
Graph-Theoretic Algorithms for the
“Isomorphism of Polynomials” Problem

Charles Bouillaguet1, Pierre-Alain Fouque2 and Amandine Véber3

1 University of Lille-1
charles.bouillaguet@univ-lille1.fr

2 University of Rennes-1
pierre-alain.fouque@univ-rennes1.fr

3 CMAP Lab, CNRS and Ecole Polytechnique
amandine.veber@cmap.polytechnique.fr

Abstract. We give three new algorithms to solve the “isomorphism of
polynomial” problem, which was underlying the hardness of recovering
the secret-key in some multivariate trapdoor one-way functions. In this
problem, the adversary is given two quadratic functions, with the promise
that they are equal up to linear changes of coordinates. Her objective is to
compute these changes of coordinates, a task which is known to be harder
than Graph-Isomorphism. Our new algorithm build on previous work in
a novel way. Exploiting the birthday paradox, we break instances of the
problem in time q2n/3 (rigorously) and qn/2 (heuristically), where qn is
the time needed to invert the quadratic trapdoor function by exhaustive
search. These results are obtained by turning the algebraic problem into
a combinatorial one, namely that of recovering partial information on
an isomorphism between two exponentially large graphs. These graphs,
derived from the quadratic functions, are new tools in multivariate crypt-
analysis.

1 Introduction

The notion of equivalent linear maps is a basic concept in linear algebra; two
linear functions f and g over vector spaces are equivalent if and only if there exist
two other linear bijective functions S and T such that f = T ◦g◦S. Geometrically
speaking, this means that f and g are essentially the same function, but with
coordinates expressed in different bases. The computational problem consisting
in testing the equivalence of two linear functions (given by matrices) is easy,
because it is well-known that two linear maps are equivalent if and only if they
have the same rank.

This notion of equivalent linear maps lends itself to an obvious generalization,
by dropping the requirement that the functions shall be linear. Then, given
two vector spaces U and V , of respective dimension n and m, two functions
f, g : U → V are said to be equivalent if there exist an invertible n×n matrix S
and an invertible m×m matrix T such that g = T ◦ f ◦S. Again, the geometric
interpretation of this notion is that g and f are “the same function”, up to linear

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Author manuscript, published in "Eurocrypt 2013 7881 (2013) 211-227"
 DOI : 10.1007/978-3-642-38348-9_13

http://dx.doi.org/10.1007/978-3-642-38348-9_13
http://hal.inria.fr/hal-00825503
http://hal.archives-ouvertes.fr

changes of coordinates. However, deciding the equivalence of two such functions
is no longer easy in general.

The case where f and g are polynomial maps is particularly relevant, not
only because it is a natural generalization of the linear case, but also because f
and g admit a compact representation. It is understood that a polynomial map
f is such that each coordinate of the vector f(x) is a polynomial expression of
the coordinates of the vector x. Testing the equivalence of two polynomial maps
has been called the “Isomorphism of Polynomials” (IP) problem by Patarin in
1996 [43], and later the “Polynomial Linear Equivalence” (PLE) problem by
Faugère et al. in 2006 [25].

One aspect of PLE that makes it a bit difficult to study is that depending
on the parameters (dimensions and base field of the vector spaces, degree of
the polynomials, special restrictions, etc.), the problem can take very different
forms. We will thus focus on the case where the base field of the vector space is
finite (of size q), where polynomials are quadratic, and where their domain and
codomain are the same, i.e., where f, g : (Fq)

n → (Fq)
n

are quadratic maps. This
is the setting that appears in most cryptographic constructions. In the sequel we
will call this particular restriction the Quadratic Maps Linear Equivalence (QMLE)
problem. In order to make our exposition simpler, we will furthermore assume
that q, the size of the finite field, is a power of two. The theory of quadratic
forms presents itself very differently for odd characteristic and for characteristic
two, and in order not to expose two variants of each of our results, we chose the
most computer-oriented setting.

The first“multivariate”cryptographic schemes relied on a somewhat heuristic
construction to build Trapdoor One-Way Functions, whose security was based
on the hardness of QMLE. Starting with an easy-to-invert quadratic map f , one
builds an apparently random-looking one by setting g = T ◦ f ◦ S. The idea
is that the changes of coordinate would hide the structure of f that makes it
easy to invert, so that g would look random. Inverting random quadratic maps
is extremely hard, and the best options in general are exhaustive search (if q is
small), or the computation of a Groebner basis (when q is large), both techniques
being exponential in n. This construction backed one of the advertized goals of
multivariate cryptography, namely the ability to encrypt or sign n-bit blocks
while offering n bits of security, as opposed to, e.g. RSA.

In this setting, g (and eventually f) is the public key, while S and T are
the secret key. When f is public, then recovering the secret-key precisely means
solving an instance of QMLE. Several cryptosystems have been built on this
idea [10, 55, 18, 32, 15, 7], but they have all been broken [29, 24, 20, 19, 37, 29, 35,
9, 28, 40, 11]. The main reason behind this fiasco is that the specific instances of
QMLE exposed by these schemes were weak because f was too special, so that
polynomial-time and/or efficient algorithms to crack them have eventually been
designed.

In a different direction, Patarin also proposed to use the hardness of arbi-
trarily chosen instances of the PLE problem to design a public-key identification
scheme, thus potentially avoiding the aforementioned disaster. A prover, who

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

has generated a pair of private/public keys (PK,SK), wants to prove her iden-
tity to a verifier who knows PK. In fact the prover aims to convince that she
knows SK, but without revealing any information about SK to the verifier, or
to anybody else. In 1986, Goldreich, Micali and Wigderson [33] built an elegant
zero-knowledge proof system for Graph Isomorphism (GI) and used it to build an
identification scheme. There, PK is a pair of isomorphic graphs, and SK is the
isomorphism (a permutation of the vertices). In order for this system to be se-
cure, it must be hard to solve the instance of GI formed by the public-key. Despite
a large research effort, until now no algorithm has been able to solve instances
of GI in worst-case polynomial, which is certainly encouraging. However, most
instances of GI, and in particular random instances, are extremely easy to solve.
Thus, the identification scheme of [33] relied on a presumably hard problem for
which we do not know how to generate non-trivial instances...

Patarin’s suggestion was that Graph Isomorphism could be replaced by QMLE,
with the hope that random instances of the problem would then be hard, and
that key-generation would then be straightforward. There was apparently noth-
ing to lose with the new problem, because it was shown to be harder than GI [44].
Using random instances would in principle avoid the weak instances that had
been broken. The resulting QMLE-based identification scheme is not particu-
larly efficient, and does not enjoy very attractive key-sizes, but it is quite simple.
It also has a few interesting features compared to other identification schemes
based on NP-hard combinatorial problems such as [47–52]: most notably, it does
not require hash functions nor commitment schemes, and it does not require the
parties to share a (usually large) public common string describing an instance
of the NP-complete problem.

1.1 Related Work

The QMLE problem is reminiscent of the Even-Mansour cipher [23], which turns a
fixed n-bit permutation P into an n-bit block-cipher with 2n-bit key by setting
Ek1,k2

(x) = P (x + k1) + k2. Attacks against this construction aim to recover
the keys while only having black-box access to E and P . One of its distinctive
features is that the performance of a successful adversary running in time t and
sending q queries is limited by t·q ≥ 2n, under the assumption that P is a random
permutation. The known attacks match this bound [17, 22]. As mentioned above,
the hardness of QMLE would allow a similar construction where a fixed and
public quadratic permutation P is turned into a public-key encryption primitive
ES,T = T ◦ P ◦ S. In this context, adversaries not only have oracle to E and P ,
but know their full description.

Essentially two non-trivial algorithms have been proposed so far for QMLE:
the “To-and-Fro” approach [44] on the one hand, and the “Groebner Basis” ap-
proach [25] on the other hand. There are also several, more efficient algorithms for
the special case where the secret T matrix is known to be the identity matrix [31,
46, 14, 36]. This sub-problem is also GI-hard, even in very restricted settings [1].
The article [3] considers the particular case of testing whether two boolean func-

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

tions are equal modulo a permutation of their inputs. It shows that 2n/2 queries
are necessary if one only has black-box access to the boolean functions.

Back to the full QMLE problem, the “To-and-Fro” algorithm, while being
simple, was exposed on a toy example, without pseudo-code nor detailed analyzis.
We are convinced that the algorithm works when the polynomial maps f and
g are bijective, but it cannot work as-is when they are not (the authors of [25]
made the same observation). Note that a random polynomial map is not bijective
with overwhelming probability. As is it given in [44], the “to-and-fro” algorithm
is thus not applicable to random instances of QMLE. We found out that it is
nevertheless possible to adapt the algorithm to work in the non-bijective case,
but there are several ways to do so, and some are more efficient than others.
Figuring that out required some work, and exposing it requires some space, so
we will not go deeper into this issue in this paper. In any case, the authors
of [44] claim that the complexity of their algorithm is of order O

(
q2n
)

when

q > 2 and O
(
23n
)

when q = 2, and we agree with them. The algorithm was
later independently rediscovered under the form of a procedure to test the linear
equivalence of S-boxes [12].

The “Groebner basis” algorithm, on the other hand is not heuristic, and is
well-specified. It consists in identifying coefficient-wise the equation T−1 ◦ g =
f ◦ S, which relates two vectors of n quadratic forms. It is therefore equivalent
to about n3 quadratic equations in the 2n2 coefficients of the unknown changes
of coordinates. These equations are then solved through the computation of
a Groebner basis. The complexity of Groebner basis algorithms is notoriously
tricky to study, and the authors of [25] did not give any definitive results. How-
ever, they empirically observed an important fact, namely that when f and g
are inhomogeneous quadratic maps, i.e., when f and g contains non-zero linear
and constant terms, then their algorithm terminated in polynomial time O

(
n9
)
.

In the homogeneous case, the authors of [25] conjectured that their algorithm
is subexponential, without providing any argument nor any evidence that it is
the case. This assertion is impossible to verify in practice because the complexi-
ties are too high, but our own reasoning makes us more inclined to believe that
the algorithm is plainly exponential. Assuming that the equations form a semi-
regular sequence would allow to estimate the complexity of the Groebner basis
computation [8]; doing so results in a total complexity of O

(
218n

)
, yet assuming

that the equations are semi-regular is probably a bit of a stretch. Establishing
the complexity of this algorithm is thus essentially an open problem.

In the sequel, we will nevertheless take for granted that inhomogeneous in-
stances of QMLE are tractable and can be solved in polynomial time, using the
“Groebner-based” algorithm for instance.

It must be noted that in [44], the existence of an algorithm based on the
birthday paradox and running in time O

(
qn/2

)
is asserted, and that this algo-

rithm is itself partially described in [45], where it is called the “combined powers
attack”. This algorithm is sometimes acknowledged for in the literature (e.g.
in [25]). However, it is underspecified to the point that it is impossible to imple-
ment it, and some of the bits that are specified have major problems. Some of

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

them deterministically fail to meet their goal, and the whole construction relies
on heuristic assumptions that are empirically false (sometimes provably). This
“algorithm” should thus be disregarded.

1.2 Our Results

We give three algorithms to solve QMLE in the homogeneous case. All these
algorithms work by reducing the solution of a homogeneous (hard) instance into
that of one or several inhomogeneous (easy) instances after some preprocessing.
We will thus assume that we are given a (black-box) Inhomogeneous solver that
presumably works in polynomial time, and we will count the number of inho-
mogeneous queries sent to this oracle. We are well-aware that this assumption
is quite strong. The empirical success of the algorithm of [25] convinced us that
it works in polynomial-time on average, yet moving from there to “worst-case
polynomial time” seems like a leap of faith. However, this assumption eases our
exposition considerably, and in practice there does not seem to be any prob-
lem (probably because the queries sent to the inhomogeneous oracle are random
enough).

Our three algorithms differ by the number of queries they send to the oracle,
by the amount of computation they perform themselves, and by their success
probability.

Algo. Preprocessing Inhom. queries success prob.
1 qn 1
2 O

(
n3 · q2n/3

)
q2n/3 62%

3 O
(
n5 · qn/2

)
1 62 % only when q = 2

Algorithm 1 is deterministic, and essentially performs an exhaustive search in
(Fq)

n
, sending one inhomogeneous query per vector. Using the algorithm of [25]

to deal with the inhomogeneous instances, the resulting complexity isO
(
n9 · qn

)
,

which already improves on the “to-and-fro” algorithm of [44].

Algorithms 2 and 3 rely on the birthday paradox to improve on exhaustive
search and break the qn barrier. To this end, two exponentially large isomorphic
graphs are derived from the two quadratic maps. Recovering a bit of information
on an isomorphism allows to make the problem inhomogeneous, and thus easy to
solve. The trick is that this partial information must be extracted without know-
ing the full graphs, because they are too large. The construction of these graphs
borrows from the differential techniques that have broken SFLASH, amongst
others.

Algorithm 2 is relatively easy to analyze and we rigorously establish its com-
plexity and success probability when dealing with random instances of the prob-
lem. Algorithm 3 is more efficient but more sophisticated and harder to analyze
(as well as somewhat heuristic). We provide an as-rigorous-as-possible complex-
ity analysis under a conjecture on random quadratic maps, and we verify exper-
imentally that we are not off by too much.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Because our algorithms are exponential in n, we do not fully break Patarin’s
identification scheme (it is of no practical value anyway), even though its key-
sizes should in principle be doubled. The construction of a Trapdoor One-Way
Function from QMLE outlined above has already been bludgeoned to death by
cryptanalysts, and it now lies on the autopsy table. We take the role of the med-
ical examiner that appears in every good police drama, only to discover that the
corpse had a fatal disease even before being brutally assaulted. We indeed believe
that our algorithms condemn this generic construction of a Trapdoor One-Way
Function post-mortem, and give a theoretical reason not to try again, besides the
obvious “they have all been broken” argument. Our algorithms indeed break the
QMLE instance and retrieve the secret-key (asymptotically) much faster than
inverting the quadratic map by exhaustive search. This shows in passing that
this construction can only offer n/2 bits of security, instead of the n that was its
original objective.

2 A First Algorithm Based on Dehomogenization

Confronted with a homogeneous instance of QMLE, our strategy throughout this
paper is to build an inhomogeneous instance admitting the exact same solutions.
This inhomogeneous instance can in turn be solved in polynomial time, and
reveals the solution(s) of the original problem. The downside of this approach is
that the image of S must be known at one arbitrary point of the vector space.
Indeed, if β = S · α, then:

∀x. g(x) = T · f(S · x) ⇐⇒ ∀x. g(x+ α) = T · f(S · x+ β).

Thus defining g′(x) = g(x+ α) and f ′ = f(x+ β) yields an equivalent problem,
i.e., an instance that has the same solutions as the original one. In addition, the
new instance is inhomogeneous. This follows from the simple observation that
although x2 is a homogeneous polynomial, (x+α)2 = x2 + 2αx+α2 is not since
it has a non-trivial linear term αx and a non-trivial constant term α2.

It follows that solving (homogeneous) instances of QMLE essentially boils
down to finding Sα, for some known and non-zero vector α. Exhaustive search
is the first option that comes to mind, leading to Algorithm 1. This algorithm
sends qn queries to the inhomogeneous solver in the worst case, and finds the so-
lutions when they exist. This algorithm terminates with probability one in time
O
(
n9 · qn

)
if the Groebner-based algorithm of [25] is used to solve the inhomoge-

neous instances. Despite being extremely simple, Algorithm 1 is asymptotically
qn times faster than to the “to-and-fro” algorithm of [44].

This dehomogenization technique exposes a crucial asymmetry in the prob-
lem: it is apparently much more critical to obtain knowledge on S than on T .
This is not new: the “To-and-Fro” algorithm relies on the ability to transfer
knowledge of a relation β = S · α to a relation g(α) = T · f(β).

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Algorithm 1 Simple algorithm based on dehomogenization.

function Exhaustive-Dehomogenization(f, g)
x← random non-zero vector in (Fq)n

for all 0 6= y ∈ (Fq)n do
f ′(z)← f(z + y)
g′(z)← g(z + x)
query IQMLE-Solver with (f ′, g′′)
if solution (S, T) found then return (S, T)

return “Not Equivalent”

3 Moving the Problem Into a Graphic World

Using the birthday paradox is a natural idea to improve on exhaustive search
algorithms in many scenarii, with the hope to halve the exponent in the com-
plexity. Here, we wish to use the birthday paradox to obtain the image of S at
one point, and build a dehomogenized instance, just as we did in the previous
section. One difficulty is that we want to focus only on S, and leave T alone. To
this end, we introduce a tool which is, to the best of our knowledge, new. We
associate a graph Gh to any quadratic map h : (Fq)

n 7→ (Fq)
n
. Its vertices are

the elements of (Fq)
n
, and there is an edge between x, y ∈ (Fq)

n
if and only if

h(x+ y) = h(x) + h(y). To some extent, Gh expresses the “linear behavior” of h
(even though h is not linear) and thus we call these graphs the “linearity graphs”
of the associated quadratic maps.

These graphs are natural objects associated to quadratic maps. For instance,
the distinguisher of [21] to determine whether a given quadratic map f is an
HFE public key can be rephrased as follows: pick a random node in Gf , and
count its neighbors. If their number exceeds a given bound (which depends on
the degree of the internal HFE polynomial), then return “random”, else return
“HFE”. With the right bound on the number of neighbors, this algorithm achieves
subexponential advantage.

The essential interest of linearity graphs for our purposes is that the two
graphs Gf and Gg are connected by the secret matrix S.

Lemma 1. If T ◦g = f ◦S then S is a graph isomorphism that sends Gf to Gg.

Proof. Indeed, if x↔ y in Gg, then by definition g(x+ y) = g(x) + g(y), and it
follows that T ◦ g(x+ y) = T ◦ g(x) + T ◦ g(y), and thus that f(S · x+ S · y) =
f(S · x) + f(S · y). This in turn means that S · x ↔ S · y in Gf . It follows that
S is a graph isomorphism between Gf and Gg.

Linearity graphs thus allows a formulation of the problem where the other se-
cret matrix T is no longer present. We have two (exponentially large) isomorphic
graphs Gf and Gg, and we ultimately need to recover the whole isomorphism
S. However, thanks to the dehomogenization technique of the previous section,
and thanks to the ease with which inhomogeneous instances can be solved, it
turns out that recovering just a little bit of information on the isomorphism

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

is enough to find it completely. More precisely, we just need to know how the
isomorphism S transforms one arbitrary vertex.

Of course, completely building these graphs is prohibitively expensive (they
have qn vertices). It turns out that this is never necessary, because it is possible
to walk in these graphs without fully knowing them.

Walking in Linearity Graphs. The function ψ(x, y) = f(x+y)+f(x)+f(y)
is a generalization of the polar form of a quadratic form to vectors thereof, in
characteristic two. It is easy to check that ψ is bilinear. Given a (non-zero) vertex
x ∈ (Fq)

n
in the graph, the function:

Dxf : y 7→ ψ(x, y) = f(x+ y) + f(x) + f(y)

is a familiar object in multivariate cryptology, called the Differential of f at x [27,
21, 19, 29]. It is a linear function from (Fq)

n
to (Fq)

n
, which is then conveniently

represented by a matrix. The set of nodes adjacent to x in Gf is in fact the
kernel of Dxf . Note that x always belong to ker Dxf , because x + x = 0. The
main reason we chose to focus on the case where q = 2e is that this fact is not
true when q is not a power of two.

The matrix Dxf is easy to compute given f and x. If f is a (homogeneous)
quadratic map, then it is in fact a vector of n quadratic forms, which can conve-
niently be described by a collection of n matrices F1, . . . , Fn, that are interpreted
as follows: Fk[i, j] is the coefficient of xixj in the k-th component of f . If tM
denotes the transpose of M , then the matrix representation of the differential of
f at x is given by:

Dxf =

x · (F1 + tF1) . . . x · (Fn + tFn)

 .

Thus, given a vector x, finding the neighbors of x in Gf can be done in
time O

(
n3
)
: computing the matrix Dxf requires n matrix-vector products, and

determining its kernel classically takes O
(
n3
)

operations. It is thus possible
to crawl the linearity graphs by spending a polynomial number of elementary
operations on each traversed vertex.

Structure in Linearity Graphs. Linearity graphs possess a rich structure,
thanks to their algebraic origin. Recall that in Gf , two nodes x and y are adja-
cent if ψ(x, y) = 0, where ψ is the symmetric bilinear map defined above. The
bilinearity of ψ induces a lot of structure in Gf . For instance, we always have
ψ(x, x) = 0, and by bilinearity ψ(λx, µx) = λµψ(x, x) = 0, so that the q mul-
tiples of a vector x form a clique in Gf . The set of all multiples of x are thus
topologically indifferentiable (they all have the exact same neighborhood).

Furthermore, the same reasoning shows that if two vectors x and y are adja-
cent in Gf , then the set of q2 linear combinations λx + µy form a clique in Gf

of size q2.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Degree Distribution. If a quadratic map f is randomly chosen (amongst the
finite number of possibilities), then the resulting linearity graph Gf follows a
certain —mostly unknown— probability distribution, and any property of Gf

can be seen as a random variable. One of the most interesting properties of Gf

is the distribution of the degree (i.e., of the number of neighbors) of vertices in
Gf . This result is stated in terms of the probability that a random n×n matrix
over Fq is invertible. We denote it by λ(n):

λ(n) =

n∏
i=1

(
1− 1

qi

)
Lemma 2 (theorem 2 in [21]). Let x ∈ (Fq)

n
be a non-zero vector, and f :

(Fq)
n → (Fq)

n
be a uniformly random quadratic map. Then Dxf is a uniformly

random matrix vanishing over x. As a consequence, the probability that Dxf has
a kernel of dimension k ≥ 1 is:

λ(n)λ(n− 1)

λ(k)λ(k − 1)λ(n− k)
q−k(k−1)

Because λ(n) is a decreasing function of n that converges to a finite limit
bounded away from zero, then the ratio of the λ-expressions lives in a small
interval, independently of q, n and k, so that the probability is in fact of order
q−k(k−1). Of course, over Fq, a k-dimensional vector space contains qk elements,
so that if dim ker Dxf = k, then the vertex x has qk neighbors.

Sparsity. Computing the expectation and the variance of the degree is technical,
but feasible:

E [degree] = q − 1

qn−2
σ2 = q2(q − 1)

(
1− q2 + 1

qn
+

q2

q2n

)
Establishing these two expressions is somewhat technical, yet because both are
sums of q-hypergeometric terms, they can be computed by “creative telescoping”
thanks to the q-analog of Zeilberger’s algorithm [56]. It follows that the expected
number of edges of Gf is essentially qn+1/2. In other terms, Gf is a very sparse
graph that has barely more edges than it has vertices.

Disconnecting Linearity Graphs. A linearity graph Gf is fully connected,
because all vertices are adjacent to the “zero” vertex. This “zero” vertex is not
very interesting (since it is adjacent to every other vertex), and, as a matter of
fact, it even turns out to be a bit annoying. Thus, it seems that there is nothing
to lose by removing it. In addition, we could also get rif of the self-loops ; they
are useless since every vertex has one.

We thus denote by G∗f the simple graph Gf in which the zero vertex has
been removed, and where self-edges are removed. It is interesting to note that
the resulting graph is no longer connected, and that there are in fact very many

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

connected components. Indeed, if dim ker Dxf = 1, then the only neighbors of x
are its multiples, and x belong to a connected component of size q−1. Lemma 2
tells us that this happens with probability λ(n)/λ(1), and this converges to a
finite limit bounded away from zero when n goes to infinity. Thus, a constant
fraction of the vertices belong to “small” connected components of size q − 1.
Working a bit on the λ functions reveals that this proportion grows like 1−1/q2.

4 Just Count Your Neighbors

It is well-know that if two graphs (V1, E1) and (V2, E2) are isomorphic, and if
ρ is an isomorphism between them, then u ∈ V1 and ρ(u) ∈ V2 have the same
degree, i.e., the same number of neighbors. It follows that if u ∈ V1 and v ∈ V2
do not have the same degree, then they cannot be related by ρ.

We adapt this simple idea in the context of QMLE, under the form of Al-
gorithm 2. The main idea in this algorithm is to target vertices in the linearity
graphs of f and g that have a specific degree: we only look for a “right pair”
y = S · x amongst vertices x, y that have a prescribed degree (chosen to opti-
mise the complexity of the algorithm). The remaining of this section is devoted
to establishing the properties of this algorithm, which are summarized in the
following theorem.

Algorithm 2 First Birthday Based Algorithm

1: function SampleSet(h)
2: L← ∅
3: repeat
4: repeat
5: x← random vertex of Gh

6: until x has q
√

n/3 neighbors
7: L← L ∪ {x}
8: until |L| =

√
2qn/3

9: return L

10: function Neighbor-Counting-QMLE(f, g)
11: U ← SampleSet (f)
12: V ← SampleSet (g)
13: for all (x, y) ∈ U × V do
14: f ′(z)← f(z + y)
15: g′(z)← g(z + x)
16: query IQMLE-Solver with (f ′, g′)
17: if solution (S, T) found then return (S, T)

18: return “Probably not equivalent”

Theorem 1. Algorithm 2 performs O
(
q2n/3

)
units of computations on aver-

age, sends at most q2n/3 queries to the inhomogeneous solver, and succeeds with
probability 1− 1/e.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

The helper function SampleSet returns a set of O
(
qn/3

)
vertices of Gf

(resp. Gg), each having q
√

n/3 neighbors in the graph. It follows that there are
q2n/3 queries to the inhomogeneous solver, because this is the size of the cartesian
product U × V .

It remains to establish the complexity of SampleSet, and the success prob-
ability of the algorithm. As explained above, since we are looking for a “right
pair” y = S · x, it is safe to restrict our attention to vertices x, y that have a
specific degree (as long as vertices with such a degree exist in the graphs).

Lemma 2 gives us the expected number iterations of the innermost loop of
SampleSet that are required to find a random vertex with the required degree.
Up to a constant factor, finding a vertex with degree qk requires qk(k−1) trials,
so that finding each new random vertex requires O

(
qn/3

)
rank computations on

n× n matrices, hence O
(
n3 · qn/3

)
operations.

Lemma 2 also tells us that there are on average qn−k(k−1) vertices in Gf

each having degree qk. In Algorithm 2 we look specifically at vertices of degree

q
√

n/3, and we thus expect Gf to contain q2n/3 of them. Since the number of
iterations of the outermost repeat...until loop is roughly the square root of this
number, we do not expect more than a constant number of “extra” iterations
finding an already-known vector x. Putting everything together, we conclude
that SampleSet terminates after O

(
n3q2n/3

)
operations.

Now, the birthday bound tells us that U × V contains a “right pair” y = Sx
with probability greater than 63%, because both U and V contain about the

square root of the total number of vertices with degree q
√

n/3 (see [53] for a
precise statement of this specific version of the birthday paradox).

Practical Results. We have implemented Algorithm 2 inside the MAGMA
computer algebra system[13], running on one core of a 2.8 Ghz Xeon machine.
As shown in Table 1, we found out that in practice it is difficult to balance the
cost of building U and V on the one hand, and going through the candidate pair
on the other hand, because the target degree can only take

√
n integer values. We

could nevertheless verify in practice that the complexity of building the lists and
the expected number of right pairs in them is consistent with our expectations.
The source code is in the public domain, and is available on the webpage of
the first author. It uses an unpublished algorithm to solve the inhomogeneous
instances.

n q generating U and V total time logq (target degree) |U | # pairs

16 2 0s 68s 3 1 4

22 2 28s 9h45m 4 13 400

28 2 4913s 2h15m 5 8 64

Table 1. Experimental results on Algorithm 2.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

5 Map Your Neighborhood

We have seen in section 3 that the linearity graphs, once deprived from the“zero”
vertex, contain many small connected components. Of course, if y = Sx, then
the connected component of x is isomorphic to the connected component of y.
In this section, we describe an algorithm that builds upon this idea—instead of
just looking at immediate neighbors, as we did in algorithm 2, we now try to
look at the whole connected component, in order to distinguish between vertices
of the same degree.

Canonical Graph Labeling. Given a graph G, a Canonical Labeling algo-
rithm relabels the vertices of G, thus producing a graph Canon(G), which is by
definition isomorphic to G. The result is canonical in the sense that if G and
H are isomorphic graphs, then Canon(G) = Canon(H). The canonical labels
are therefore complete invariants of the isomorphism class, and as such, com-
puting a canonical labeling is necessarily harder than checking if two graphs are
isomorphic. However, computing a canonical labeling can be done in average
linear time [6], because except for an exponentially small fraction of all graphs,
it can be done with a very simple linear algorithm. Deterministic algorithms
that always succeed are subexponential, with complexity O

(
exp

(√
n log n

))
[5].

The perhaps most well-known, and most practical algorithm dates back to 1978,
and is implemented in the nauty open-source package [38]. It is known to be
exponential on some specific counter-examples [39], but otherwise performs ex-
ceptionally well. There are also many relevant classes of graphs where canonical
labeling is polynomial [26]: graphs of bounded degree, planar graphs, chordal
graphs, graphs of bounded treewidth, etc.

Back to our more specific problem, let us denote by Cx (resp Cy) the con-
nected component of x in G∗f (resp. of y in G∗g). The key idea of the algorithm
presented in this section is that y = Sx implies Canon(Cx) = Canon(Cy). Thus,
it seems that the function H : u 7→ Canon(Cu) could be used as a “hash func-
tion”. In fact, in algorithm 2, we used the degree as such a “hash function”, but
it was not very discriminating, because the degree does not contain enough en-
tropy. We hope that H behaves as a good hash function, and that false positives,
i.e., pairs (x, y) such that H(x) = H(y) but y 6= Sx, should be very rare.

One problem is that H does not distinguish between vertices of the same con-
nected component. To improve it, we would need a way to single out a specific
vertex in the connected component. Fortunately, most canonical labeling algo-
rithm return the isomorphism (say ρ) between their argument G and Canon(G).
To single a vertex x out in G, it is sufficient to send ρ(x) along with the canonical
labeling of G.

A Canonical-Labeling-Based Algorithm As discussed in section 3, G∗f con-
tains many small connected components that are all isomorphic to each others,
since they are all cliques of size q − 1. Therefore, if we want our “hash function”
to be discriminating, we must avoid small connected components. Our “hash

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

function” will thus reject the vector x if there is no simple path starting from x
and of length at least r. In the other direction, we cannot exclude the existence
of a giant connected component of exponential size. Therefore, we only consider
the radius-r neighborhood of the vertex x we are interested in, i.e., the set of
all vertices that can be reached from x by crossing at most r edges. This is the
basis of algorithm 3.

Algorithm 3 Canonical Labeling/Birthday Based Algorithm

1: function Hashable[r](G, x)
2: Perform a Breadth-First Search in G starting from x
3: return True if the BFS hits a vertex r edges away from x

4: function H[r](G, x)
5: Cx ← subgraph of G formed by all vertices at most r edges away from x.
6: ρ,G ← CanonicalLabeling(Cx)
7: return

(
G, ρ(x)

)
8: function SampleHashTable(h)
9: L← ∅

10: repeat
11: repeat
12: x← random vertex of G∗h
13: until Hashable[r](G∗h, x)

14: L
[
H[r] (G∗h, x))

]
← x

15: until |L| =
√

2qn/2

16: return L

17: function Canonical-Labeling-QMLE(f, g)
18: U ← SampleHashTable (f)
19: V ← SampleHashTable (g)
20: for all (h1 7→ x) ∈ U, (h2 7→ y) ∈ V such that h1 = h2 do
21: f ′(z)← f(z + y)
22: g′(z)← g(z + x)
23: query IQMLE-Solver with (f ′, g′)
24: if solution (S, T) found then return (S, T)

25: return “Probably not equivalent”

Remarks on Algorithm 3. Establishing the complexity and success probabil-
ity of algorithm 3 is surprisingly difficult, probably because is relies on topological
properties of G∗f , which is a somewhat random but very structured graph.

Algorithm 3 has been written in a generic way, independently of the actual
value of q. However, we have only been able to discuss its properties when q = 2.
We have verified that the algorithm works as we expected in this case, but the
situation when q 6= 2 is not so clear. We tend to believe that the complexity

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

and/or success probability degrade exponentially fast when q grows, but we fall
short of definitive conclusion.

When q = 2, the structure of G∗f seems to be richer. For instance, we already
alluded to the fact that the fraction of nodes whose connected component is
of size only q − 1, grows like 1 − 1/q2. In addition, as we will see in the next
section, setting q = 2 allows us to turn most more-or-less-random graphs into
trees, which are much easier to deal with.

Preliminary Analysis of Algorithm 3. When q = 2, the correctness of the
algorithm is implied by the following three heuristic statements.

Claim. i) Hashable[r]
(
G∗f , x

)
is true with probability ≈ 1/r over the random

choice of f (assuming x 6= 0).

ii) Both Hashable[r] and H[r] can be evaluated in expected time O
(
rn3
)
.

iii) When restricted to elements that are Hashable[r], then H[r]
(
G∗f , ·

)
is an

εr-almost universal hash function family (indexed by f) for some ε < 1.

The notion of almost universal hash function is usually useful when the hash
function is“less injective” than a random function. In this paper though, H[r] can
become more injective than a random function, as soon as r becomes sufficiently
large.

It follows from claim i that the expected number of iterations of the loop of
lines 11–13 isO (r), and it follows from claim ii that finding one admissible vector
x requires O

(
r2n3

)
operations on average. Claim iii then guarantees that if we

choose r to be a bit larger than n, then the probability to find hash collisions can
be made smaller than 2−n, and standard birthday-type results guarantee that
the number of expected hash collisions in the execution of SampleHashTable
is constant. From this, we conclude that SampleHashTable runs in expected
time O

(
r2n3qn/2

)
.

It follows from the birthday paradox [53] that there is a “right pair” in U×V ,
i.e., a pair (x, y) with y = Sx, with probability greater than 1 − 1/e. This is
because (Fq)

n
has qn elements and that the sizes of both U and V are essentially

qn/2. This guarantees the success probability of the algorithm.
Let us denote by N the number of bogus inhomogeneous queries, i.e., the

number of pairs x 6= y ∈ U × V with the same hash. It follows from Markov’s
inequality and claim iii that P [N ≥ 1] ≤ 2qn · εr. Thus, as soon as r is asymp-
totically larger than n, e.g. r = n log log n, then the probability that N ≥ 1 gets
exponentially small. This concludes our preliminary analysis: algorithm 3 runs
in time O

(
n5qn/2

)
, and sends a constant number of inhomogeneous queries. It

now remains to show that our claims are valid, but we first find it reassuring
to show that the practical behavior of the algorithm is very consistent with our
expectations.

experimental results. We have implemented Algorithm 3 using the MAGMA
computer algebra system [13], and we found out that it works well in practice,

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

as Table 2 shows. The experiment clearly shows that N is constant, as expected.
This justify our heuristic analysis a posteriori. The implementation is in the
public domain and is available on the webpage of the first author.

n q generating U and V finding collisions |U | N
16 2 3.6 s 1s 64 6

24 2 123 s 13s 836 5

32 2 61 min 200s 11585 2

40 2 31 h 2h 165794 7

Table 2. Experimental results on Algorithm 3

6 Discussion of the Claims

Special Structure in Linearity Graphs. Any analysis of algorithm 3 will
have to rely on the properties of linearity graphs. As argued above, the situation
when q = 2 is somewhat different than that obtained with larger values of
q. When q = 2, the connected components of G∗f seem to enjoy a very nice
structure, as illustrated by figure 1. The origin of the triangles is that any non-
isolated vertex x belong to the (q2 − 1)-clique formed by x, y and x + y (0 has
been removed). If it were not for these triangles, the connected components of
G∗f would be trees. While this structure is clearly visible on all the examples we
could forge, we fall short of any rigorous explanation.

x

Fig. 1. A typical moderate-size connected component of G∗f when q = 2. Self-edges are
not shown. The thick edges show a spanning tree obtained by performing a Breadth-
First Search starting from x.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Conjecture 1. When r is polynomial in n, then with high probability the radius-r
neighborhood of any vertex in G∗f does not contain cliques of size strictly greater

than q2− 1. In addition, every edge belongs to at most one maximal clique with
high probability.

Back to the Trees. Fig. 1 illustrates that the connected components are close
to trees, and this analogy can easily be made rigorous when q = 2. To a vertex
x in a linearity graph G∗f , we associate the unordered, unlabeled tree T [r](G∗f , x)
by performing a Breadth-First Search in G∗f starting from x, and stopping r
edges away from x. It is well-known that any graph traversal induces a spanning
tree of the graph. The tree T [r](G∗f , x) is simply the spanning tree induced by
the BFS (cf. fig. 1).

Lemma 3. If G1, G2 satisfy the properties of Conjecture 1, then:

(G1, x) isomorphic to (G2, y) ⇐⇒ ∀r. T [r](G∗1, x) isomorphic to T [r](G∗2, y)

This transformation of connected components of G∗f into trees serves several
purposes : not only it helps understanding why our three claims hold, but is also
allows a more efficient formulation of algorithm 3. Indeed, Hashable[r](G, x)
can be evaluated by checking if T [r](G, x) has depth r. Lastly, it is well-known
that unordered, unlabeled trees can be canonically labeled in linear time thanks
to a venerable algorithm of Aho, Hopcroft and Ullman [2]. .

Random Trees From Random Linearity Graphs. When f is randomly
chosen, then T [r](G∗f , x) can also be seen as a random variable. Because each

vertex of G∗f has k neighbors with some probability, then each node of T [r](G∗f , x)
also has a given number of children (sometimes called “offspring” in the context
of branching processes) with some probability. Everything looks as if T [r](G∗f , x)
were a random tree where the number of descendant of each node was chosen at
random according to a given offspring distribution. The offspring distribution of
x in T [r](G∗f , x) (i.e., the root of the tree) is almost exactly the degree distribution
of G∗f , which is known by lemma 2 (with the caveat that self-loops are removed).
However, the offspring distribution of non-root nodes is a bit different:

`n(i) = P [a non-root node produces i offspring] =

{
pn,k when i = qk − q2

0 otherwise

where

pn,k = P
[
dim kerDxf = k

∣∣y ∈ kerDxf
]

=
λ(n)λ(n− 2)

λ(k)λ(k − 2)λ(n− k)
· q−k(k−2)

The expression of pn,k can be derived from a reasoning similar to that of the
proof of lemma 2, which can also be found in [21]. It is also possible to compute

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

the expected progeny µ of each non-root node, and the variance σ2 of the offspring
distribution :

µ = 1− 1

qn−2
σ2 = q2(q − 1)

(
1− q2 + 1

qn
+

q2

q2n

)
These two expressions can be derived from the expectation and the variance of
the degree in Gf without too much effort.

When a random tree is sampled by choosing independently the number of
children of each node according to a fixed law, the resulting object is called a
random Galton-Watson tree. These random trees are well-studied [4], and this
wealth of results would be extremely useful to our own purposes. Unfortunately,
in T [r](G∗f , x), the number of descendant of each node is not even pairwise-
independent.

We nevertheless denote by Pn the law of Galton-Watson trees with offspring

distribution `n, and by P
[r]
n the law of such trees conditioned to be of height at

least r. We verified in practice that the following assumption holds very well.

Heuristic Assumption: Over the random choice of f , T [r](G∗f , x) has the same

properties as Galton-Watson trees sampled according to P
[r]
n and truncated at

depth r.

Because µ ≤ 1, trees sampled according to Pn are finite with probability
one [4]. In addition, the probability that a tree sampled according to Pn has
height greater than r is equivalent to 2/(rσ2) ≈ 2/(r · q3) [4]. This justifies
claim i.

However, it follows from this result that the expected height of trees sampled
according to Pn is not finite; this justifies why we stop the BFS after a (finite)
depth. It is also known that in trees sampled according to Pn, the expected
total number of nodes after h generation is h + 1 [42]. It follows that actually
performing the BFS requires on average O (r) matrix operations. This justifies
claim ii.

False Positive Rate. It remains to justify claim iii, the trickiest one. Under
the heuristic assumption that T [r](G∗f , x) follows the law Pn, then claim iii
is equivalent to the following statement: the probability that two random trees

sampled according to P
[r]
n are isomorphic decreases exponentially fast with r.

In other word, we must determine the probability that two random trees are
isomorphic. While this appears to be a natural question, it has (to the best of
our knowledge) not been treated in the literature. We could not establish the
required exponential upper-bound in general, however we proved a strong enough
bound that holds if we are allowed to reject a negligible amount of trees (i.e.,

shrinking a bit the Hashable[r] domain).
We say that a tree has a unique spine decomposition if there is a unique path

starting from the root and reaching a leaf of maximal depth. We also say that
a tree has a unique spine decomposition up to height k if there is a unique path
starting from the root and reaching depth k that extends to a path reaching

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

nodes of maximal depth. Fig 2 shows a tree with a spine decomposition up to
a certain level. Note that it is easy (and efficient) to check whether a given tree
has this property. We now redefine the hashable domain by saying that x ∈ G is
Hashable[h,r] if and only if T [h](G, x) has depth at least h, and admits a unique
spine decomposition up to height r.

h

r

Fig. 2. A Tree of height h with a spine decomposition up height r.

Theorem 2. There exists constants c, d such that the probability that a random

tree sampled according to P
[h]
n has a spine decomposition up to height r is greater

than 1− c · (r/h)− c/r.

Informally speaking, this theorem means than enforcing the existence of a
unique spine decomposition up to some height does not really shrink the hash-
able domain. For instance, one may pick h = n log n and r = n log log n. With
these values, trees of height h have a unique spine decomposition up to height r
asymptotically almost surely.

Theorem 3. There is a constant ε ∈]0; 1[such that if two trees sampled accord-

ing to P
[h]
n have a unique spine decomposition up to height r, then the probability

that they are isomorphic is upper-bounded by εr.

This justifies claim iii. Proofs of these two theorems can be found in Ap-
pendix B. We conclude that modifying the definition of Hashable(G, x) to only
accept x if T [h](G, x) has height h and a unique spine decomposition under height

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

r, with h = n log n and r = n log log n is enough to make algorithm 3 work as
advertised.

References

1. Agrawal, M., Saxena, N.: Equivalence of f-algebras and cubic forms. In Durand, B.,
Thomas, W., eds.: STACS. Volume 3884 of Lecture Notes in Computer Science.,
Springer (2006) 115–126

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company (1974)

3. Alon, N., Blais, E.: Testing boolean function isomorphism. In Serna, M.J., Shaltiel,
R., Jansen, K., Rolim, J.D.P., eds.: APPROX-RANDOM. Volume 6302 of Lecture
Notes in Computer Science., Springer (2010) 394–405

4. Athreya, K.B., Ney, P.: Branching processes. Springer-Verlag, Berlin, New York,
(1972)

5. Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classifi-
cation of finite simple groups. In: FOCS, IEEE Computer Society (1983) 162–171

6. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In:
FOCS, IEEE Computer Society (1979) 39–46

7. Baena, J., Clough, C., Ding, J.: Square-vinegar signature scheme. In: PQCrypto
’08: Proceedings of the 2nd International Workshop on Post-Quantum Cryptogra-
phy, Berlin, Heidelberg, Springer-Verlag (2008) 17–30

8. Bardet, M., Faugère, J.C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving (ICPSS). (2004) 71–75

9. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of the trms signature scheme
of pkc’05. In Vaudenay, S., ed.: AFRICACRYPT. Volume 5023 of Lecture Notes
in Computer Science., Springer (2008) 143–155

10. Billet, O., Gilbert, H.: A traceable block cipher. In Laih, C.S., ed.: ASIACRYPT.
Volume 2894 of Lecture Notes in Computer Science., Springer (2003) 331–346

11. Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In Mat-
sui, M., ed.: ASIACRYPT. Volume 5912 of Lecture Notes in Computer Science.,
Springer (2009) 451–468

12. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanalysis:
Linear and affine equivalence algorithms. In: EUROCRYPT. (2003) 33–50

13. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User
Language. J. Symb. Comput. 24(3/4) (1997) 235–265

14. Bouillaguet, C., Faugère, J.C., Fouque, P.A., Perret, L.: Practical cryptanalysis
of the identification scheme based on the isomorphism of polynomial with one
secret problem. In Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A., eds.: Public
Key Cryptography. Volume 6571 of Lecture Notes in Computer Science., Springer
(2011) 473–493

15. Clough, C., Baena, J., Ding, J., Yang, B.Y., Chen, M.S.: Square, a new multivariate
encryption scheme. In Fischlin, M., ed.: CT-RSA. Volume 5473 of Lecture Notes
in Computer Science., Springer (2009) 252–264

16. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.: EURO-
CRYPT’05. Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

17. Daemen, J.: Limitations of the even-mansour construction. [34] 495–498
18. Ding, J., Wolf, C., Yang, B.Y.: -invertible cycles for multivariate quadratic public

key cryptography`. In Okamoto, T., Wang, X., eds.: Public Key Cryptography.
Volume 4450 of Lecture Notes in Computer Science., Springer (2007) 266–281

19. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Practical Cryptanalysis of
SFLASH. In: CRYPTO. Volume 4622., Springer (2007) 1–12

20. Dubois, V., Fouque, P.A., Stern, J.: Cryptanalysis of SFLASH with Slightly Mod-
ified Parameters. In: EUROCRYPT. Volume 4515., Springer (2007) 264–275

21. Dubois, V., Granboulan, L., Stern, J.: An efficient provable distinguisher for hfe.
In Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., eds.: ICALP (2). Volume
4052 of Lecture Notes in Computer Science., Springer (2006) 156–167

22. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: The even-
mansour scheme revisited. In Pointcheval, D., Johansson, T., eds.: EUROCRYPT.
Volume 7237 of Lecture Notes in Computer Science., Springer (2012) 336–354

23. Even, S., Mansour, Y.: A construction of a cioher from a single pseudorandom
permutation. [34] 210–224

24. Faugère, J.C., Joux, A., Perret, L., Treger, J.: Cryptanalysis of the hidden matrix
cryptosystem. In Abdalla, M., Barreto, P.S.L.M., eds.: LATINCRYPT. Volume
6212 of Lecture Notes in Computer Science., Springer (2010) 241–254

25. Faugère, J.C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and The-
oretical Aspects. In Vaudenay, S., ed.: EUROCRYPT. Volume 4004 of Lecture
Notes in Computer Science., Springer (2006) 30–47

26. Fortin, S.: The graph isomorphism problem. Technical report, University of Alberta
(1996)

27. Fouque, P.A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. [16] 341–353

28. Fouque, P.A., Macario-Rat, G., Perret, L., Stern, J.: Total break of the `-ic sig-
nature scheme. In Cramer, R., ed.: Public Key Cryptography. Volume 4939 of
Lecture Notes in Computer Science., Springer (2008) 1–17

29. Fouque, P.A., Macario-Rat, G., Stern, J.: Key Recovery on Hidden Monomial
Multivariate Schemes. In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lecture
Notes in Computer Science., Springer (2008) 19–30

30. Geiger, J.: Elementary new proofs of classical limit theorems for Galton-Watson
processes. J. Appl. Probab. 36(2) (1999) 301–309

31. Geiselmann, W., Meier, W., Steinwandt, R.: An Attack on the Isomorphisms of
Polynomials Problem with One Secret. Int. J. Inf. Sec. 2(1) (2003) 59–64

32. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor
functions based on multivariate quadratic quasigroups. In: Proceedings of the
American Conference on Applied Mathematics, Stevens Point, Wisconsin, USA,
World Scientific and Engineering Academy and Society (WSEAS) (2008) 44–49

33. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS, IEEE (1986) 174–187

34. Imai, H., Rivest, R.L., Matsumoto, T., eds.: Advances in Cryptology - ASI-
ACRYPT ’91, International Conference on the Theory and Applications of Cryp-
tology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings. In Imai, H., Rivest,
R.L., Matsumoto, T., eds.: ASIACRYPT. Volume 739 of Lecture Notes in Com-
puter Science., Springer (1993)

35. Joux, A., Kunz-Jacques, S., Muller, F., Ricordel, P.M.: Cryptanalysis of the
tractable rational map cryptosystem. [54] 258–274

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

36. Kayal, N.: Efficient algorithms for some special cases of the polynomial equivalence
problem. In Randall, D., ed.: SODA, SIAM (2011) 1409–1421

37. Macario-Rat, G.: Cryptanalyse de schémas multivariés et résolution du problème
Isomorphisme de Polynômes. PhD thesis, Université Paris Diderot — Paris 7 (June
2010)

38. McKay, B.: Computing automorphisms and canonical labelling of graphs. In:
Lecture Notes in Mathematics. (1978) 223–232

39. Miyazaki, T.: The complexity of mckay’s canonical labelling algorithm. In Finkel-
stein, L., Kantor, W.M., eds.: Groups and computation, II. Volume 28 of DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science., AMS and DI-
MACS (1997) 239–256

40. Mohamed, M., Ding, J., Buchmann, J., Werner, F.: Algebraic attack on the mqq
public key cryptosystem. In Garay, J., Miyaji, A., Otsuka, A., eds.: Cryptology and
Network Security. Volume 5888 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2009) 392–401

41. Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCar-
ron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft, Waterloo ON,
Canada (2005)

42. Pakes, A.G.: Some limit theorems for the total progeny of a branching process.
Advances in Applied Probability 3(1) (1971) 176–192

43. Patarin, J.: Hidden fields equations (hfe) and isomorphisms of polynomials (ip):
Two new families of asymmetric algorithms. In: EUROCRYPT. (1996) 33–48

44. Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomorphisms of
Polynomials. In: EUROCRYPT. (1998) 184–200

45. Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomorphisms of
Polynomials – Extended Version. available at http://minrank.org/ip6long.pdf

(1998)
46. Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One

Secret Problem. [16] 354–370
47. Pointcheval, D.: A new identification scheme based on the perceptrons problem.

In: EUROCRYPT. (1995) 319–328
48. Sakumoto, K.: Public-key identification schemes based on multivariate cubic poly-

nomials. In Fischlin, M., Buchmann, J., Manulis, M., eds.: Public Key Cryptogra-
phy. Volume 7293 of Lecture Notes in Computer Science., Springer (2012) 172–189

49. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In Rogaway, P., ed.: CRYPTO. Volume 6841
of Lecture Notes in Computer Science., Springer (2011) 706–723

50. Shamir, A.: An efficient identification scheme based on permuted kernels (ex-
tended abstract). In Brassard, G., ed.: CRYPTO. Volume 435 of Lecture Notes in
Computer Science., Springer (1989) 606–609

51. Stern, J.: A new identification scheme based on syndrome decoding. In Stinson,
D.R., ed.: CRYPTO. Volume 773 of Lecture Notes in Computer Science., Springer
(1993) 13–21

52. Stern, J.: Designing identification schemes with keys of short size. In Desmedt,
Y., ed.: CRYPTO. Volume 839 of Lecture Notes in Computer Science., Springer
(1994) 164–173

53. Vaudenay, S.: A Classical Introduction to Cryptography: Applications for Com-
munications Security. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)

54. Vaudenay, S., ed.: Public Key Cryptography - PKC 2005, 8th International Work-
shop on Theory and Practice in Public Key Cryptography, Les Diablerets, Switzer-

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

land, January 23-26, 2005, Proceedings. In Vaudenay, S., ed.: Public Key Cryp-
tography. Volume 3386 of Lecture Notes in Computer Science., Springer (2005)

55. Wang, L.C., Hu, Y.H., Lai, F., yen Chou, C., Yang, B.Y.: Tractable rational map
signature. [54] 244–257

56. Wilf, H., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary
and ”q”) multisum/integral identities. Inventiones Mathematicae 108 (1992) 575–
633 10.1007/BF02100618.

A Expected Progeny and Variance

By definition the expected progeny is:

µ =

n∑
k=2

pn,k
(
qk − q2

)
Via an analog of lemma 2, this can be rephrased in terms of the properties of a
random linear map h. Indeed, it is shown in [21] that:

pn,k = P
[
dim kerDxf = k

∣∣y ∈ kerDxf
]

= P
[
dim kerh = k

∣∣x, y ∈ kerh
]

And therefore:

µ =

(
n∑

k=2

P
[
dim kerh = k

∣∣x, y ∈ kerh
]
qk

)
− q2

The sum is in fact the expected cardinality of the kernel of a random linear map
known to vanish on a fixed 2-dimensional subspace:

µ = E
[
card kerh

∣∣x, y ∈ ker f
]
− q2

Thus, to establish the expression of µ, we determine the expected cardinality of
the kernel of a random linear map h known to vanish on a fixed subspace F of
dimension s. Even though this seems to be an elementary question, we could not
find the result in the existing literature.

Lemma 4. Let h be a uniformly random endomorphism of (Fq)
n

, vanishing on
a subspace F of (Fq)

n
, with dimF = s. Then:

E
[
card kerh

∣∣F ⊆ ker f
]

= qs + 1− 1

qn−s

This lemma establishes the expression of µ (and we postpone its proof a little
bit). Let us now turn our attention to the variance σ2:

σ2 =

[
n∑

k=2

pn,k
(
qk − q2

)2]− µ2

=

(
n∑

k=2

pn,k · q2k
)
− 2q2

(
n∑

k=2

pn,k · qk
)

+ q4 − µ2

=

(
n∑

k=2

pn,k · q2k
)
−

(
n∑

k=2

pn,k · qk
)2

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Thanks to the relation between pn,k and random linear maps outlined above, we
see that σ2 is in fact exactly the variance of the cardinality of the kernel of a
random linear map known to vanish on two fixed vectors.

Lemma 5. Let h be a uniformly random endomorphism of (Fq)
n

, vanishing on
a subspace F of (Fq)

n
, with dimF = s. Then the variance of the cardinality of

its kernel is:

qs(q − 1)

(
1− qs + 1

qn
+

qs

q2n

)
This establishes the expression of σ2. We know give the proofs of the two lemma.

Proof (of lemma 4).

En = E
[
card ker f

∣∣F ⊆ ker f
]

=

n∑
k=s

P
[
dim ker f = k

∣∣F ⊆ ker f
]
qk

=

n∑
k=s

λ(n)λ(n− s)
λ(k)λ(k − s)λ(n− k)

q−k(k−s)qk

A combinatorial and/or elementary argument completely eluded us. We there-
fore use the method of “creative telescoping” to establish the result by induction
on n. First, we notice that the announced results holds when n = s. Let us
therefore assume n > s. We denote by T (n, k, s) the hairy term under the sum.
It is a q-hypergeometric term because if we set X = qn and Y = qk, we see that
the two following ratios are rational functions of X and Y :

T (n+ 1, k, s)

T (n, k, s)
=
q2X2 − (q + qs+1)X + qs

q2X2 − qXY
T (n, k + 1, s)

T (n, k, s)
= qs+2 X + Y

X (qY − qs) (qY − 1)

We thus used the q-analog of Zeilberger’s algorithm [56] (as implemented in
Maple [41]), and it found the nice recurrence relation:

a · T (n+ 1, k, s)− b · T (n, k, s) = g(n, k + 1, s)− g(n, k, s) (?)

where:

a = qn+1 + qn+s+1 − qs+1

b = qn+1 + qn+1+s − qs

g(n, k, s) =

(
qk − qs

) (
qk − 1

) (
qn+s+1 − qn+s+2 − qk+s + qn+k+1 + qn+k+s+1

)
q2k (qn+1 − qk)

T (n, k, s)

The point is that summing (?) over k = s, . . . , n− 1 yields:

a (En+1 − T (n+ 1, n+ 1, s)− T (n+ 1, n, s))−b (En − T (n, n, s)) = g(n, n, s)−g(n, s, s)

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

At this point, it is easy to find that g(n, s, s) = 0, and we check (using a computer
algebra system!) that:

g(n, n, s) + a · (T (n+ 1, n+ 1, s) + T (n+ 1, n, s)) + b · T (n, n, s) = 0

Thus, we have established that:(
1 + qs − 1

qn−s

)
En+1 =

(
1 + qs − 1

qn+1−s

)
En

Thus, if the result holds at rank n, then it also holds at rank n+ 1. ut

Proof (of lemma 5). The variance is:

Vn =

n∑
k=s

(
λ(n)λ(n− s)

λ(k)λ(k − s)λ(n− k)
q−k(k−s)

)
q2k︸ ︷︷ ︸

Un

−
(
qs + 1− 1

qn−s

)2

We will first demonstrate by induction on n ≥ s that:

Un = q2s + 1 + (1 + q)

(
qs − 1

qn−s
− 1

qn−2s

)
+

1

q2n−1−2s
(♣)

When n = s, we should have Un = q2n, and looking at (♣) carefully reveals
that our expression of Un simplifies to this value. Let us therefore assume n > s,
and let us again denote by T (n, k, s) the hairy term under the sum. It is again
a q-hypergeometric term, and running the q-analog of Zeilberger’s algorithm
yields:

a · T (n+ 1, k, s)− b · T (n, k, s) = g(n, k, s)− g(n, k + 1, s) (?)

where:

a = −qn+s+2 + qs+1+2n + q1+2n + q2s+2 − q2s+n+1 − qs+1+n − q2s+2+n + q2s+2n+1 + qs+2+2n

b = −q1+2n + qn+s − qs+1+2n + qs+1+n − q2s + q2s+n+1 + q2s+n − q2s+2n+1 − qs+2+2n

g is a complicated term with a singularity when n+ 1 = k. We again notice that
g(n, s, s) = 0 and that:

a · T (n+ 1, n+ 1, s) + a · T (n+ 1, n, s)− b · T (n, n, s) = g(n, n, s)

So that summing (?) over k = s, . . . , n− 1 and exploiting the previous equation
yields:

a · Un+1 = b · Un

By induction hypothesis, (♣) holds at rank n. Plugging the expression of Un into
this recurrence relation and simplifying shows that (♣) holds at rank n + 1 —
please use a computer algebra system if you really want to verify this. Moving
back to the expression of Vn, it is not difficult to verify that the result of the
lemma holds. ut

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

B Isomorphism of Random Trees

For any n ≥ 3, let T be a tree sampled according to P (i.e., with offspring
distribution `), and let P[h] be the law of T conditioned to have height at least
h.

In this section, all quantities depend on n (the random tree T, the law P[h],
the offspring distribution `, the height h, etc.), but we do not always make this
dependency explicitly visible by writing subscripts or superscripts, in order to
make notations less cumbersome. In addition, we also write P[h][·] instead of
P
[
·
∣∣Height(T) ≥ h

]
.

We need a criterion to decide whether two conditioned trees are isomorphic or
not, and we need it to be simple enough so that we may evaluate the probability
that it holds. The criterion we will use is the following: two isomorphic trees
with a unique spine decomposition must have empty subtrees emanating from
the backbone at the exact same heights. Of course, if the spine decomposition is
unique up to height r, then this holds only up to height r. This will intuitively
show that two random trees with a unique spine decomposition up to height r
are isomorphic with a probability that gets exponentially small in r. We will
make this intuition formal later, but we must first introduce some properties of
the spine decomposition.

We decompose a conditioned tree (i.e., a tree of law P[h]) into a backbone
(or spine) going from the root to height h, on which we graft a given number of
unconditioned Galton-Watson trees at each of its nodes. Looking at all nodes of
height r, if only one of them has descendants at height h then the spine up to
height r is uniquely determined: necessarily, it is the path in the tree going from
the root to this node (fig. 2 illustrates this).

Let us work for a moment with ordered Galton-Watson trees. That is, we also
record who is the descendant of each parent and offspring are ordered (so that
we can talk about brothers to the left or to the right of an individual). In [30],
Geiger shows that if we define the sequence of independent random variables
(Vm, Ym) ,m ∈ N by

P [Vm = j, Ym = k] =
P [Height(T) ≥ m− 1]

P [Height(T) ≥ m]
·P [Height(T) < m− 1]

j−1 · `(k),

for 1 ≤ j ≤ k <∞, then Tn conditioned to have height at least h has the same
law as the random tree constructed inductively as follows:

– The root (i.e., the first node of the spine) has Yh offspring.
– To each of the Vh−1 first offspring node we graft a Galton-Watson tree with

offspring distribution ` and conditioned to have height (strictly) less than
h − 1. These Vh − 1 trees are independent of each other (and of the rest of
the construction). These subtrees are on the left of the backbone on fig. 3.

– To each of the Yh − Vh last offspring, we graft an unconditioned Galton-
Watson tree with offspring distribution ` (again, these trees are independent
of each other and of the rest of the construction). These subtrees are on the
right of the backbone on fig. 3.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Fig. 3. Illustration of the spine decomposition (this is Figure 1 from [30]). This shows
the Galton-Watson tree conditionned on non-extinction at generation n and n + 1
respectively. GW (k) denotes a Galton-Watson tree conditioned to be extinct at gen-
eration k. The subtrees to the right of the line of descent of the left-most particle are
ordinary Galton-Watson trees.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

– The Vh-th offspring node continues the spine. It has Yh−1 offspring, the
first Vh−1 ones are the roots of i.i.d. Galton-Watson trees conditioned to
have height less than h − 2, the last Yh−1 − Vh−1 are the roots of i.i.d.
unconditioned Galton-Watson trees and the spine carries on with the Vh−1-
th offspring, which has Yh−2 offspring nodes, and so on.

Observe that the marginal distribution of Ym is given by

P [Ym = y] =
1− P [Height(T) < m− 1]

y

P [Height(T) ≥ m]
· `(y), (1)

The spine can be seen as a“prolific” line of descent that survives up to generation
h by producing a biased number of offspring, while the other individuals of the
population reproduce essentially according to the initial offspring distribution
(we refer to [30] for an explanation of the fact that trees emanating from brothers
to the left of the spine are conditioned not to have descendants at generation h).

Proof (proof of theorem 2). We show that in a tree sampled according to P[h],
with high probability only one path from the root to height r extends to a path
reaching height h. Call this event A. Since this property is purely topological,
then it does not matter whether the tree is ordered or not. We obtain the desired
result by bounding from below the probability of A by the probability that all
trees emanating from the spine under height r are of height less than h− r. The
independence of this family of trees, together with the fact (easy to check) that
for every integer i in the interval {1, . . . , r − 1}

P
[
Height(T) < h− r

∣∣Height(T) < h− i
]
≥ P [Height(T) < h− r] ,

enables us to write

P [A] ≥
r−1∏
i=0

E
[
P [Height(T) < h− r]Yh−i−1

]
≥ E

[
P [Height(T) < h− r]

∑r−1
i=0 Yh−i

]
. (2)

Now, as n→ +∞, all the pn,k (for k ∈ {3, . . . , n}) converge to a finite limit p∞,k

, the expected progeny µ converges to 1 (recall that µ < 1 for every n), and
finally the variance σ2

n converges to q3 − q2. The last two convergences happen
exponentially fast in n, therefore the same proof as that of Theorem 3.1 in [30]
(in which µ = 1 for all n) shows that whenever (mn)n≥1 tends to infinity at most
polynomially, we have

lim
n→∞

mn · P [Height(T) ≥ mn] =
2

σ2
. (3)

Furthermore, we have the following lemma.

Lemma 6. There exist constants C3, C4 > 0 such that for every n ≥ 3,

P

[
r−1∑
i=0

Yh−i > rC3

]
≤ C4

r
.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

We postpone the proof of Lemma 6 until the end of the proof of Theorem 2.
Armed with (3) and Lemma 6, we can come back to (2) and write for every n

P [A] ≥ E
[
P [Height(T) < h− r]rC3 · 1{∑r−1

i=0 Yh−i≤C3r}
]

≥
(

1− C4

σ2h

)rC3

× P

[
r−1∑
i=0

Yh−i ≤ rC3

]

≥ e− r
hC6

(
1− C4

r

)
≥ 1− r

h
C7. (4)

Note that for the third inequality, use the fact that 1 − x ≥ e−2x for every
x ∈ [0, 1/2]. What (4) shows is that for every n ≥ 3, if we sample a Galton-
Watson tree T according to P[h], then with probability at least 1 − C7

r
h there

will be a unique spine decomposition under height r.

Proof (of lemma 6). We use Markov’s inequality (in a Chebychev-like fashion)
as follows: if C3 > 0, we have for each n ≥ 3

P

[
r−1∑
i=0

Yh−i > rC3

]
= P

[
r−1∑
i=0

(Yh−i − E [Yh−i]) > C3 · r −
r−1∑
i=0

E [Yh−i]

]

≤

E

(r−1∑
i=0

(Yh−i − E [Yh−i])

)2

(
C3 · r −

r−1∑
i=0

E [Yh−i]

)2 . (5)

Let us show that the numerator in the right-hand side of (5) is of order r, while
the denominator is of order r2 whenever C3 > 0 is large enough. These two points
rely on appropriate bounds on the first two moments of all Yh−i’s (observe that
the numerator is in fact the sum of the variances of the Yh−i’s). Indeed, recall
from (1) that for every k ∈ {3, . . . , n},

P
[
Yh−i = qk − q2

]
=

1− P [Height(T) < h− i− 1]
qk−q2

P [Height(T) ≥ h− i]
· pn,k

and these are the only possible values for Yh−i. Because 1−e−x ≤ x for all x ≥ 0,
we can write for every i ≤ r − 1 :

1− P [Height(T) < h− i− 1]
qk−q2 ≤ −

(
qk − q2

)
logP [Height(T) < h− i− 1]

≤ −
(
qk − q2

)
logP [Height(T) < h− r − 2] .

We thus have for every such integer i

1− P [Height(T) < h− i− 1]
qk−q2

(qk − q2) · P [Height(T) ≥ h− i]
≤ − logP [Height(T) < h− r − 2]

P [Height(T) ≥ h]
.

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Moreover, because λ(·) is decreasing,

λ(n)λ(n− 2)

λ(k)λ(k − 2)λ(n− k)
≤ lim

n→∞

1

λ(n)
=: Cq.

Combining the above, we arrive at

P
[
Yh−i = qk − q2

]
≤ − logP [Height(T) < h− r − 2]

P [Height(T) ≥ h]
· Cq ·

(
qk − q2

)
q−k(k−2)

for every n ≥ 3 and k ∈ {2, . . . , n}. This yields

E [Yh−i] ≤ −
logP [Height(T) < h− r − 2]

P [Height(T) ≥ h]
· Cq ·

n∑
k=3

(
qk − q2

)2
q−k(k−2)

E
[
(Yh−i)

2
]
≤ − logP [Height(T) < h− r − 2]

P [Height(T) ≥ h]
· Cq ·

n∑
k=2

(
qk − q2

)3
q−k(k−2)

Now, by (3) we have

lim
n→∞

− logP [Height(T) < h− r − 2]

P [Height(T) ≥ h]
= 1,

and furthermore,

∞∑
k=3

(
qk − q2

)2
q−k(k−2) =: m1 <∞ and

∞∑
k=3

(
qk − q2

)3
q−k(k−2) =: m2 <∞.

As a consequence, there exists C > 0 such that for every n ≥ 3, we have

r−1∑
i=0

E [Yh−i] ≤ Cm1r,

and (using the independence of all Ym’s)

E

(r−1∑
i=0

Yh−i − E [Yh−i]

)2
 =

r−1∑
i=0

Var (Yh−i) ≤ rC ′,

for a constant C ′ > 0 depending on m1 and m2. Choosing C3 > Cm1 and coming
back to (5), we obtain the existence of C4 > 0 such that for every n ≥ 3,

P

[
r−1∑
i=0

Yh−i ≥ rC3

]
≤ C4

r
.

This completes the proof of Lemma 6. ut

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

Proof (proof of theorem 3). Let us use again T (from the proof of theorem 2)
and its spine decomposition under the additional conditioning that all trees
emanating from the spine under height r are of height smaller than h − r. We
write P̃[h][·] as a shorthand for this conditionnal probability. By construction,
each brother of the i-th node of the spine (0 ≤ i ≤ r − 1) has no offspring with
probability

e := P
[
T = ∅

∣∣Height(T) ≤ h− r
]

=
P [T = ∅]

P [Height(T) ≤ h− r]
=

`n(0)

P [Height(T) ≤ h− r]
.

(6)

Brother to the right or to the left does not matter here since the condition at the
denominator is stronger than Height(T) < h − i − 1 for our range of integers
i. Let us use (6) to obtain some bounds (away from 0 and 1), uniform in n and
i ≤ r− 1, for the probability that all of the Yh−i− 1 brothers of the i-th node of
the spine have zero offspring. Because `(0) = pn,2 and using (3), the right-hand
side of (6) is equivalent as n→∞ to

`(0)

1− 2/(σ2 · h)
'

n→∞
lim

n→∞

λ(n)

λ(2)
=: e ∈]0, 1[. (7)

Thus, if we denote α = P̃[h] [no nephews at height i], then by definition

α ≥ P
[
Yh−i = q3 − q2

]
· (e)q

3−q2−1

Using (1) and (3),

α ≥
1−

(
1− 2

σ2(h− i− 1)
+ o

(
1
h

))q3−q2

2

σ2(h− i)
+ o

(
1
h

) · pn,2 · (e)q
3−q2−1

The fraction is equal to q3 − q2 + o(1/(h)), and given the expression of pn,3 as
well as (7), the lower bound on α is equivalent to

q3 − q2

q3
· e

q3−q2−1

λ(1)λ(3)
·
∞∏
j=1

(
1− 1

qj

)
= eq

3−q2−1
∞∏
j=4

(
1− 1

qj

)
∈]0, 1[.

Likewise,

P̃[h][at least one nephew at height i] ≥ P
[
Yh−i = q3 − q2

] (
1− (e)q

3−q2−1
)

' (1− eq
3−q2−1)

∞∏
j=4

(
1− 1

qj

)
∈]0, 1[.

Hence, since these two probabilities belong to]0, 1[for all n ≥ 3 and i ≤ r − 1,
and belong to a smaller interval of]0, 1[bounded away from 0 and 1 whenever

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

n is large enough, this provides the existence of κl, κu ∈]0, 1[such that for every
n ≥ 3 and i ∈ {0, . . . , r − 1},

1− κl ≤ P̃[h][no nephews at height i] ≤ κu. (8)

Now, let T,T′ be two trees of height at least h and such that their spine
decompositions are unique under height r. For every i ∈ {0, r − 1}, let γi (resp.
γ′i) be the indicator function of the event that all brothers of the i-th node of the
spine have no offspring. It follows from the properties of the spine decomposition
that for every n ≥ 3, {γi, 0 ≤ i ≤ r − 1} form a family of independent random
variables and by (8), we have

P̃[h]
[
γi = 1

]
≤ κu and P̃[h]

[
γi = 0

]
≤ κl.

Comparing the absence or presence of nephews of the spine in T and in T′, and
defining the constant κ = max(κl, κu) < 1, we obtain:

P̃[h][T = T′] ≤ κr.

ut

ha
l-0

08
25

50
3,

 v
er

si
on

 1
 -

23
 M

ay
 2

01
3

