, the proof is slightly simpler here since Yh is finite-dimensional.

Proposition 3.4. For all ρ < ρ0 and β > β0 and all data g1, g2, a and θA, problem (3.5)
admits at least a solution. Moreover, for all β > −α, this solution is unique and satisfies
(2.4).

To prove an a priori estimate, we deduce from the conformity of the discretization that
problem (2.2) can be written with (w,χ) replaced by any pair (wh, χh) in Xh. Subtracting
problem (3.5) from this, we obtain

a(u−uh, φ−φh;wh, χh)+(N(u)ux−N(uh)uhx, whx)−
(
g(u)(1)−g(uh(1)

)
wh(1) = 0. (3.6)

Thanks to this equation, we are in a position to prove a first error estimate.

10
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Proposition 3.5. For all ρ < ρ0 and β > β0, if the solution (u, φ) of problem (2.2) belongs
to Hs+1(I)2 for a real number s, 0 ≤ s ≤ k, the following a priori estimate holds between
this solution and the solution of problem (3.5)

‖u− uh‖H1(I) + ‖φ− φh‖H1(I) ≤ c hs (‖u‖Hs+1(I) + ‖φ‖Hs+1(I)). (3.7)

Proof. Let vh and ψh be the Lagrange interpolates of u and φ, respectively. By applying
equation (3.6) with wh = uh − vh and χh = φh − ψh, we derive

a(u− uh, φ− φh;u− uh, φ− φh) = a(u− uh, φ− φh;u− vh, φ− ψh)

+ (N(u)ux −N(uh)uhx, uhx − vhx)−
(
g(u)(1)− g(uh(1)

)
(uh − vh)(1).

Owing to the choice of vh, vh(1) is equal to u(1), so that Lemma 2.6 implies that the
quantity −

(
g(u)(1) − g(uh(1)

)
(uh − vh)(1) is nonpositive. Combined with the ellipticity

of a(·; ·) established in Lemma 2.2, this yields

α ‖(u− uh, φ− φh)‖2X ≤ a(u− uh, φ− φh;u− vh, φ− ψh)

+ (N(u)ux −N(uh)uhx, uhx − vhx).
(3.8)

The continuity of the form a(·, ·) leads to estimate the first term. To handle the second
one, we oberve that

(N(u)ux −N(uh)uhx, uhx − vhx)

= β (ux − uhx, uhx − vhx) + ρ
(
|u|2H1(I) ux − |uhx|

2
H1(I) uhx, uhx − vhx

)
.

We now estimate successively the two terms in the right-hand side.
1) We observe that

β (ux − uhx, uhx − vhx) = β (ux − uhx, uhx − ux) + β (ux − uhx, ux − vhx).

When β is positive, the first term is negative and the second one is bounded thanks to
a Cauchy-Schwarz inequality. When β is negative, the first term is transported in the
right-hand side of equation (3.8). The left-hand of this equation thus becomes

(α+ β)‖u− uh‖2H1(I) + α ‖φ− φh‖2H1(I)

and since β > β0, α + β is positive. The second term is there also evaluated thanks to a
triangle inequality.
2)The last term is treated by using triangle inequalities and noting that, since β > β0,
both u and uh are bounded in H1(I). This gives

ρ
(
|u|2H1(I) ux − |uhx|

2
H1(I) uhx, uhx − vhx

)
≤ cρ |u− uh|H1(I)|uh − vh|H1(I).

There, we use the fact that ρ < ρ0 to conclude.
Combining all this leads to

‖(u− uh, φ− φh)‖X ≤ c ‖(u− vh, φ− ψh)‖X.

The approximation properties of the space Xh, see once more [2, chap. IX, lemma 1.2],
thus give the desired result.

Even if the limitations on β and ρ are a little restrictive, estimate (3.7) is fully optimal.
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4. A posteriori analysis of the discretization.

Our a posteriori estimates rely on the residual equation satisfied by the discrete solu-
tion (uh, φh). As previously, we write this equation successively in the linear and nonlinear
cases.

4.1. The linear problem.

Once more, we take N(u) equal to zero and g(u)(1) equal to a constant g. By sub-
tracting problem (3.2) from problem (2.3), we observe that, for any (w,χ) in X and when
taking wh and χh equal to the Lagrange interpolate of w and χ (so that wh(1) is equal to
w(1))

a(u− uh, φ− φh;w,χ) = (aθA, χ− χh)− a(uh, φh;w − wh, χ− χh).

By integrating by parts on each K in Th and noting that both w − wh and χ− χh vanish
at all endpoints of elements K, we obtain

a(u− uh, φ− φh;w,χ) =
∑
K∈Th

(∫
K

(uhxx − φhx)(x) (w − wh)(x) dx

+

∫
K

(aθA + φhxx + uhx − φh)(x) (χ− χh)(x) dx.
) (4.1)

The definition of the error indicators follows from this last equation in a natural way.

Definition 4.1. Each error indicator ηK , K ∈ Th, is defined by

ηK = hK ‖uhxx − φhx‖L2(K) + hK ‖aθA + φhxx + uhx − φh‖L2(K). (4.2)

It must be noted that these indicators can be computed easily since the norms only
involves polynomials. Moreover, they are of residual type: when suppressing the indices
h, everything vanishes, see problem (2.1). Moreover, it is very easy to bound the error as
a function of these indicators.

Proposition 4.2. The following a posteriori error estimate holds between the solution
(u, φ) of problem (2.3) and the solution (uh, φh) of problem (3.2)

‖u− uh‖H1(I) + ‖φ− φh‖H1(I) ≤ c
( ∑
K∈Th

η2
K

) 1
2 . (4.3)

Proof. By using the ellipticity of a(·; ·), see Lemma 2.2, and a Cauchy–Schwarz inequality,
we deduce from equation (4.1) that

α ‖(u− uh, φ− φh)‖2X ≤
∑
K∈Th

(
‖uhxx − φhx‖L2(K)‖w − wh‖L2(K)

+ ‖aθA + φhxx + uhx − φh‖L2(K)‖χ− χh‖L2(K)

)
,
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with w = u and χ = φ. So the desired estimate is easily obtained from the basic ap-
proximation properties of the Lagrange interpolation operator, see [2, chap. IX, lemma
1.2].

Remark 4.3. The constant c on the previous estimate mainly depends on the norm of
the interplation operator on a reference element, hence is easy to compute. This is of great
interest when the a posteriori error estimates are used for security criteria.

On the other hand, it can be noted that the residual equation (4.1) can also be written,
for any functions w and χ vanishing at all endpoints of the elements K of Th,

a(u− uh, φ− φh;w,χ) =
∑
K∈Th

(∫
K

(uhxx − φhx)(x)w(x) dx

+

∫
K

(aθA + φhxx + uhx − φh)(x)χ(x) dx.
) (4.4)

This leads to the upper bounds for the indicators.

Proposition 4.4. Each indicator ηK , K ∈ Th, defined in (4.2), satisfies

ηK ≤ c
(
‖u− uh‖H1(K) + ‖φ− φh‖H1(K)). (4.5)

Proof. We proceed in two steps, bounding separately each term in the indicator.
1) In equation (4.4), we first take w equal to wK and χ equal to zero, with

wK =

{
(uhxx − φhx)ψK on K,
0 elsewhere,

where ψK is the bubble function on K (equal to the product of the two barycentric coor-
dinates associated with the endpoints of K). This yields

‖(uhxx − φhx)ψ
1
2

K‖
2
L2(K) ≤ c(‖u− uh‖H1(K) + ‖φ− φh‖H1(K))‖wK‖H1(K).

We then use the inverse inequalities, valid for any polynomial z of fixed degree, see e.g.
[11, Proposition 3.37],

‖z‖L2(K) ≤ c ‖zψ
1
2

K‖L2(K), ‖z‖H1(K) ≤ c′ h−1
K ‖z‖L2(K). (4.6)

All this gives

hK ‖uhxx − φhx‖L2(K) ≤ c(‖u− uh‖H1(K) + ‖φ− φh‖H1(K)). (4.7)

2) Similarly, we take in equation (4.4) w equal to 0 and χ equal to χK , with

χK =
{

(aθA + φhxx + uhx − φh)ψK on K,
0 elsewhere.

13
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Exactly the same arguments as previously yield

hK ‖aθA + φhxx + uhx − φh‖L2(K) ≤ c(‖u− uh‖H1(K) + ‖φ− φh‖H1(K)). (4.8)

Estimate (4.5) is a direct consequence of (4.7) and (4.8).

4.2. The full problem.

The residual equation is a little more complex in this case. For brevity, we introduce
the nonlinear form

A(u, φ;w,χ) = a(u, φ;w,χ) + (N(u)ux, wx)− g(u)(1)w(1).

Thus, the residual equation can be written as

A(u, φ;w,χ)−A(uh, φh;w,χ) = (aθA, χ− χh)−A(uh, φh;w − wh, χ− χh),

where we now take wh and χh equal to the Lagrange interpolate of w and χ, respectively.
By noting that (w −wh)(1) is equal to zero and integrating by parts on each K in Th, we
obtain

A(u, φ;w,χ)−A(uh, φh;w,χ)

=
∑
K∈Th

(∫
K

(uhxx − φhx +N(uh)uhxx)(x) (w − wh)(x) dx

+

∫
K

(aθA + φhxx + uhx − φh)(x) (χ− χh)(x) dx
)
.

(4.9)

There also, this leads to the definition of the indicators in a natural way.

Definition 4.5. Each error indicator ηK , K ∈ Th, is defined by

ηK = hK ‖uhxx − φhx +N(uh)uhxx‖L2(K) + hK ‖aθA + φhxx + uhx − φh‖L2(K). (4.10)

Despite the nonlinear term, these indicators are still easy to compute. We need a
further lemma before proving the first estimate.

Lemma 4.6. For β > β0, the form A(·, ·) satisfies the following property, for a positive
constant α∗, for all pairs (u1, φ1) and (u2, φ2) in X,

A(u1, φ1;u1−u2, φ1−φ2)−A(u2, φ2;u1−u2, φ1−φ2) ≥ α∗ ‖(u1−u2, φ1−φ2)‖2X. (4.11)

Proof. By using Lemma 2.2, we have

A(u1, φ1;u1 − u2, φ1 − φ2)−A(u2, φ2;u1 − u2, φ1 − φ2)

≥ (α+ β)‖u1 − u2‖2H1(I) + α‖φ1 − φ2‖2H1(I) −
(
g(u1)(1)− g(u2)(1)

)
(u1 − u2)(1)

+N∗u1
(u1)(u1x, u1x − u2x)−N∗u2

(u2)(u2x, u1x − u2x).
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So the desired result follows by applying formula (2.7) and Lemma 2.6 to handle the
nonlinear terms.

Applying Lemma 4.6 in equation (4.9) (with obvious choice of (u1, φ1) and (u2, φ2))
and using exactly the same arguments as in the proof of Proposition 4.2 leads to the
following statement.

Proposition 4.7. The following a posteriori error estimate holds between the solution
(u, φ) of problem (2.2) and the solution (uh, φh) of problem (3.5)

‖u− uh‖H1(I) + ‖φ− φh‖H1(I) ≤ c
( ∑
K∈Th

η2
K

) 1
2 . (4.12)

On the other hand, equation (4.9) can also be written, for any functions w and χ
vanishing at all endpoints of the elements K of Th,

A(u, φ;w,χ)−A(uh, φh;w,χ) =
∑
K∈Th

(∫
K

(uhxx − φhx +N(uh)uhxx)(x)w(x) dx

+

∫
K

(aθA + φhxx + uhx − φh)(x)χ(x) dx
)
.

(4.13)

This yields the upper bound for the indicator.

Proposition 4.8. Each indicator ηK , K ∈ Th, defined in (4.10), satisfies

ηK ≤ c
(
‖u− uh‖H1(K) + ‖φ− φh‖H1(K)). (4.14)

Proof. In equation (4.13), we take successively (w,χ) equal to (w̃K , 0) and to (0, χK),
where the function w̃K is defined by

w̃K =

{
(uhxx − φhx +N(uh)uhxx)ψK on K,
0 elsewhere,

while the function χK is exactly the same as in the proof of Proposition 4.4. The same
arguments as in this proof combined with the continuity property (which requires the
boundedness of u and uh, see Lemma 2.4 and Proposition 3.4)

A(u, φ;w,χ)−A(uh, φh;w,χ) ≤ c ‖(u− uh, φ− φh)‖X‖(w,χ)‖X,

yield the desired estimate.

When comparing estimates (4.12) and (4.14), we observe that the error is equivalent
to the Hilbertian sum of the error indicators, so that our estimates are fully optimal.
Moreover, estimate (4.14) is local, so that the proposed indicators are an efficient tool for
mesh adaptivity. We do not perform adaptivity in the next computations since we only
work with very smooth solutions.
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5. An iterative algorithm.

Since problem (3.5) is nonlinear, we now propose an algorithm for solving it. We start
from a given solution (u0, φ0) (for instance, the solution of the linear problem (3.2) or an
approximation of it) and, assuming that (un−1

h , φn−1
h ) is known, we look for a solution of

the following system

Find (unh, φ
n
h) in Xh such that

∀wh ∈ Yh, (unhx, whx)− (φnh, whx) + (N(un−1
h )unhx, whx) = g(un−1

h )(1)wh(1),

∀χh ∈ Yh, (φnhx, χhx) + (φnh, χh) = (aθA, χh) + (un−1
hx , χh).

(5.1)

Since this problem is fully linear, proving the existence and the uniqueness of its solution
follows exactly the same lines as for Proposition 3.1. Moreover, the two equations in (5.1)
are fully uncoupled.

In a first step, we prove a bound for the part unh of the solution of this problem.

Lemma 5.1. For all β > −α, the part unh, n ≥ 1, of the solution of problem (5.1) satisfies,
for a constant c∗ independent of h and n

|unh|H1(I) ≤ c∗
(
|unh − un−1

h |H1(I) + |aθA|
)
. (5.2)

Proof: Equation (5.1) can be written, forall (wh, χh) in Xh,

a(unh, φ
n
h;wh;χh) + (N(un−1

h )unhx, whx)− g(unh)(1)wh(1)

=
(
g(un−1

h )(1)− g(unh(1)
)
wh(1) + (aθA, χh) + (un−1

hx − u
n
hx, χh).

Thus, by taking (wh, χh) equal to (unh, φ
n
h) and combining Lemma 2.2 with the positivity

properties of N and the fact that −g(unh)(1)unh(1) is nonnegative, we derive

(α+ β)|unh|2H1(I) + α |φnh|2H1(I)

≤ |g(un−1
h )(1)− g(unh(1)||unh(1)|+

(
|aθA|+ c|un−1

h − unh|H1(I)

)
|φnh|H1(I)

,

where the constant c here comes from a Poincaré–Friedrichs inequality. We conclude thanks
to the Lipschitz continuity of g.

We now set: [uh]n = unh − u
n−1
h and [φh]n = φnh − φ

n−1
h . Subtracting problem (5.1) at

step n− 1 from problem (5.1) at step n, we derive

∀wh ∈ Yh, ([uh]nx , whx)− ([φh]n, whx)

+ (N(un−1
h )unhx −N(un−2

h )un−1
hx , whx) =

(
g(un−1

h )− g(un−2
h )

)
(1)wh(1),

∀χh ∈ Yh, ([φh]nx , χhx) + ([φh]n, χh) = ([uh]n−1
x , χh).

(5.3)
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We are thus in a position to prove the key lemma in this section.

Lemma 5.2. There exists two real numbers ρ∗0 > 0 and η, 0 < η < 1, such that the
following estimate holds for β > 1

ε and ρ < ρ∗0, for all n ≥ 2

|[uh]n|H1(I) ≤ η |[uh]n−1|H1(I). (5.4)

Proof: First, by taking χh equal to [φh]n in the second line of (5.3) yields

|[φh]n|2H1(I) +
1

2
‖[φh]n‖2L2(I) ≤

1

2
|[uh]n−1|2H1(I).

It follows from the Poincaré–Friedrichs inequality that

(
1

2
+

1

c
)‖[φh]n‖2L2(I) ≤

1

2
|[uh]n−1|2H1(I). (5.5)

Next, setting N∗(u) = N∗u(u) for brevity and taking wh equal to [uh]n gives

(1 + β)|[uh]n|2H1(I) ≤ ‖[φh]n‖L2(I)|[uh]n|H1(I) + |
(
g(un−1

h )− g(un−2
h )

)
(1)||[uh]n(1)|

+ ‖N∗(un−1
h )unhx −N∗(un−2

h )un−1
hx ‖L2(I)|[uh]n|H1(I).

We thus simplify by |[uh]n|H1(I). To go further,
1) we use (5.5) to bound the first term in the right-hand side, whence the constant c0 =

(1 + 2
c )−

1
2 ;

2) we observe that the function g is Lipschitz-continuous with Lipschitz constant 1
ε , see

the proof of Lemma 2.6;
3) we observe that the nonlinearity N∗ is also Lipschitz-continuous and we use a triangle
inequality. Combined with Lemma 5.1, this yields

‖N∗(un−1
h )unhx −N∗(un−2

h )un−1
hx ‖L2(I)

≤ ‖N∗(un−1
h )[uhx]n‖L2(I) + ‖

(
N∗(un−1

h )−N∗(un−2
h ))un−1

hx ‖L2(I)

≤ ρc2∗
(
|[uh]n−1|H1(I) + |aθA|

)2|[uh]n|H1(I)

+ ρ c∗
(
|[uh]n−1|H1(I) + |aθA|

)
c∗
(
|[uh]n−1|H1(I) + |[uh]n−2|H1(I) + 2|aθA|

)
|[uh]n−1|H1(I).

All this gives

(1 + β − c1ρ)|[uh]n|H1(I) ≤ (c0 +
1

ε
+ c2ρ)|[uh]n−1|H1(I),

where the constants c1 and c2 are defined by

c1 = c2∗
(
|[uh]n−1|H1(I) + |aθA|

)2
,

c2 = c∗
(
|[uh]n−1|H1(I) + |aθA|

)
c∗
(
|[uh]n−1|H1(I) + |[uh]n−2|H1(I) + 2|aθA|

)
.
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Next, we assume by induction that the sequence (umh )1≤m≤n−1 satisfies

|[uh]m|H1(I) ≤ |[uh]1|H1(I), 1 ≤ m ≤ n− 1.

This yields the desired estimate (5.4) when ρ is smaler than a constant ρ∗0 independent of
n and also the induction hypothesis for m = n.

Even if the conditions on β and ρ are a little restrictive, the convergence of the
algorithm is a direct consequence of the previous lemma.

Theorem 5.3. For β > 1
ε and ρ < ρ∗0, the sequence (unh, φ

n
h) defined from (5.1) converges

to the solution (uh, φh) of problem (3.5). Moreover, the following estimate holds

‖uh − unh‖H1(I) + ‖φh − φnh‖H1(I) ≤ 2
ηn

1− η
‖u1

h − u0
h‖H1(I), (5.6)

for the constant η < 1 introduced in Lemma 5.2.

Proof: We proceed in two steps.
1) From Lemma 5.2, we deduce that, for any positive integers n and m,

‖un+m
h − unh‖H1(I) ≤ ηn

1− ηm

1− η
‖u1

h − u0
h‖H1(I).

Thus, (unh)n is a Cauchy sequence in H1
∗ (I). This yields its convergence, and the first part

of estimate (5.6) follows from the previous line.
2) In the proof of Lemma 5.2, we have checked that

|[φh]n|2H1(I) ≤
1

2
|[uh]n−1|2H1(I).

Thus, exactly the same arguments as previously yield the convergence of (φnh)n and the
second part of estimate (5.6).

From the previous theorem, the convergence is geometric, hence very fast. But, in
any case, the following question arises: When must we stop the iteration? To answer this
question, we follow the approach in [5]. Using the same notation as in Section 4.2 for the
form A(·, ·) (and also as in the proof of Lemma 5.2 for N∗), we have the following residual
equation, for all (wh, χh) in Xh,

A(uh, φh;wh, χh)−A(unh, φ
n
h;wh, χh) = −(unhx − un−1

hx , χh)

−
(
(N∗(unn)−N∗(un−1

n ))unhx, whx
)

+ (g(unh)− g(un−1
h ))(1)wh(1).

(5.7)

This leads to the next result.

Proposition 5.4. For β > β0, the following a posteriori error estimate holds

‖uh − unh‖H1(I) + ‖φh − φnh‖H1(I) ≤ c |unh − un−1
h |H1(I). (5.8)
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Proof: Owing to Lemma 4.6; we derive from (5.7) that

α∗
(
‖uh − unh‖H1(I) + ‖φ− φh‖H1(I)

)
≤ ‖unhx − un−1

hx ‖L2(I)

+ |N∗(unn)−N∗(un−1
n )|‖unhx‖L2(I) + |(g(unh)− g(un−1

h ))(1)|.

As for Lemma 5.1, evaluating the last two terms relies on the Lipschitz-continuity of g and
N∗ and the fact that the sequence of solutions (unh) is bounded, see Lemmas 5.1 and 5.2.

The constant c in the previous proposition can be evaluated more precisely:

c = (α∗)−1
(
1 +

1

ε
+ |unh|H1(I)(|unh|H1(I) + |un−1

h |H1(I))
)
.

But, in any case, we stop to iterate when the quantity |unh − u
n−1
h |H1(I) is smaller than a

given tolerance.
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6. Numerical experiments.

In all experiments, the coefficients of the equation are given by

a = 0.017, ε = 1, g1 = −0.01, g2 = 0.1.

Piecewise affine functions are considered (i.e. k = 1) and a uniform mesh with 100 nodes
is used.

0 .2 .4 .6 .8 1

0

.05

.1

x

u(
x)

l = 1 ` = 2

` = 4

` = 20

0 .2 .4 .6 .8 1

0

.2

.4

.6

x

q(
x)

l = 1

Figure 1. Vertical displacement and angular rotation when θA = 80 and ρ = 1.
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All experiments are performed in the nonlinear case ρ 6= 0. We initialize the iterative
algorithm with

u0
h(x) =

1

2
(σ(1) + aθA)(x− 1

3
+

(1− x)3

3
) + σ(1)x,

φ0
h =

1

2
(σ(1) + aθA)(1− (1− x)2),

.

with σ(1) = 3u(1)−aθA
3 for a given value of u(1). Indeed, this is the solution of problem

(2.1) when β = ρ = 0. A tolerance of 10−7 is used to stop the iterative process.
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Figure 2. Vertical displacement and angular rotation when θA = 80 and ρ = 10.
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In the first example the temperature at the endpoint x = 0 is θA = 80. Initially, we
choose ρ = 1 and after, we set ρ = 10. Figures 1 and 2 show the deformed configuration
of the beam and the rotation angle for 3 different values of β. Contact with the upper
obstacle is observed for β = 2. No significant differences, apart from a slight movement of
the displacement when β = 2, are observed when we increase ρ.

In the second example, we changed the temperature of the left endpoint to θA = −20.
In this case and with ρ = 1, contact with the lower obstacle is seen for β = 2 and β = 4
(see Figure 3).
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Figure 3. Vertical displacement and angular rotation when θA = −20 and ρ = 1.

22

ha
l-0

08
27

53
1,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



References

[1] J. Ahn, D.E. Stewart — A viscoelastic Timoshenko beam with dynamic frictionless impact,

Discrete and Continuous Dynamical Systems Series B 12 (2009), 1 –22.

[2] C. Bernardi, Y. Maday, F. Rapetti — Discrétisations variationnelles de problèmes aux limites
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