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Abstract
The problem of estimating an inter-event distribution on the basis of count data is addressed. A
nonparametric maximum likelihood estimate of the inter-event distribution is derived utilizing
the EM algorithm both in the case of an ordinary renewal process and in the case of an equi-
librium renewal process. In this latter case, the iterative estimation procedure follows the basic
scheme proposed by Vardi for estimating an inter-event distribution on the basis of time interval
data, i.e. combines the output of the E-step corresponding to the inter-event distribution and to
the length-biased distribution. A penalized likelihood approach is also investigated to provide
the proposed estimation procedure with regularization capabilities. The practical estimation
procedure is evaluated using simulated count data and is applied to real count data representing
the elongation of coffee tree leafy axes.

1 Introduction
We consider the problem of estimating an inter-event distribution on the basis of count data
collected from either ordinary or equilibrium renewal processes. In different application contexts,
including plant growth follow-up (Costes et al. 1992), the times of occurrence of some recurrent
events cannot be known or recorded but the number of events occurring between two observation
dates is accessible to the observation. This type of design is encountered in medical applications
for the study of the recurrence rate of a non-fatal event; see Stukel (1993) for a review. In
this context, the focus is on the role of covariates which may be fixed or time-dependent while
the response is simply summarized in the event rate. In the context of reliability analysis,
Dattero and White (1989) proposed an estimation method whose key step is the estimation
of the forward recurrence time distribution from count data collected over “short” subperiods
resulting from a time sampling of the observation period (for example, for a mean time interval
between consecutive events of 1, the observation period of say 10 is sectioned into fixed length
subperiods of 0.1, 0.2 or 0.5). This time sampling of the observation period seems to us to be
highly restrictive and may be unrealistic for many applications (particularly for plant growth
follow-up discussed in this paper).

We therefore propose an estimate of the inter-event distribution which represents time in-
tervals between consecutive events on the basis of count data. The corresponding estimation
framework is strongly related to that considered by Vardi (1982b) on the basis of time interval
data; see also McClean and Devine (1995) for an estimator based on a different time sampling
scheme. Like Vardi (1982b) and McClean and Devine (1995), we assume that the process is
discrete, and state our problem as a nonparametric maximum likelihood estimation problem.
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Instead of the actual times of occurrence of events, only the number of events occurring during
an observation period of known length can be observed. Hence, we are faced with an incom-
plete data problem and the EM algorithm (Dempster et al. 1977; McLachlan and Krishnan
1997) is a natural candidate to derive the nonparametric maximum likelihood estimate of the
inter-event distribution. Consequently, the iterative estimation procedures we propose have all
the desired properties of the EM algorithm (see McLachlan and Krishnan (1997)), particularly
the monotone increasing likelihood in each iteration. It should be noted that the estimators
proposed by Vardi (1982b) and McClean and Devine (1995) can be derived utilizing the EM
algorithm. In the case of an equilibrium renewal process, we adopted the basic scheme of the es-
timation procedure proposed by Vardi (1982b) for time interval data: The output of the E-step,
that is two independent pseudo-samples, one from the inter-event distribution and the other
from the length-biased distribution, are combined in the M-step using the key result of Vardi
(1982a).

The proposed estimation procedure is applied to the analysis of count data representing the
elongation of leafy axes. The interest of renewal theory for the analysis of plant growth follow-up
originated from a work of de Reffye et al. (1991) who discussed the pertinence of Bernoulli and
Poisson processes as possible models for the elongation of leafy axes. In the context of plant
growth follow-up, only count data are easily accessible to measurement because of experimental
constraints. Measurement is made of the number of newly elongated leaves during a given
observation period.

The design we investigate is the following. Data consist of a sample of independent count
measurements of the form {(τ1, n1) , . . . , (τ r, nr)} where n1 is the number of events occurring in
the observation period of length τ1. We wish to estimate the underlying inter-event distribution
on the basis of these count data. Two candidate models will be considered:

• ordinary renewal process (Section 2) where the start of the observation period coincides
with the occurrence time of an event (synchronism assumption),

• equilibrium or stationary renewal process (Section 3) where the start of the observation
period is independent of the process that generates the data (asynchronism assumption).

A penalized likelihood approach based on the one-step-late algorithm proposed by Green
(1990) is presented in Section 4. The practical estimation procedure is then summarized in
Section 5. A simulation study, whose aim was to investigate the behaviors of the proposed
estimators in different contexts depending on the weight of censoring, the type of tail of the
inter-event distribution and the sample size, is presented in Section 6. Section 7 is devoted to
the application of this estimation procedure for analyzing the elongation of coffee tree leafy axes.
Section 8 consists of concluding remarks.

2 Ordinary renewal process
In the following, the estimation problem is stated with a single count data (τ , n) in order
to simplify the writing, before generalizing to the practical case of a sample of independent
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count data. Let T1, T2, . . . , Tn, . . . be mutually independent, identically distributed discrete non-
negative random variables where T1 represents the time interval from the origin to the first
event and T2, . . . , Tn, . . . represent the subsequent time intervals between consecutive events.
Their common distribution is called the inter-event distribution. We assume that the inter-
event distribution is concentrated on a finite set of time points {1, . . . ,M}. In the sequel, T is
a generic random variable representing a time interval between consecutive events.

The first event occurs at time T1, the second at time T1+T2, the n-th at time T1+ · · ·+Tn.
Hence Tn1 = T1+ · · ·+Tn represents the occurrence time of the n-th event and the corresponding
distribution is the n-fold convolution of the inter-event distribution. In the sequel, we will
extensively use the notation Tnk = Tk + · · · + Tn with k < n (this notation transposes to the
corresponding values tnk = tk + · · ·+ tn).

The distribution of the number of events N (τ) occurring in the observation period (0, τ ]
(counting distribution), where τ is a strictly positive integer, is deduced from the cumulative
distribution functions of the n-fold convolutions of the inter-event distribution (Cox 1962)

P {N (τ) = n} = P (Tn1 ≤ τ)− P (Tn+11 ≤ τ) . (1)
Recall that our problem consists of estimating an inter-event distribution on the basis of

count data. It belongs to the class of incomplete-data problems since we only observe the
number of events occurring during a given observation period (0, τ ], not the time intervals
between consecutive events. The incompleteness is twofold since both the date of the events
occurring within the observation period and the residual time interval after the end of the
observation period (right censoring) are non-observable. The estimated inter-event distribution
is chosen among the set of inter-event distributions that are concentrated on {1, . . . ,M} and
hence, following Vardi (1982b), we assume that the value of M is sufficiently large (a practical
solution for determining the value of M is proposed in Section 5).

The derivation of the estimator entails mainly deconvolutions under constraints given by
count data. For the extraction of the contributions of the underlying time intervals between
consecutive events from count data, the case of the n first complete time intervals, i.e. fully
included within (0, τ ], should be distinguished from the case of the final time interval which is
censored on the right. If n > 0, we have the following convolution-type equation for the complete
time intervals between consecutive events

P {N (τ) = n} = P (Tn1 ≤ τ < Tn+11
)

=
min{M,τ−(n−1)}∑

t=1
P (Ti = t)P

(
Tn1\i ≤ τ − t < Tn+1

1\i
)
, 1 ≤ i ≤ n, (2)

where Tn1\i = T1 + · · ·+ Ti−1 + Ti+1 + · · ·+ Tn.
Using the generic random variable T , equation (2) becomes

P (Tn1 ≤ τ < Tn+11
) = min{M,τ−(n−1)}∑

t=1
P (T = t)P (Tn−11 ≤ τ − t < Tn1

) . (3)
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For the time interval between consecutive events originating but not terminating within (0, τ ]
(i.e. in which the observation date τ falls), we have

P (Tn1 ≤ τ < Tn+11
) = M∑

t=1
P (Tn+1 = t)P (τ − t < Tn1 ≤ τ) . (4)

Consider the complete-data case where each time interval between consecutive events, in-
cluding the time interval in which the observation date τ falls, is observed. The complete-data
likelihood is given by

f (t1, . . . , tn+1, n; θ) = P {T1 = t1, . . . , Tn+1 = tn+1, N (τ) = n; θ}
= n+1∏

i=1
P (Ti = ti; θ) I (tn1 ≤ τ < tn+11

)
= g (t1, . . . , tn+1, n; θ) I (tn1 ≤ τ < tn+11

) ,
where θ denotes the parameters of the inter-event distribution, i.e. its probability mass function
{P (T = t) ; t = 1, . . . ,M} and I ( ) denotes the indicator function.

Instead of the time intervals between consecutive events, we only observe the number of
events occurring during the observation period (0, τ ]. Hence, the objective is to find the estimate
of θ which maximizes the likelihood of the observed count data

L (θ) = ∑
t1,...,tn+1

f (t1, . . . , tn+1, n; θ) = P {N (τ) = n; θ} ,

where∑t1,...,tn+1 means sum on every possible combination t1, . . . , tn+1 such that tn1 ≤ τ < tn+11 .
Let θ(k) denote the current value of θ at iteration k. The conditional expectation of the

complete-data log-likelihood is given by

Q(θ|θ(k)) = E
{
log g (T1, . . . , TN(τ)+1; θ) |N (τ) = n; θ(k)

}
= ∑

t1,...,tn+1
P
(
T1 = t1, . . . , Tn+1 = tn+1|Tn1 ≤ τ < Tn+11 ; θ(k)

)

×
{n+1∑

i=1
logP (Ti = ti; θ)

}

= M∑
t=1

{
n+1∑
i=1

∑
t1,...,tn+1

P
(
T1 = t1, . . . , Tn+1 = tn+1|Tn1 ≤ τ < Tn+11 ; θ(k)

)
×I (ti = t)} logP (T = t; θ)

= M∑
t=1

ξ(k)t logP (T = t; θ) ,

where ξ(k)t is the expected multiplicity of a time interval between consecutive events of length
t starting in the observation period (0, τ ] (i.e. complete or right-censored) given the number of
events occurring in (0, τ ] and the current parameters at iteration k.
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The EM algorithm maximizes L (θ) by iteratively maximizingQ(θ|θ(k)) over θ. Each iteration
of the EM algorithm increases L (θ) and generally the sequence of reestimated parameters θ(k)
converge to a local maximum of L (θ). The EM algorithm alternates two steps, the E-step which
consists of computing the reestimation quantities ξ(k)t from the observed count data considering
the parameter θ(k) at iteration k as the true parameter and the M-step which consists of choosing
the next parameter value θ(k+1) that maximizes Q(θ|θ(k)) over θ (McLachlan and Krishnan 1997)

θ(k+1) = argmaxθ

{
Q(θ|θ(k))

}
.

E-step
Since all the terms involved in the derivation of ξ(k)t depend on θ(k), we will omit to note

systematically θ(k) in the sequel. If n = 0, the reestimation quantities ξ(k)t can be written as

ξ(k)t = P (T = t) I (t > τ)
P (T > τ)

=
{ 0, t = 1, . . . , τ ,

P (T = t) /P {N (τ) = n} , t = τ + 1, . . . ,M, (5)

and if n > 0, using the same argument as in (3) and (4), the reestimation quantities ξ(k)t can be
written as

ξ(k)t =
∑n

i=1 P (Ti = t) P
(
Tn1\i ≤ τ − t < Tn+1

1\i
)
+ P (Tn+1 = t) P (τ − t < Tn1 ≤ τ)

P (Tn1 ≤ τ < Tn+11
)

= P (T = t) nP (Tn−11 ≤ τ − t < Tn1
)+ P (τ − t < Tn1 ≤ τ)

P (Tn1 ≤ τ < Tn+11
) , t = 1, . . . ,M. (6)

The term P (T = t)nP (Tn−11 ≤ τ − t < Tn1
) in (6) (which is also P (T = t)nP {N (τ − t) = n− 1})

should be interpreted as the probability of the n equivalent ways of extracting a time interval
of length t in the n complete time intervals between consecutive events within (0, τ ]. Note that
this term is only defined for t ≤ τ − (n− 1) (see (3) for justification). The term P (T = t)
P (τ − t < Tn1 ≤ τ) in (6) corresponds to the extraction of the time interval of length t in which
the observation date τ falls.
For the practical computations, (6) should be rewritten as

ξ(k)t = P (T = t) n
{P (Tn−11 ≤ τ − t)− P (Tn1 ≤ τ − t)}+ P (τ − t < Tn1 ≤ τ)

P {N (τ) = n} . (7)
All the terms involved in (5) and (7) are directly deduced from the computation of the

counting distribution (1) which necessitates computation of the distributions of the time up to
the n-th event (n-fold convolutions of the inter-event distribution) on [n, min (nM, τ)] for each
possible value n taken by N (τ).
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M-step
In the nonparametric framework, the reestimated probabilities p(k+1)

t = P (T = t; θ(k+1)) are
directly obtained by maximization of ∑M

t=1 ξ(k)t log pt subject to the constraint ∑M
t=1 pt = 1

p(k+1)
t = ξ(k)t∑M

i=1 ξ(k)i
= ξ(k)t

n+ 1 , t = 1, . . . ,M. (8)

In practice, a sample of count measurements of the form {(τ1, n1) , . . . , (τ r, nr)} is recorded.
Like Vardi (1982b), we assume that we always observe at least one event in the sample. The
reestimation formula (8) is directly generalizable to the maximization of the joint likelihood of
r mutually independent count measurements

f (t1,1, . . . , t1,n1+1, n1, . . . , tr,1, . . . , tr,nr+1, nr; θ)
= r∏

j=1
P {Tj,1 = tj,1, . . . , Tj,nj+1 = tj,nj+1, Nj (τ j) = nj; θ} .

The generalization of (8) simply entails accumulating the reestimation quantities correspond-
ing to each elementary count measurement

p(k+1)
t = ξ(k)t∑r

j=1 nj + r with ξ(k)t = r∑
j=1

ξ(k)j,t .

3 Equilibrium renewal process
Consider now the case where the process starts a long time before the observation period whose
location is independent of the process itself. The distribution of the time interval from the initial
observation date to the first event is the forward recurrence time distribution (Cox 1962)

P (V = v) = P (T ≥ v)
µ , v = 1, . . . ,M, (9)

where µ = ∑M
t=1 t P (T = t),

and the time interval between consecutive events in which the initial observation date falls U+V
has length-biased distribution

P (U + V = t) = t P (T = t)
µ , t = 1, . . . ,M, (10)

where U represents the time interval from the previous event to the initial observation date.
From the forward recurrence time distribution (9) and the length-biased distribution (10)

defined above, the two following conditional distributions can be defined

7

ha
l-0

08
27

46
4,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



P (U + V = t|V = v) = P (T = t)
P (T ≥ v) , t = v, . . . ,M, (11)

P (U + V = t|V > v) = (t− v)P (T = t)∑M
j=v+1 (j − v)P (T = j) , t = v + 1, . . . ,M. (12)

The random variables T2, . . . , Tn, . . . representing the subsequent time intervals between con-
secutive events follow the inter-event distribution and V, T2, . . . , Tn, . . . are mutually indepen-
dent. The distribution of the number of events occurring in the observation period (w,w + τ ],
where w and τ (τ > 0) are fixed integers independent of the process itself, is given by

P {N (τ) = n} = P (V + Tn2 ≤ τ)− P (V + Tn+12 ≤ τ) . (13)
The estimation problem is now more difficult than in the ordinary case since the counting

distribution (13) is written with both the inter-event distribution (and its n-fold convolutions)
and the forward recurrence time distribution instead of the inter-event distribution alone (1).
The step is similar to that made by Vardi (1982b) in the context of time interval data, adapting
to the stationary case the Kaplan-Meier or product-limit estimator (Kaplan and Meier 1958)
developed in the ordinary case.

Two choices are possible to define the complete-data problem: one can either assume that
the time interval from the initial observation date to the first event is observed, or that the time
interval between consecutive events in which the initial observation date falls is observed. This
means basically that the inter-event distribution has to be estimated on the basis of two indepen-
dent pseudo-samples resulting from the E-step, one from the inter-event distribution and another
either from the forward recurrence time distribution (9) or from the length-biased distribution
(10). The latter solution, adopted by Vardi (1982b) for the estimation of an equilibrium renewal
process on the basis of time interval data, relies on the key result of Vardi (1982a) concerning
the estimation of an inter-event distribution on the basis of two independent samples, one from
the inter-event distribution and the other from the length-biased distribution. Following Vardi,
we adopted this latter solution.

Consider the complete-data case where the time interval between consecutive events in which
the initial observation date falls and the subsequent time intervals between consecutive events,
including the time interval in which the final observation date w + τ falls, are observed. Since
U + V, T2, . . . , Tn, . . . are mutually independent, the complete-data likelihood is given by

f (u+ v, t2, . . . , tn+1, n; θ)
= P {U + V = u+ v, T2 = t2, . . . , Tn+1 = tn+1, N (τ) = n; θ}
= P (U + V = u+ v; θ) n+1∏

i=2
P (Ti = ti; θ) I (v + tn2 ≤ τ < v + tn+12

)
= g (u+ v, t2, . . . , tn+1, n; θ) I (v + tn2 ≤ τ < v + tn+12

) .
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Instead of the time interval between consecutive events in which the initial observation date
falls and the subsequent time intervals between consecutive events, we only observe the number
of events occurring in the observation period (w,w + τ ]. The conditional expectation of the
complete-data log-likelihood is given by

Q(θ|θ(k)) = E
{
log g (U + V, T2, . . . , TN(τ)+1; θ) |N (τ) = n; θ(k)

}
= ∑

v,t2,...,tn+1

M∑
t1=v

P (U + V = t1, V = v, T2 = t2, . . . , Tn+1 = tn+1|

V + Tn2 ≤ τ < V + Tn+12 ; θ(k)
)

×
{
logP (U + V = t1; θ) +

n+1∑
i=2

logP (Ti = ti; θ)
}

= M∑
t=1

{ ∑
v,t2,...,tn+1;v≤t

P (U + V = t, V = v, T2 = t2, . . . , Tn+1 = tn+1|

V + Tn2 ≤ τ < V + Tn+12 ; θ(k)
)}

log tP (T = t; θ)
µ

+ M∑
t=1

{
n+1∑
i=2

∑
v,t2,...,tn+1

P (V = v, T2 = t2, . . . , Tn+1 = tn+1|

V + Tn2 ≤ τ < V + Tn+12 ; θ(k)
)
I (ti = t)

}
logP (T = t; θ)

= M∑
t=1

η(k)t log tP (T = t; θ)
µ + M∑

t=1
ξ(k)t logP (T = t; θ) , (14)

where∑v,t2,...,tn+1 means sum on every possible combination v, t2, . . . , tn+1 such that v+ tn2 ≤ τ
< v + tn+12 and η(k)t is the expected multiplicity of a time interval between consecutive events
of length t in which the initial observation date w falls given the number of events occurring in
(w,w + τ ] and the current parameters at iteration k.
E-step

In the sequel, we will omit to note systematically θ(k). If n = 0, using (12), the reestimation
quantities η(k)t in (14) can be written as

η(k)t = P (U + V = t|V > τ)
= (t− τ)P (T = t) I (t > τ)∑M

j=τ+1 (j − τ)P (T = j) (15)

=



0, t = 1, . . . , τ ,
(t− τ)P (T = t)
µP {N (τ) = n} , t = τ + 1, . . . ,M, (16)

where (15) is the reestimation quantity for n = 0 obtained by Vardi (1982b) in the case of time
interval data. If n = 0, the information summarized in (τ , n) is common to both the design we
study here and the design studied by Vardi on the basis of time interval data.
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If n > 0, using (9) and (11), the reestimation quantities η(k)t in (14) can be written as

η(k)t =
∑min{t,τ−(n−1)}

v=1 P (U + V = t|V = v)P (V = v)P (Tn2 ≤ τ − v < Tn+12
)

P (V + Tn2 ≤ τ < V + Tn+12
)

= P (T = t)∑min{t,τ−(n−1)}
v=1

{P (Tn2 ≤ τ − v)− P (Tn+12 ≤ τ − v)}
µP {N (τ) = n} , t = 1, . . . ,M. (17)

The quantities {P (Tn2 ≤ τ − v)− P (Tn+12 ≤ τ − v)} can be accumulated for each possible
time elapsed from the initial observation date to the next event during the computation of the
reestimation quantities η(k)t in order to save computation time.

Using the same argument as for the ordinary renewal process case, the reestimation quantities
ξ(k)t which are only defined for n > 0 can be written as

ξ(k)t = P (T = t){(n− 1)P (V + Tn−12 ≤ τ − t < V + Tn2
)

+P (τ − t < V + Tn2 ≤ τ)} /P (V + Tn2 ≤ τ < V + Tn+12
) (18)

= P (T = t) [(n− 1){P (V + Tn−12 ≤ τ − t)− P (V + Tn2 ≤ τ − t)}
+P (τ − t < V + Tn2 ≤ τ)] /P {N (τ) = n} , t = 1, . . . ,M. (19)

The term P (T = t) (n− 1)P (V + Tn−12 ≤ τ − t < V + Tn2
) in (18) should be interpreted as

the probability of the (n− 1) equivalent ways of extracting a time interval of length t in the
(n− 1) complete time intervals between consecutive events within (w,w + τ ] (note that this
term is only defined for t ≤ τ − (n− 1)). The term P (T = t)P (τ − t < V + Tn2 ≤ τ) in (18)
corresponds to the extraction of the time interval of length t in which the final observation date
w + τ falls.

All the terms involved in (16) (17) and (19) are directly deduced from the computation
of the counting distribution (13). Formula (13) necessitates computation of the (n− 1)-fold
convolutions of the inter-event distribution on [n− 1, min {(n− 1)M,τ − 1}] and then of the
distributions of the time up to the n-th event (convolution of the forward recurrence time
distribution with the (n− 1)-fold convolution of the inter-event distribution) on [n, min (nM, τ)]
for each possible value n taken by N (τ).
M-step
The M-step consists of maximizing

M∑
t=1

ξ(k)t log pt +
M∑
t=1

η(k)t log t pt∑M
i=1 i pi

subject to the constraint ∑M
t=1 pt = 1. Applying the result of Vardi (1982a), and noting that∑M

t=1 ξ(k)t = n and ∑M
t=1 η(k)t = 1, the unique solution is

10
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p(k+1)
t = ξ(k)t + η(k)t

n+ t/µ(k+1) , t = 1, . . . ,M, (20)

where µ(k+1) is the unique solution for µ in the equation

M∑
t=1

(
ξ(k)t + η(k)t

)
t

nµ+ t = 1. (21)
The above equation can be solved numerically by successively bisecting the interval [1,M ].

It is also possible to derive a reestimation formula for the parameters of the inter-event
distribution ignoring the contribution of the time interval between consecutive events in which
the initial observation date falls. In this case, the reestimated probabilities p(k+1)

t are directly
obtained by maximization of ∑M

t=1 ξ(k)t log pt subject to the constraint ∑M
t=1 pt = 1

p(k+1)
t = ξ(k)t∑M

i=1 ξ(k)i
= ξ(k)t

n , t = 1, . . . ,M. (22)

The rationale behind the corresponding estimator is somewhat similar to Cox’s partial like-
lihood idea (Cox 1975) in the sense that it is derived by maximizing part of Q(θ|θ(k)); see also
Denby and Vardi (1985) who used the same type of decomposition. Nevertheless, the aim un-
derlying the decomposition of Q(θ|θ(k)) is clearly different from that emphasized by Cox. For
convenience, this estimator will be termed the partial likelihood (PL) estimator and will serve
as a reference in simulation experiments (see Section 6) while the estimator combining the rees-
timation quantities ξ(k)t and η(k)t presented above will be termed the complete likelihood (CL)
estimator. Since the occurrence time of the first event is a stopping time, the contribution of the
time interval between consecutive events in which the initial observation date falls may safely
be ignored (see Aalen and Husebye (1991) for a clear discussion of this point) but this entails a
loss of information particularly in high censoring situations.

As for the ordinary renewal process case, the reestimation formulae (20) (22) are directly
generalizable to the maximization of the joint likelihood of r mutually independent count mea-
surements by accumulation of the elementary reestimation quantities corresponding to each
count measurement.

4 Maximum penalized likelihood estimation using the OSL al-
gorithm

For the regularization of the estimated inter-event distributions, a potential solution consists in
incorporating a penalty term in the likelihood. In the framework of the EM algorithm, the E-step
is unchanged but for the M-step, the maximization of Q(θ|θ(k)) is replaced by the maximization
of

Q(θ|θ(k))− λJ (θ) , (23)
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where λ is a tuning constant that determines the relative importance of Q(θ|θ(k)) and J (θ), and
J (θ) is a roughness penalty. In our case, J (θ) will be the sum of squared second differences
J (θ) = ∑

t {(pt+1 − pt) − (pt − pt−1)}2.
Green (1990) demonstrated the computational economy and accelerated convergence yielded

by employing the one-step-late (OSL) algorithm. The OSL algorithm solves

DQ(θ|θ(k))− λDJ(θ(k)) = 0, (24)
where D denotes the derivative operator.

The only difference between equation (24) and equating the derivatives of expression (23)
to 0 is that in equation (24), the derivatives of the penalty are evaluated at the current value
θ(k). Both expression (23) and equation (24) have the same fixed point so the OSL algorithm
converges to a maximum penalized likelihood estimate.
Let

γ(k)t = λ∂J(θ
(k))

∂p(k)t
.

In the case of the ordinary renewal process, the M-step (8) is replaced by

p(k+1)
t = ξ(k)t

α(k+1) + γ(k)t
, t = 1, . . . ,M, (25)

where α(k+1) is the unique solution for α in the equation
M∑
t=1

ξ(k)t
α+ γ(k)t

= 1.

In the case of the equilibrium renewal process, the M-step (20) is replaced by

p(k+1)
t = ξ(k)t + η(k)t

α(k+1) + t/µ(k) + γ(k)t
, t = 1, . . . ,M, (26)

where α(k+1) is the unique solution for α in the equation
M∑
t=1

ξ(k)t + η(k)t
α+ t/µ(k) + γ(k)t

= 1. (27)

It should be noted that, in comparison with (20), µ(k+1) is replaced by µ(k) in (26) where µ(k)
is directly computed from the inter-event distribution estimated at iteration k. This modification
in the spirit of the OSL algorithm enables us to keep a simple M-step.

5 Practical estimation procedure
We are now able to present an efficient practical estimation procedure based on the appli-
cation of the EM algorithm. Consider that a sample of count measurements of the form
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{(τ1, n1) , . . . , (τ r, nr)} has been recorded. The practical estimation procedure can be sum-
marized as follows:

• initialization with a “1-shifted” geometric inter-event distribution with parameter p(0) from
the mean time interval between consecutive events

µ = r∑
j=1

τ j/
r∑

j=1
nj.

Hence p(0) = 1/µ.
The maximum possible time interval between consecutive events M is chosen on a quantile

criterion from the initial geometric inter-event distribution (for instance M is the (1− ǫ)th
quantile where ǫ is a residual probability such as 10−5). Hence, the initial (either ordinary or
equilibrium) renewal process is always a Bernoulli process which constitutes the most neutral
choice.

• computation of interval and counting distributions (detailed after this summary of the
practical estimation procedure),

• computation of the log-likelihood of the count data.
do {

• accumulation of the reestimation quantities ξ(k)t (5) (7) for an ordinary renewal process, or
η(k)t (16) (17) and ξ(k)t (19) for an equilibrium renewal process for each count measurement,

• estimation of a nonparametric inter-event distribution ((8) or (20), or (25) or (26) for the
penalized likelihood estimates),

• computation of interval and counting distributions (detailed after this summary of the
practical estimation procedure),

• computation of the log-likelihood of the count data.
} while (convergence criteria on the log-likelihood of the count data)

The convergence of the estimation procedure can be monitored upon the monotone increase
over iterations of the log-likelihood of the count data

logL
{
n1 (τ1) , . . . , nr (τ r) ; θ(k)

}
= r∑

j=1
logP

{
Nj (τ j) = nj; θ(k)

}
.

This is a direct consequence of one of the main properties of the EM algorithm; see McLachlan
and Krishnan (1997).

Computation of interval and counting distributions from the estimated inter-event distribu-
tion breaks down into the following steps:
ordinary renewal process:
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• computation of the time up to the n-th event distributions (n-fold convolution of the
inter-event distribution) on [n, min (nM, τ)] and of the counting distribution (1),

equilibrium renewal process:

• computation of the forward recurrence time distribution, of the (n− 1)-fold convolutions
of the inter-event distribution on [n− 1, min {(n− 1)M, τ − 1}], of the time up to the
n-th event distributions (convolution of the forward recurrence time distribution with the
(n− 1)-fold convolution of the inter-event distribution) on [n, min (nM, τ)] and of the
counting distribution (13).

6 Simulation study
Let us, for this simulation study, introduce the “1-shifted” negative binomial distribution with
parameters r and p, NB(r, p), where r is a real number (r > 0) and 0 < p ≤ 1

P (T = t) =
(t+ r − 2

r − 1
)
prqt−1, t = 1, 2, . . . , µ = 1 + rq

p , σ2 = rq
p2 .

The performances of the different estimators evaluated in this section are related to the
weight of censoring which can be quantified by the empirical distribution of the types of the
underlying time intervals computed from the count data. Let fn denote the observed frequency
of {N (τ) = n} in the data. In the case of an ordinary renewal process, the frequencies of time
interval types (censored on the right, complete i.e. fully included within the observation pe-
riod) are (∑n fn,

∑
n fnn) and in the case of an equilibrium renewal process, the frequencies of

time interval types (censored on both ends corresponding to no-event, censored on one end i.e.
censored on the left or on the right, complete) are

(
f0, 2∑n≥1 fn,

∑
n≥2 fn (n− 1)

)
.

The simulation procedure depends on the three following factors:

• the underlying inter-event distribution,
• the length of the observation period,
• the sample size.

The two following inter-event distributions were chosen for their different tail behaviors:

• NB(0.5, 0.0526): µ = 10, σ = 13.08,
• NB(5, 0.357): µ = 10, σ = 5.02,

These inter-event distributions may be classified by relating them to the “1-shifted” geometric
distribution NB(1, 0.1) (µ = 10, σ = 9.49). The first is overdispersed while the second is
underdispersed.
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Comparison of the PL estimator with the CL estimator. The sample size was fixed at 10000 and
the number of iterations at 5000, which guarantees good convergence. The objective of this large
sample experiment was to assess the bias of the PL estimator for different censoring situations.
The two estimators were compared for τ = 10, 20, 50 which correspond to different weights of
censoring. A total of six samples were therefore generated.

In Figures 1 and 2 corresponding to the cases τ = 20, 50, the graphs on the left correspond to
the estimated inter-event distributions and the graphs on the right, to the counting distributions
computed from the estimated inter-event distributions fitted to the count data. Note that when
two distributions are completely superimposed, only the last plotted is visible. Deviances are
given in Tables 1 and 2. The deviance is twice (log-likelihood of the count data for the best
model minus log-likelihood of the count data for the estimated model). In our case, the best
model corresponds to an exact fit and the log-likelihood of the count data for the best model is
the information measure of the count data.

In high censoring situations (τ = 10, 20), we observed marked differences between the two
estimators (Figure 1, Table 1, Figure 2, Table 2). As expected, the counting distributions
computed from the PL-estimated inter-event distributions did not give a good fit with the count
data. The mean of the PL-estimated inter-event distribution is biased downwards for NB(0.5,
0.0526) (Table 1) and upwards for NB(5, 0.357) (Table 2). The direction of the bias is related
to the mean of the forward recurrence time distribution (distribution of the time interval from
the initial observation date to the first event) which is larger (µforward = 14.05) than the mean
of the inter-event distribution for NB(0.5, 0.0526) and smaller (µforward = 6.76) than the mean
of the inter-event distribution for NB(5, 0.357).

These results should be interpreted in the light of the distributions of the types of the
underlying time intervals (censored on both ends corresponding to no-event, censored on one
end, complete) computed from the count data. A detailed examination of Tables 1 and 2 shows
that the PL and CL estimates are strikingly similar only if there is no time interval censored on
both ends, i.e. the observed frequency of {N (τ) = 0} is 0 and the proportion of time intervals
censored on one end is not too high. This behavior is obvious from the definition of the PL
estimator (see Section 3).

A second simulation experiment was conducted with the inter-event distribution NB(5, 0.357)
for τ = 50 where the sample size was fixed at 100. The behavior of the estimation procedure
illustrated below on the basis of a single small sample generated either by an ordinary or an
equilibrium renewal process with inter-event distribution NB(5, 0.357) is typical in the sense
that similar behaviors were observed with other count data samples, particularly small sam-
ples generated by either ordinary or equilibrium renewal processes with inter-event distribution
NB(0.5, 0.0526).
Reestimated renewal processes along the EM iterations. The objective was to study the change
in the shape of the estimated inter-event distribution, especially its smoothness/roughness along
the iterative estimation procedure, for both an ordinary renewal process (Figures 3 and 4) and an
equilibrium renewal process (Figures 5 and 6). The initial geometric inter-event distributions are
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given as references in Figures 3 and 5. The initial value of M computed on a quantile criterion
from these initial geometric inter-event distributions (see Section 5) was 119 for the ordinary
renewal process and 110 for the equilibrium renewal process. Both types of renewal process
showed the same behavior, i.e. increasingly rough estimated inter-event distributions along the
iterations (Figures 3 and 5). For both types of renewal processes, the counting distributions
obtained after 10000 iterations perfectly fit the count data (Figures 4 and 6). This should be
interpreted as an overfit in view of the sample size fixed at 100.
Influence of the initial inter-event distribution. The influence of the initial value of M and
more generally of the initial inter-event distribution was studied using a “1-shifted” uniform
distribution as the initial inter-event distribution with M = 40, 100, 1000, 10000 (Tables 3 and
4). The minimum value of M was chosen on the basis of the upper bound to the support of the
inter-event distribution estimated by the EM algorithm initialized with a geometric distribution
(see Figures 3 and 5). For both types of renewal processes, the estimated inter-event distributions
after 10000 iterations are indiscernible (also with the inter-event distribution estimated by the
EM algorithm initialized with a geometric distribution). Hence, for a sufficiently large value
of M (and assuming that p(0)t > 0 for t = 1, . . . ,M), the proposed estimators appear to be
insensitive to the initial inter-event distribution and to converge to a unique maximum.
Influence of the underlying time unit. Since the underlying time unit (both for the time interval
between consecutive events and the observation period) is not part of the data -and hence
should be chosen by the user- it is important to study the changes of the estimated inter-event
distribution for different choices of the time unit. The influence of the time unit was evaluated by
estimating an inter-event distribution on the basis of a given sample of count data generated for
τ = 50 but assuming for the estimation that τ = 100, 250. The estimated inter-event distributions
were almost identical up to a scale change (Figure 7 compared to Figure 3 for the ordinary
renewal process example and Figure 8 compared to Figure 5 for the equilibrium renewal process
example). The same was also true for τ = 250 (estimated inter-event distributions not shown).
As a consequence, the counting distributions were also almost identical (see the deviances in
Tables 5 and 6). Hence, for a sufficiently large value of τ (with respect to the maximum number
of events in the count data), the estimated inter-event distribution is simply scaled up or scaled
down if the underlying time unit is modified.
Computation of the mean of the inter-event distribution for the estimation of an equilibrium
renewal process. In the case of an equilibrium renewal process, the mean time interval between
consecutive events µ can be straightforwardly estimated by

µ̂ = r∑
j=1

τ j/
r∑

j=1
nj . (28)

This estimate of µ or alternatively, the value µ(k) obtained at the previous iteration in the
spirit of the OSL algorithm (see Section 4), can be used in place of the value µ(k+1) numeri-
cally computed by the interval bisection method (21) in order to save computation time. The
deviances are slightly different for 5 iterations (28.52 for µ(k+1) numerically computed, 28.51 for
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µ(k) and 28.49 for µ estimated from count data), while they are identical thereafter (the results
are those given in the column corresponding to τ = 50 in Table 6). It should be noted that in
the framework of the maximum penalized likelihood estimation (Section 4), the estimate of µ
(28) can be used in place of the value µ(k) in (26) and (27).
Sampling variability. For the two inter-event distributions NB(0.5, 0.0526) and NB(5, 0.357) and
for τ = 20, 50 which corresponds to different weights of censoring, we generated 1000 count data
samples of size 100 both with ordinary renewal processes and with equilibrium renewal processes.
This makes a total of 8 configurations. In Tables 7 to 14, adapting the design of the simulation
study of Denby and Vardi (1985), we give F̂ (t) for three different t’s. We chose the t’s to be close
to the 0.25, 0.5 and 0.75 quantiles of the true underlying distribution. For NB(0.5, 0.0526) (Tables
7 to 10), t = 1, 4, 12 and the true values are F (1) = 0.229, F (4) = 0.476, F (12) = 0.74. For
NB(5, 0.357) (Tables 11 to 14), t = 6, 9, 12 and the true values are F (6) = 0.264, F (9) = 0.521,
F (12) = 0.731. We chose also to give the sum of squared second differences J (θ) as a measure
of the smoothness/roughness of the estimated inter-event distribution. The estimation of 1000
ordinary renewal processes on the basis of 10000 iterations of the EM algorithm takes less than
1 hour for τ = 20 and about three hours for τ = 50 with a Pentium III, 800 Mhz processor. For
equilibrium renewal processes, the computation times are multiplied by a factor ranging from
2.8 to 4.7 if µ(k+1) is numerically computed by the interval bisection method but simply by a
factor ranging from 1.4 to 1.7 if µ(k) is used at iteration k+1 in the spirit of the OSL algorithm.

As illustrated by the previous examples with a single sample (Figures 3 and 5), the smooth-
ness/roughness measure J (θ) increases substantially after 100 iterations leading to an overfit of
the count data. It should also be noted that stdv{F̂ (t)} also increases all along the iterations.
The bias as given by |avg{F̂ (t)}−F (t) | is smaller for τ = 50 than for τ = 20. For a fixed τ , and
a given type of renewal process, the bias is larger for the smallest value of t (which contributes
preferentially to the highest number of events). The true probability masses are p1 = 0.229,
p4 = 0.061, p12 = 0.021 for NB(0.5, 0.0526) and p6 = 0.08, p9 = 0.084, p12 = 0.061 for NB(5,
0.357). The large value of p1 = F (1) for NB(0.5, 0.0526) partly explains the bias observed for
t = 1 in Tables 7 to 10.

For equilibrium renewal processes, avg(µ) tends towards the true value of µ and avg(σ) tends
towards the true value of σ and the convergences are generally rapid; see Tables 8, 10, 12 and 14.
For the mean of the inter-event distribution µ, this is a direct consequence of the fact that, for
each estimated renewal process, the mean of the counting distribution tends in a few iterations
towards the mean of the count data and µ = τ/E {N (τ)}. For ordinary renewal processes, the
same behavior is only observed in the case of the inter-event distribution NB(5, 0.357) for τ = 50
(Table 13) which is the only case where P (N (τ) = 0) = 0. For the ordinary renewal processes
with inter-event distribution NB(0.5, 0.0526), avg(µ) and avg(σ) are biased downwards (Tables
7 and 9) while, for the ordinary renewal process with inter-event distribution NB(5, 0.357) for
τ = 20, avg(µ) and avg(σ) are biased upwards (Table 11). This is likely to be related to the
overdispersion of NB(0.5, 0.0526) compared to a geometric distribution and the underdispersion
of NB(5, 0.357). In Tables 7 to14, one should note that, for a given inter-event distribution,
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stdv(µ) is larger for τ = 20 than for τ = 50 and is larger for NB(0.5, 0.0526) than for NB(5,
0.357) for a fixed value of τ . Hence, stdv(µ) appears to be related both to the weight of censoring
and to the dispersion of the inter-event distribution. The comparison of stdv{F̂ (t)}, stdv(µ)
and stdv(σ) with reference to the respective orders of magnitude of values for F̂ (t), µ and σ
show that while F (t) may be poorly estimated (because of the degree of incompleteness of the
data), the estimate of µ and σ are more reliable (because of the strength of the renewal process
assumption). This is particularly interesting for σ which cannot be estimated by alternative
methods (while µ can be directly estimated from count data in the case of equilibrium renewal
processes). The larger value of stdv(σ) in the case of the equilibrium renewal process with inter-
event distribution NB(0.5, 0.0526) for τ = 20 (Table 8) is likely to be related to the weight of
the underlying time intervals censored on both ends.
Penalized likelihood estimation. The penalized likelihood approach was evaluated on the two
count data samples used for the small sample experiment (see Figures 4 and 6). The tuning
constant λ is a function of the cumulated number of events

λ = ρ
(

r∑
j=1

nj + r
)

=



ρ
(∑M

t=1 ξ(k)t
)

ordinary renewal process,
ρ
(∑M

t=1 ξ(k)t +∑M
t=1 η(k)t

)
equilibrium renewal process.

The main result was that the maximum penalized likelihood estimates converged (the number
of iterations was fixed at 10000) to an inter-event distribution that was similar to a reestimated
inter-event distribution at a certain iteration of the EM algorithm implementing the nonpara-
metric maximum likelihood estimator. In Figure 9 (ρ = 0.5) and Figure 10 (ρ = 0.1), the closest
intermediate reestimated inter-event distribution in terms of deviance (with the corresponding
number of iterations) is shown as a reference. It should be noted that the maximum penal-
ized likelihood estimated inter-event distribution is always slightly smoother than the reference
inter-event distribution (the smoothness being measured by J (θ)). Since increasingly rough
inter-event distributions are obtained along the iterations of the EM algorithm implementing
the nonparametric maximum likelihood estimator (see Figures 3 and 5), smaller values of ρ
correspond to higher numbers of iterations. In practice, for a given count data sample, different
values of ρ should be tried to determine on an empirical basis the most satisfactory compromise
between the smoothness of the estimated inter-event distribution and the fit of the count data.
Hence, the gain of the penalized likelihood approach is limited with respect to the empirical
choice of a satisfactory compromise between the smoothness of the inter-event distribution and
the fit of the count data among the renewal processes reestimated along the EM iterations; see
the examples in Figures 3 and 4, Table 3, and Figures 5 and 6, Table 4.
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7 Application to plant growth follow-up
Elongation and branching are the two basic processes involved in plant growth. Renewal
processes are mainly used for analyzing the elongation of leafy axes. In the coffee tree case,
an elongated element is composed of an internode (portion of the axis between two nodes), a
node, two opposite leaves and two axillary buds. The elongation process is a continuous phe-
nomenon from microscopic early stages to the final completely elongated stage. Due to the
progressive character of this process, the dates of the different stages attained by the successive
elements may be difficult to observe experimentally. Hence, instead of directly performing a
time interval type measurement (time interval between two consecutive elements for a given
stage), a counting type measurement is performed. A reference elongation stage is precisely
defined using morphological characters (color and unfolding of the leaves, for example). The
number of elongated elements at successive dates is noted. The proposed estimation procedure
enables estimation of an inter-event distribution which represents the time intervals between
the reference stages of two consecutive elements on the basis of count data (number of newly
elongated elements during an observation period).

A sample of 200 coffee tree leafy axes was observed during a period of five and a half months
in the Divo experimental station (Ivory Coast). We selected three consecutive sub-periods of
respective length 40, 40 and 87 days. The number of iterations was fixed at 10000 which is
sufficient for a good convergence of the EM algorithm (see the deviances in Table 15). It
should be noted that the estimated inter-event distributions (obtained without any explicit
regularization) are smoothed while the count data are well fitted (Figures 11 and 12, Table 15).
Compared to the two families of renewal processes (with inter-event distributions NB(0.5, 0.0526)
and NB(5, 0.357)) studied by simulation (Section 6), these real data illustrate a more favorable
context for the application of the proposed methods because of the smaller dispersions of the
count data and consequently the smaller dispersions of the estimated inter-event distributions.
It would be interesting to compute standard deviations for F̂ (t) on the basis of a bootstrap
simulation. We may expect lower standard deviations for F̂ (t) than the standard deviations
computed in the simulation experiment (see Tables 7 to 14) because of both the larger sample
size and the smoother estimated inter-event distributions.

The selected period started with a rainy period followed by a drier period which is directly
expressed in the estimated inter-event distributions (see Figures 11 to 13). The rainy period,
which started well before the beginning of the coffee tree follow-up period, ended around day
50 (see Figure 14) while the transition between the fast growth period and the slow growth
period occurred around day 80. This lag corresponds to the inertia of the plants and can be
fully explained on a physiological basis. The limit between the second and the third sub-period
was chosen so as to correspond to the transition between the first stage of fast growth and the
second stage of slower growth (on the basis of an exploratory analysis, these two stages can be
roughly considered as stationary).

The homogeneity of the sample of coffee tree leafy axes can be assessed by comparing the
processes estimated over two consecutive observation periods and the process estimated over
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the grouped period (for which stationarity can be assumed). For the 1-80 observation period,
the estimated inter-event distribution is similar to the inter-event distributions estimated over
the 1-40 and 41-80 observation periods (see Figure 13) while the counting distribution is also
similar to the counting distributions computed for τ = 80 from the renewal processes originally
estimated over the 1-40 and 41-80 observation periods (see Figure 12 and Table 16). Hence, there
are no marked overdispersion (or underdisperion) phenomena and the sample of coffee tree leafy
axes can be considered as homogeneous. An alternative hypothesis with some biological support
would be to consider that axes which tend to grow faster during a given observation period will
continue to grow faster during the subsequent observation period (and conversely axes growing
slower will continue to grow slower). This would generate an overdispersion of the count data
for the grouped observation period (with reference to the elementary observation periods) and
the sample of coffee tree axes could not be considered as homogeneous for renewal process
estimation.

The changes in environmental conditions affect mainly the event rate while the dispersion
characteristics are linked to the location characteristics (see the coefficients of variation in Table
15). In the context of plant growth follow-up, renewal processes are the most simple way to
analyze the dynamics of the elongation process which is otherwise studied via more clumsy
experimental protocols such as destructive sampling and histological studies.

8 Concluding remarks
The large sample simulation experiment show that for moderate censoring situations, the PL and
the CL estimates are close to each other while for high censoring situations, the PL-estimated
inter-event distributions are biased. Whatever the weight of censoring, the CL estimates provide
a valid solution in terms of count data fit. The precise shape of the estimated inter-event
distribution should be considered with caution since it can be influenced by the estimation
procedure, especially in high censoring situations. The reason for this is that the contributions
to the estimate of the inter-event distribution for t ≤ τ (see the comments in Sections 2 and 3)
and t > τ (see (5) in the case of an ordinary renewal process, and (16) in the case of the CL
estimator) correspond most of the time to distinct cases. Hence, if the length of the observation
period τ corresponds to not too high a quantile of the inter-event distribution (say < 0.9 quantile
to fix the ideas), the shape of the inter-event distribution may present a “discontinuity” at t = τ
(see Figure 1 for τ = 20).

The small sample simulation experiment highlights some interesting properties of the two
proposed estimators:

• Under some weak conditions on the initial inter-event distribution, the reestimated inter-
event distribution appears to converge to a unique maximum.

• The estimated inter-event distribution is simply scaled up or scaled down if the underlying
time unit is changed. The precise validity conditions for this behavior should be studied.
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This opens new avenues for future theoretical work concerning the properties of these estimators.
The behavior of the estimation procedure, i.e. increasingly rough estimated inter-event

distributions along the EM iterations, can be interpreted as the result of two factors:

• The strength of the renewal process assumption that strongly constrains the estimated
inter-event distributions. It should be noted that in the time interval data context studied
by Vardi (1982b), the renewal process assumptions are only used for censored time intervals
while time intervals fully observed are used as they are.

• The nonparametric nature of the estimated inter-event distribution that enables arbitrary
shape, the only constraint being the size of the support.

Smoother estimated inter-event distributions are obtained for larger sample sizes and for
smaller intrinsic dispersions of the count data (and consequently smaller dispersions of the es-
timated inter-event distributions). The first point is illustrated by comparing the results of the
large sample simulation experiment (Figures 1 and 2) with the results of the small sample simu-
lation experiment (Figures 3 to 6). The second point is illustrated by comparing the estimation
from real data (Figures 11 and 12) with the results of the small sample simulation experiment.
Hence, a sufficiently large sample size is required to apply this kind of estimation method (which
is reasonable if one considers the degree of incompleteness of the data). The proposed methods
are mainly useful in relatively high censoring situations since, in most applications, stationarity
can only be assumed over relatively short observation periods. Moreover, interpretations may
often be deduced by comparing the inter-event distributions estimated over consecutive observa-
tion periods. Hence, it is interesting to design a follow-up experiment with a sufficient number of
observation dates. This also enables to assess the sample homogeneity by comparing the results
obtained over consecutive observation periods and grouped observation periods as illustrated
with the real data.

In comparison with methods that only consider the event rate (Stukel 1993), the proposed
methods make a specific contribution by the reliable estimation of the dispersion characteristics
of the inter-event distribution on the basis of count data (particularly under the equilibrium
renewal process assumption).

The penalized likelihood approach can be directly transposed to estimation of an equilibrium
renewal process on the basis of time interval data (Vardi 1982b). Another transposition to the
context of time interval data concerns the computation of the mean of the inter-event distribution
which can be avoided if, in the spirit of the OSL algorithm, µ(k+1) is replaced by µ(k) in the
M-step of the EM algorithm proposed by Vardi (1982b).

The practical estimation procedure has been integrated into the AMAPmod software (Godin
et al. 1997) which is freely available at http://amap.cirad.fr.
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Table 1. Equilibrium renewal process NB(0.5, 0.0526): means of the inter-event distributions
and deviances.

µ deviance
τ interval type distribution PL estimate CL estimate PL estimate CL estimate
10 (0.223, 0.552, 0.225) 8.6 9.96 321.84 1.45
20 (0.078, 0.512, 0.41) 9.2 10.03 322.48 5.54
50 (0.005, 0.324, 0.671) 9.89 10.03 96.04 15.39
PL, partial likelihood; CL, complete likelihood

Table 2. Equilibrium renewal process NB(5, 0.357): means of the inter-event distributions and
deviances.

µ deviance
τ interval type distribution PL estimate CL estimate PL estimate CL estimate
10 (0.096, 0.805, 0.099) 12.22 9.96 1090.66 0.06
20 (0.005, 0.66, 0.335) 10.43 10.06 354.76 0.07
50 (0, 0.333, 0.667) 9.98 9.98 4.97 4.75
PL, partial likelihood; CL, complete likelihood

Table 3. Ordinary renewal process NB(5, 0.357) for τ = 50: deviances (interval type distribution:
(0.18, 0.82)).

iteration NB(1, 0.0924) U(40) U(100) U(1000) U(10000)
5 24.65 35.49 40.43 42.17 42.31
20 5.58 6.02 5.92 5.83 5.82
100 4.12 4.12 4.13 4.13 4.13
500 3.67 3.67 3.68 3.67 3.67
2000 0.35
10000 0.04

Table 4. Equilibrium renewal process NB(5, 0.357) for τ = 50: deviances (interval type distrib-
ution: (0, 0.335, 0.665)).

iteration NB(1, 0.0994) U(40) U(100) U(1000) U(10000)
5 28.52 33.63 52.54 42.75 36.75
20 8.88 8.32 9.75 9.63 9.57
100 3.14 3.09 3.15 3.14 3.14
500 2.37 2.38 2.38 2.37 2.37
2000 2.15
10000 0.98
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Table 5. Ordinary renewal process NB(5, 0.357): deviances (interval type distribution: (0.18,
0.82)).

iteration τ = 50 τ = 100 τ = 250
5 24.65 26.69 27.93
20 5.58 5.76 5.86
100 4.12 4.13 4.14
500 3.67 3.68 3.68
2000 0.35 0.31 0.31
10000 0.04 0.03 0.03

Table 6. Equilibrium renewal process NB(5, 0.357): deviances (interval type distribution: (0,
0.335, 0.665)).

iteration τ = 50 τ = 100 τ = 250
5 28.52 30.49 31.66
20 8.88 9.15 9.3
100 3.14 3.13 3.12
500 2.37 2.38 2.38
2000 2.15 2.16 2.17
10000 0.98 0.89 0.9

Table 7. Ordinary renewal process NB(0.5, 0.0526) for τ = 20 (theoretical interval type distrib-
ution: (0.296, 0.704)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (1)} 0.157 0.171 0.154 0.093 0.068 0.066
stdv{F̂ (1)} 0.021 0.038 0.064 0.091 0.105 0.11
avg{F̂ (4)} 0.455 0.475 0.493 0.543 0.552 0.553
stdv{F̂ (4)} 0.032 0.041 0.058 0.095 0.116 0.121
avg{F̂ (12)} 0.76 0.748 0.736 0.728 0.729 0.728
stdv{F̂ (12)} 0.025 0.031 0.045 0.056 0.054 0.055
avg(µ) 8.8 8.96 8.96 8.97 8.97 8.97
stdv(µ) 0.667 0.688 0.688 0.688 0.687 0.688
avg(σ) 9.27 9.67 9.69 9.72 9.73 9.73
stdv(σ) 0.797 0.885 0.889 0.889 0.885 0.885
avg{J (θ)} 0.063 0.0827 0.0802 0.2809 0.8006 1.042

avg(deviance) 7.73 6.23 5.04 3.02 1.94 1.71
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Table 8. Equilibrium renewal process NB(0.5, 0.0526) for τ = 20 (theoretical interval type
distribution: (0.076, 0.515, 0.409)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (1)} 0.16 0.172 0.159 0.107 0.072 0.065
stdv{F̂ (1)} 0.025 0.045 0.076 0.105 0.113 0.113
avg{F̂ (4)} 0.454 0.471 0.475 0.527 0.55 0.554
stdv{F̂ (4)} 0.039 0.05 0.064 0.115 0.145 0.155
avg{F̂ (12)} 0.752 0.751 0.747 0.732 0.733 0.734
stdv{F̂ (12)} 0.029 0.037 0.047 0.059 0.067 0.067
avg(µ) 9.77 10.05 10.06 10.05 10.04 10.04
stdv(µ) 0.882 0.932 0.933 0.932 0.931 0.931
avg(σ) 11.55 12.43 12.53 12.78 12.96 13.14
stdv(σ) 1.203 1.419 1.51 1.716 1.928 2.18
avg{J (θ)} 0.0669 0.0863 0.0936 0.2369 0.9512 1.3574

avg(deviance) 7.23 5.82 4.99 3.69 2.88 2.68

Table 9. Ordinary renewal process NB(0.5, 0.0526) for τ = 50 (theoretical interval type distrib-
ution: (0.156, 0.844)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (1)} 0.136 0.152 0.151 0.13 0.109 0.092
stdv{F̂ (1)} 0.012 0.023 0.046 0.085 0.113 0.125
avg{F̂ (4)} 0.424 0.45 0.451 0.441 0.468 0.486
stdv{F̂ (4)} 0.023 0.035 0.054 0.085 0.162 0.205
avg{F̂ (12)} 0.761 0.764 0.771 0.78 0.77 0.766
stdv{F̂ (12)} 0.018 0.02 0.037 0.061 0.08 0.087
avg(µ) 9.63 9.83 9.84 9.85 9.85 9.85
stdv(µ) 0.555 0.587 0.588 0.59 0.59 0.59
avg(σ) 11.16 12.02 12.1 12.15 12.2 12.22
stdv(σ) 1.028 1.214 1.229 1.242 1.24 1.235
avg{J (θ)} 0.0445 0.0583 0.0652 0.0814 0.501 1.3468

avg(deviance) 14.63 12.38 11.22 9.32 6.46 4.59
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Table 10. Equilibrium renewal process NB(0.5, 0.0526) for τ = 50 (theoretical interval type
distribution: (0.006, 0.322, 0.672)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (1)} 0.135 0.153 0.159 0.155 0.166 0.143
stdv{F̂ (1)} 0.013 0.026 0.051 0.095 0.14 0.159
avg{F̂ (4)} 0.419 0.449 0.453 0.435 0.427 0.448
stdv{F̂ (4)} 0.026 0.04 0.061 0.09 0.146 0.213
avg{F̂ (12)} 0.753 0.76 0.763 0.771 0.77 0.768
stdv{F̂ (12)} 0.02 0.022 0.037 0.067 0.093 0.113
avg(µ) 9.91 10.03 10.03 10.02 10.02 10.01
stdv(µ) 0.577 0.591 0.591 0.59 0.589 0.589
avg(σ) 11.86 12.82 12.91 12.98 13.03 13.06
stdv(σ) 0.985 1.171 1.192 1.238 1.271 1.288
avg{J (θ)} 0.0443 0.0606 0.0748 0.1104 0.391 1.409

avg(deviance) 14.17 12.05 11.04 9.79 8.28 6.98

Table 11. Ordinary renewal process NB(5, 0.357) for τ = 20 (theoretical interval type distribu-
tion: (0.374, 0.626)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (6)} 0.299 0.255 0.256 0.257 0.272 0.287
stdv{F̂ (6)} 0.022 0.031 0.047 0.067 0.089 0.105
avg{F̂ (9)} 0.484 0.509 0.538 0.539 0.516 0.514
stdv{F̂ (9)} 0.026 0.034 0.055 0.079 0.112 0.122
avg{F̂ (12)} 0.657 0.726 0.738 0.745 0.74 0.728
stdv{F̂ (12)} 0.029 0.044 0.046 0.058 0.067 0.076
avg(µ) 10.86 10.34 10.31 10.29 10.3 10.38
stdv(µ) 0.497 0.494 0.494 0.498 0.503 0.57
avg(σ) 7.65 6.28 6.24 6.21 6.24 6.3
stdv(σ) 0.664 0.886 0.907 0.918 0.912 0.923
avg{J (θ)} 0.0031 0.0009 0.0034 0.0258 0.1554 0.3319

avg(deviance) 7.13 1.54 0.63 0.39 0.22 0.13
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Table 12. Equilibrium renewal process NB(5, 0.357) for τ = 20 (theoretical interval type distri-
bution: (0.005, 0.657, 0.338)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (6)} 0.314 0.256 0.25 0.267 0.301 0.309
stdv{F̂ (6)} 0.025 0.036 0.049 0.09 0.121 0.128
avg{F̂ (9)} 0.512 0.507 0.529 0.532 0.528 0.522
stdv{F̂ (9)} 0.025 0.036 0.07 0.093 0.115 0.125
avg{F̂ (12)} 0.683 0.726 0.736 0.726 0.714 0.725
stdv{F̂ (12)} 0.024 0.035 0.042 0.052 0.072 0.093
avg(µ) 10.39 10.03 10.01 10.01 10.01 10.01
stdv(µ) 0.387 0.354 0.352 0.352 0.352 0.352
avg(σ) 6.64 5.09 5 5.01 5.03 5.07
stdv(σ) 0.348 0.499 0.53 0.546 0.562 0.581
avg{J (θ)} 0.0021 0.0006 0.0035 0.0215 0.0898 0.4111

avg(deviance) 9.9 1.82 0.85 0.58 0.41 0.32

Table 13. Ordinary renewal process NB(5, 0.357) for τ = 50 (theoretical interval type distribu-
tion: (0.176, 0.824)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (6)} 0.361 0.276 0.247 0.238 0.234 0.238
stdv{F̂ (6)} 0.012 0.023 0.033 0.054 0.096 0.146
avg{F̂ (9)} 0.528 0.492 0.5 0.512 0.532 0.527
stdv{F̂ (9)} 0.013 0.018 0.038 0.089 0.125 0.156
avg{F̂ (12)} 0.67 0.698 0.729 0.735 0.732 0.736
stdv{F̂ (12)} 0.013 0.021 0.043 0.067 0.095 0.121
avg(µ) 10.31 10.04 10 10 10 10
stdv(µ) 0.243 0.233 0.234 0.234 0.238 0.244
avg(σ) 7.2 5.27 4.97 4.98 4.99 4.97
stdv(σ) 0.235 0.388 0.438 0.448 0.466 0.484
avg{J (θ)} 0.0069 0.0013 0.0011 0.0079 0.0822 0.6484

avg(deviance) 23.05 5.63 3.56 2.7 1.93 1.27
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Table 14. Equilibrium renewal process NB(5, 0.357) for τ = 50 (theoretical interval type distri-
bution: (0, 0.333, 0.667)): 1000 count data samples of size 100.

iteration
5 20 100 500 2000 10000

avg{F̂ (6)} 0.374 0.281 0.248 0.236 0.228 0.237
stdv{F̂ (6)} 0.013 0.024 0.035 0.059 0.114 0.166
avg{F̂ (9)} 0.544 0.5 0.502 0.513 0.532 0.539
stdv{F̂ (9)} 0.013 0.019 0.037 0.087 0.14 0.191
avg{F̂ (12)} 0.685 0.702 0.729 0.738 0.74 0.735
stdv{F̂ (12)} 0.012 0.019 0.041 0.071 0.11 0.15
avg(µ) 10.13 10.03 10.01 10.01 10.01 10.01
stdv(µ) 0.232 0.225 0.225 0.225 0.225 0.225
avg(σ) 7.24 5.34 4.96 4.96 4.97 4.96
stdv(σ) 0.21 0.359 0.421 0.424 0.43 0.434
avg{J (θ)} 0.0072 0.0011 0.0009 0.0076 0.0841 0.6655

avg(deviance) 24.42 6.08 3.95 3.19 2.47 1.89

Table 15. Analysis of the elongation of coffee tree leafy axes by equilibrium renewal processes.

observation period
1-40 41-80 1-80 81-167

interval type dist. (0, 0.684, 0.316) (0.013, 0.689, 0.298) (0, 0.423, 0.577) (0.004, 0.796, 0.2)
µ 20.78 22.23 21.46 58.49

σ/µ 0.225 0.451 0.409 0.264
E {N (τ)} 1.93 1.8 3.73 1.49
var{N (τ)} 0.249 0.392 0.7 0.28

J (θ) 0.0004 0.0004 0.006 1 10−6
deviance 0.0003 0.0003 0.0017 2 10−6

Table 16. Observation period 1-80: Comparison of the fitted counting distribution with the
counting distributions computed for τ = 80 from the renewal processes estimated over the 1-40
and 41-80 observation periods.

renewal process for τ = 80
1-40 41-80

interval type dist. (0, 0.423, 0.577) (0, 0.412, 0.588) (0.001, 0.432, 0.567)
E {N (τ)} 3.73 3.85 3.6
var{N (τ)} 0.7 0.358 0.749
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Figure 1. Equilibrium renewal process NB(0.5, 0.0526) for different observation periods τ .
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Figure 2. Equilibrium renewal process NB(5, 0.357) for different observation periods τ .
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Figure 3. Ordinary renewal process NB(5, 0.357) for τ = 50: reestimated inter-event
distributions.
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Figure 4. Ordinary renewal process NB(5, 0.357) for τ = 50: counting distributions.
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Figure 5. Equilibrium renewal process NB(5, 0.357) for τ = 50: reestimated inter-event
distributions.
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Figure 6. Equilibrium renewal process NB(5, 0.357) for τ = 50: counting distributions.
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Figure 7. Ordinary renewal process NB(5, 0.357) for τ = 100: reestimated inter-event
distributions.

35

ha
l-0

08
27

46
4,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
Time inteval between events

Cu
mu

lat
ive

 di
str

ibu
tio

n f
un

cti
on

5
20
100
500
2000
10000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90
Time interval between events

Pro
ba

bil
ity

 m
ass

 fu
nc

tio
n

5
20
100
500
2000
10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90
Time inteval between events

Cu
mu

lat
ive

 di
str

ibu
tio

n f
un

cti
on

5
20
100
500
2000
10000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70 80 90
Time interval between events

Pro
ba

bil
ity

 m
ass

 fu
nc

tio
n

5
20
100
500
2000
10000

Figure 8. Equilibrium renewal process NB(5, 0.357) for τ = 100: reestimated inter-event
distributions.v
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Figure 9. Renewal processes NB(5, 0.357) for τ = 50: penalized likelihood estimates with
ρ = 0.5.
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Figure 10. Renewal processes NB(5, 0.357) for τ = 50: penalized likelihood estimates with
ρ = 0.1.
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Figure 11. Analysis of the elongation of coffee tree leafy axes by equilibrium renewal processes;
observation periods 1-40 and 41-80.
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Figure 12. Analysis of the elongation of coffee tree leafy axes by equilibrium renewal processes;
observation periods 1-80 and 81-167.
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Figure 13. Elongation of coffee tree leafy axes: comparison of the inter-event distributions
estimated for each observation period.
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Figure 14. Rainfall during the coffee tree follow-up period.
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