
J. Phys. III FFance 7 (1997) 2079-2102 OCTOBER1997, PAGE 2079

Improved Characterization of Non-Stationary Flows Using a

Regularized Spectral Analysis of Ultrasound Doppler Signals

A. Herment (~,*), J.-F. Giovannelli (~), G. Demoment (~),
B. Diebold (~) and A. Delouche (~)

(~) INSERM, Unit4 66, Imagene Biom4dicale, Morphologique et Fonctionnelle,

CHU PitiA Salp4tribre, 91 boulevard de l'H6pital, 75634 Paris Cedex13, France

(~) Laboratoire des Signaux et Systbmes, CNRS ESE UPS ESE, Plateau de Moulon,

91192 Gif-Sur-Yvette Cedex, France

(Received 20 December 1996, revised 23 May 1997, accepted 4 July 1997)

PACS.87 lo +e General, theoretical and mathematical biophysics (including logic of

biosystems, quantum biology, and relevant aspects ofthermodynamics,
information theory, cybernetics, and bionics)

PACS.87.45.-k Biomechanics, biorheology, and biological fluid dynamics

Abstract. This paper addresses the problem of ultrasound Doppler spectral estimation

when only a short observation set is available. Following the work of Kitagawa and Gersch,

the spectra are described by a long autoregressive model whose coefficients are estimated in a

Bayesian regularized least squares framework accounting for spectral smoothness in order to

avoid too spiky spectra. The critical computation of the tradeoff parameters is addressed using
both maximum likelihood and generalized cross validation criteria in order to automatically tune

the smoothness constraint. The practical potential of the method is demonstrated using both

simulated and m intro signals. In a Monte-Carlo simulation study, investigation of quantitative
indices such as quadratic distances shows interesting improvements with respect to the usual

least squares method whatever the window data length and the signal to noise ratio. When

applied to actual Doppler signals, the proposed method offers better description of the Doppler

spectrum morphology than the usual least squares one.

1. Introduction

Spectral analysis of ultrasound Doppler signals is an efficient tool for blood flow analysis.
Actually, in ideal conditions such as stationary flow, first order statistics for the backscattering
of ultrasound by blood, and flow insonification by an infinite plane wave, the Doppler signal
is shown to be a zero-mean, stationary, Gaussian random process which can be completely
specified by its autocorrelation function or equivalently by its Power Spectral Density (P SD [3].
The Doppler signal PSD, commonly referred to as the "Doppler spectrum", provides a useful

image of the velocity histogram of red blood cells, which statistically describes the flow as

a distribution of the number of red cells traveling through the sample volume at a given
velocity [34].
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However, in practical applications, these ideal conditions are not fulfilled [8] and three main

factors distort the image of the velocity histogram of red blood cells:

Physical factors. Backscattering of ultrasound by blood is a highly complex non linear

phenomenon [3] due in particular to the aggregation of red blood cells which can vary

even during the same cardiac cycle. The limited size of the sample volume induces, among
other effects, an artificial increase in the Doppler spectrum bandwidth [7, 26]. Finally,
the wavefront is distorted [4], especially by phase cancellation effects [34] induced by
intervening media located between the ultrasound transducer and the analyzed flow.

Physiological factors. Physiological flows are essentially non-stationary ones, mainly
during the ascending and descending systolic phases of the cardiac cycle.

Estimation factors. Computation of the Doppler spectrum itself can induce severe dis-

tortions in the histogram image.

The physical factors are numerous and are described by the acoustic physics. However, the

quality of flow description depends directly on the ability of the spectral analysis method to

take into account the physiological factors (i. e. the non-stationarity of the Doppler signal) and

to provide a more reliable spectrum than with the currently used Fourier methods.

1.I. NON-STATIONARY SPECTRAL ANALYSIS. The problem of non-stationary analysis of

Doppler signals was addressed recently by Guo et al. [16] using a signal modelization corre-

sponding to the Doppler data recorded in a normal femoral arterj. Time-frequency spectral
analysis based on modern Cohen's class distributions ill]

were used and compared to para-
metric AR stationary spectral analysis for Signal to Noise Ratios (SNR) ranging from infinity

to 10 dB. The spectral analysis methods were classified with respect to their Integrated Mean

Square Error (IMSE). The best results were obtained using the Bessel Distribution while the

stationary AutoregRessive (AR) approach and the Choi-Williams distribution instead of a

slightly 30% higher IMSE
were considered by the author as valuable alternatives. However,

a significant gain was obtained for the computation times (up to 7.5) using the parametric
methods.

Aiming at practical implementation of the spectral analysis of Doppler signal, we read-

dress the spectral analysis in a parametric framework, assuming the pseudo-stationarity of the

Doppler signal in short enough windows. The following survey of the relevant literature is used

as a basis for our hypotheses.

1.2. PARAMETRIC SPECTRAL ESTIMATION OF STATIONARY SIGNALS. Parametric spectral
analysis has gained interest for Doppler signal analysis, as an alternative to Fourier analysis.
This method consists of I) defining specifically a time model for

the signal which provides

a correct compromise between a good signal description and a stable spectral estimate, it)
computing the parameters of this model, and finally, iii) introducini these parameters into the

theoretical expression of the model spectrum.

1.2.1. Model of the Doppler Signal. Guo et al. [18] suggested that the quadrature Doppler
signal recorded at peak systole nearby the aortic valve can be modeled as a complex AR process

arguing that the modeling residual has
a white noise characteristic when the Akaike Information

Criterion (AIC) is used for optimizing the model order. However, this assumption which is

true for long windows, can be debatable when using shorter windows for which the model

order is often underestimated by the AIC criterion, as shown by Kaluzinski [20]. Conversely,
Vaitkus and Cobbold [44] indicate that due to the transit time effect of the red blood cells



N°10 SPECTRAL ESTIMATION THROUGH REGULARIZATION 2081

within the ultrasound beam, the Doppler signal is totally decorrelated beyond a time lag equal
to this transit time because the distribution of red blood cells has completely changed within

the sample volume. They concluded that
a Moving Average (MA) part must be taken into

account in the Doppler signal model. Finally, Kay and Marple showed in [21] that
an

AR

process converts into an AutoRegressive Moving Average (ARMA) one when it is corrupted
by a white Gaussian additive noise. From this standpoint, because of the possible variations

of the SNR during the cardiac cycle (the SNR sometimes falls down during diastole, due to

the clutter rejection filter and the flow characteristics), the Doppler signal should rather be

modeled as an AR process in systole and either as an AR or an ARMA process in diastole.

1.2.2. Model Order Numerous criteria have been proposed to estimate the AR model order.

These criteria are generally effective for long data sets. However, their performance degrades
differently when the Doppler window is reduced. Among the eventual criteria, Schwindlein and

Evans [39] showed that the Final Prediction Error (FPE) criterion iii, the AIC [2], and the AR

transfer function criterion (CAT) [36] give coherent results and a correct order selection for

long data windows and AR model; they also showed that the First Zero-Crossing of the auto-

correlation function (FZC) is less effective Yamaguchi [45] emphasized the fact that the best

criterion is the first local minimum of the AIC rather than the FPE criterion whose minimum

cannot always be clearly identified on short data sets. Vaitkus et al. [44] preferred using the Pao

and Lee criterion [35] which studies the conditioning of the system as a function of the model

order, and the Cadzow criterion [9] which examines the eigen structure of an over determined

system of equations using a
Singular Value Decomposition (SVD) of the corresponding matrix.

However, for short Doppler windows, all these criteria tend to underestimate the model order

when compared to the "best order" defined as the one providing the most convenient Doppler
spectrum for clinical use [20]. Kitney et al. [25] pointed out that an AR order much larger than

the one given by the FPE is necessary to find out deterministic structures in poststenotic flow

disturbances. Barbaresco [5] proposed a regularized test derived from the criterion described

by Ligget [27]. This new approach should iniprove consistency of the test on small sets of data,

but no quantitative performance has yet been provided.

1.2.3. Parameter Estimation. Schlindwein and Evans [39] used the Maximum Entropy
Method (MEM) (Levinson-Durbm algorithm applied to the biased autocorrelation function

estimator). Yamaguchi [45) proposed a modified AR-MEM method derived from the original
Burg method [21] and integrating ensemble averaging concept. Kaluzinski [20) used the PAR-

COR algorithm [29] Vaitkus et al. [43] showed that the Yule-Walker algorithm provides better

results than the MEM and the Least Squares (LS) approach [31) with respect to integrated

mean square error and noise robustness

These methods are derived in a LS framework and related to usual empirical estimation of

the correlation function. Moreover, they rely on the resolution of a linear system of equations.
From this stand point, they are adapted to low computational complexity algorithms. Recently,
regularized versions of Levinson and Burg algorithms (6) have become available that should

still improve the efficiency of these methods.

1.2.4. Comparison of the Di1Ferent Estimation Methods. Vaitkus and Cobbold [44] addressed

the choice of the best parametric estimation method for Doppler signals. They used for that

purpose the stationary model of Mo and Cobbold [32] corresponding to the CW Doppler signal
recorded at peak systole in a carotid artery. The comparison between ARMA, AR and MA

models was made using 10 ms data sets (256 Doppler samples) and different SNR ranging from

infinity to 0 dB. Numerous algorithms were compared for the determination of the model order
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and for the estimation of the model parameters. The authors concluded that the best results

were obtained using:

The ARMA model with SVD algorithm described by Cadziw [9] for estimating the AR

and the MA parameters. As for the determination of the order of the AR part, again, the

best results were given by the Cad20w's procedure described in [9] and, for the MA part
of the model, by a non linear. approximate likelihood optimization consisting in selecting

successive values of the MA order and testing the whiteness of the residues [8] for the

MA part of the model

The AR parameters calculated through the Yule-Walker system of equations [23] and

the Pao and Lee [35] or Cadzo,v [9] criteria for estimating the model order, which was

estimated around 8 [43].

Comparison of the IMSE for these methods indicates a slight superiority for the ARMA

model for high SNR signals and better results for the AR model when the SNR becomes lower

than 10 dB. However, estimation of the AR model is four times faster than computation of the

ARMA one.

1.3. PSEUDO-STATIONARY SPECTRAL ANALYSIS. The previous results by Guo et al. [16j
and Vaitkus et al. [43] and [44] lead us to investigate the possibility of estimating the Doppler
spectrum in very short windows in which the Doppler signal can be assumed stationary.
Guo et al. ii?], evaluating the normality and stationarity of the Doppler signal recorded be-

hind aortic valves concluded that using a 10 ms window was acceptable in practice because

82% of the recorded segments were considered as stationary but they also indicated that using
shorter windows would be preferable. Talhamy and Kitney [40] stressed that 5 or even 2.5 ms

windows could be best fitted to resolving detailed flow structures. In such conditions, using a

conventional 5 kHz PRF velocimeter, 25 samples (for 5 ms windows)
or even only 12 samples

(for 2.5 ms windows) are available for spectral estimation.

This paper describes a method for spectral analysis of Doppler signals achieving a compro-

mise between a short analysis window for assessing the non-stationarity of the Doppler signal
and a reasonable computation complexity for providing practical applications.

As already stated in Section 1.2.I and 1.2 2, since the choice between an ARMA and an

AR model appears very difficult, since the criteria proposed for objective order selection

seem to underestimate the model order and, finally, stating (Wold decomposition theo-

rem) that any ARMA process can be represented by a high order AR process, an AR

model with the highest possible order will be used for spectral analysis. Namely, the

number of parameters of the AR model will be set to the number of Doppler data in the

analysis window. At this step we assume that this high model order should be able to

describe a wide variety of Doppler signals and that it should enable the Doppler signal
to be accurately modeled even when using short windows.

The strict LS framework on which the classical estimation) of the model parameters
is grounded (see Sect. 1.2.3 and 1.2.4) will be reformulated in order to introduce a

regularization component to enhance the estimate stability wljile keeping a linear system
of equations m order to cope with computational efficiency.

Section 2 introduces smoothness priors used for regularization~of the spectral estimates

obtained with long AR models; Section 3 is devoted to solutions for estimating the trade off

parameters of this model. Section 4 presents the methodology of~the simulation study and

Section 5 comments the obtained results. Finally, Section 6 describes the development of a

suboptimal algorithm aiming at practical applications.
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2. Smoothness Prior and Long AR Models

2. I. LIMITATION OF CONVENTIONAL AR ESTIMATION As mentioned in the introduction,
the Doppler signal x =

[xi, xi,
,

xN]~, where superscript t denotes a transpose, is assumed to

be a zero-mean stationary Gaussian N dimensional vector. It is well known that the statistical

characteristics of such a vector are entirely summarized in its covariance matrix R, and that

its probability density function is-

fxjR(xjR)
=

(2~r)~~/~detR~~/~exp
- (x~R~~x)j

(1)
2

Since under our assumptions the N x N covariance matrix R is Toeplitz symmetric, it can clearly
be parameterized by a N dimensional parameter vector 9. This vector can be equivalently
chosen as: N correlation lags, N reflection coefficients, N cepstral parameters, N eigen values

of the Toeplitz matrix R or (N I) AR parameters and noise power.

Thus, the previous probability density ix jR(xjR), given equation (I ), can be rewritten simply
fxje(xj9). Hence, it is to be emphasized that the spectral estimation problem is the one of 9

estimation i.e. the estimation of N parameters from N observations.

A common approach to the parameter estimation problem is maximum likelihood. Such an

approach is usually justified on the basis of its asymptotic unbiased and minimum variance

properties but may fail in a non asymptotic situation. Nevertheless the following part is devoted

to ML estimation since this approach seems to be often desired and since the likelihood is one

of the two elements of our approach.
As the density for x given equation (I),

seen as a function of 9, is also the 9 likelihood

L19)
=

ix slx19), 12)

it is possible to estimate 9 through a maximum likelihood technique. This technique consists

of choosing 9 as the maximizer of the probability of the observed data:

9ML
# arg max

L(9). j3)

Such an expression for the likelihood is highly non linear with respect to 9 due to the presence

of the determinant and the inverse of R. Several techniques [22, 38] were proposed in order

to maximize L(9) with respect to 9, but this very difficult non linear optimization problem is

untractable for real time applications.
In order to avoid this problem, a particular choice for 9 and an approximation of the likeli-

hood are made, leading to a computationally efficient estimator. Generally, 9 is chosen as the

-vector of AR coefficients

ai

9
= a =

~~

,

(4)

-1~

and as long as the PSD is not sharply peaked an approximate expression for the likelihood is

derived in [23]

fX(R(X)~) (~~~~~ ~~~~~~
~(~~

~~~~~~
~~~l~~~

Where al represents the variance of the generating noise. The data vector x and the data

matrix X (also called observation vector x and observation matrix X)
are designed in the
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classical manner [23, 30] as follows:

xi 0 0 0

z2 Xl 0 0

X3 ~2 Xl 0

z~ X3 X2 0

X "
,

X
#

(6)
XN ~N-I XN-2 ~2 Xl

0 0 XN-I XN-2

0 0 XN XN-1

0 0 0 0 xN

Equation (5) clearly shows that the maximization of the approximated likelihood is equivalent

to the minimization of the usual LS criterion [23, 30].

Qola)
=

lx Xa)~lx Xa). 17)

The explicit expression for the minimizer of this criterion, the LS estimate, is well known:

ALS
= arg mm Qo(a)

j~~
~

jxtx~-ixt~

Comments on the LS and the maximum likelihood estimates are now necessary It has already

been pointed out that the maximum likelihood and the LS estimates have interesting asymp-

totic properties. It means for a
fixed AR model order and an infinite number of observation,

or at least for a large enough observation vector with respect to a small model order. Here, as

mentioned earlier, the signal is parameterized by N parameters, so estimation of N coefficients

from N observations is desired. In such a situation the LS and the maximum likelihood esti-

mation techniques leads to large deviations from the mean solution, i. e. large variance. Hence,

even if this solution is weakly biased its strong variance leads to unacceptable estimates. Our

approach consists of modifying the LS criterion. Such a problem of estimation of N parameters

from N observations is an ill-posed one i e. it suffers from a lack of information provided by
N observations in order to infer about N parameters. Literature on the subject is abundant

and various since this kind of problem arises in almost every branch of engineering and applied
physics [13]. The resolution of ill-posed problems requires the use of the regularization concept,

I.e. the introduction of prior information in the solution. The proposed Bayesian framework

provides an attractive and coherent framework for that.

The ill-posedness can also be related to the ill-conditioning of the matrix X~X, for high
order AR model with respect to the sample number (see Fig. I). In such a case it can be

shown [12] that any small variation on the data x will produce large variations on the solution

hLs
~

(X~X)~~X~x and consequently large variations on the PSD estimate lx f). Therefore

this solution cannot be accepted as a physical one. The ill-conditioning of the matrix X is

caused by a lack of information provided by the measured data, thus the only way of building

a physically acceptable solution is to introduce some prior information in the solution and not

just build the solution from the information provided by the data. This idea is developed in

the next Section.

2.2. BAYESIAN APPROACH. Introducing prior information in tile solution is equivalent to

changing the estimation criterion: instead of maximizing a
likelihooi of the parameter vector,

we maximize the posterior likelihood which collects information pr/vided by the observations
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5 10 IS 20 25

MODEL ORDER

Fig. I. Normalized conditioning number of the observation matrix X as a function of AR model

order and for a particular realization (24 samples) of the simulated Doppler signal. The matrix is

well-conditioned when the number is near I, and ill-conditioned when the number is near 0. Vertical

axis, conditioning number Horizontal axis, model order

(ma the likelihood) and by the a priori idea about the expected solution (ma the prior law).
This compound criterion incorporates both "prior knowledge" and "data-based knowledge"
about 9 [13,14].

The first problem to solve is the choice of a prior probability density fe(9) for the vector

9. This density is supposed to contain the prior knowledge about the expected solution.

This point is addressed in the next subsection 2.3 The information provided by the data

is introduced through the conditional density for the observations, fxje(xj9). Finally, the

Bayes rule combines information provided by the observation ma the likelihood) and the prior
information (ma the prior law) in the posterior density for 9:

fxje(xj9)fe19)
j9)fe'xl~l~~

" fx(x)

In a strict Bayesian sense, equation (9) yields the solution to the problem since it gathers all

the information about the AR coefficients. However, the need of a spectrum implies the choice

of a punctual estimator i-e- the selection of one representative point. A popular choice as

a punctual estimator is the Maximum A PostertoTz (MAP), defined as the maximizer of the

posterior density:

hMAP
" arg max fA x(ajx). (10)

The computation of this solution requires values for the remaining parameters, called the hy-
perparameters, (parameters of the prior law and noise variance). This is the crucial problem of

tuning the compromise between the fidelity to the data and the fidelity to the prior knowledge.
The problem has never been studied in the field of ultrasound spectral analysis and will be

addressed in Section 3.

2.3. SPECTRUM SMOOTHNESS PRIOR. The objective of this Section, is to choose a prior
law for the AR coefficients, introducing a smoothness constraint on the PSD and leading to an

easily computable solution.
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The choice of a particular class of prior law is essentially constrained by the need of rapidly
computable estimation and leads to deal with the class of Gaussian prior

where the oothness

information

about the PSD
is

introduced ma
the prior correlation Ra.

The aim of the

Kitagawa
and ersch 24].

~~~~~
p

~~

~ ii -~(f)j2' ~~~~

l

a~e~J~f~

k=1

with:
P

A(f)
=

~jake~J~f~. (13)

k=i

When the PSD is known to be smooth, Kitagawa and Gersch [24] have proposed to constrain

the PSD variations, i.e. to penalize its strong variations. They consider the k~~ derivative of

A( f) defined in equation (13) in order to measure the PSD variations. Averaging the squared
modulus of this derivative over the whole reduced frequency domain, they define the PSD k~~

smoothness by:
1/2 fik 2

Dk
=

/ qAlf) df. l14)
-1/2

After elementary algebra tliey show in [24] that:

Dk cK
a~Aka, (15)

where the Ah matrix, called the k~~ smoothness matrix is defined by:

l~~ 0 0

~ ~2k ~
Ah

~
(16)

~ ~ ~2k

A small value of Dk means a small value of the averaged k~~ derivative of A( f) hence a rather

smooth PSD. In the limit when Dk
~

0, a =
0 and lx( f)

=
C~~ over the whole frequency

domain,
i.e. the PSD estimate is completely flat. On the contrary, a large value of Dk implies

strong variations of A( f), hence a peaky PSD.

In order to introduce this smoothness prior on the AR PSD, the covariance matrix Ra is

designed from the k~~ order smoothness matrix Ah through the following equation.

Rj~
=

(
Ah- Ii?)

a~

The regularization parameter I balances the regularized solution between the prior one and

the data-based one. The question of its estimation is addressed in S'ection 3.
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2.4. POSTERIOR LAW AND MAP ESTIMATE. On the one hand, the previous section gives

a prior law for the AR coefficients in equation (II) and on the other hand, the approximated
likelihood for the AR coefficients is m the form given in equation (5) Application of the Bayes

rule yields the posterior probability density function:

fxiAlxla)fAla)
(18)fAlxl~l~~

~ fx(x)

The denominator of equation (18), ix lx), is independent of a then its contribution is no more

than a normalizing constant K; elementary algebra leads to the posterior law.

fAjx(ajx)
=

K exp I- ~~QMAP(a)
,

jig)
2a~

where QMAP la) is given by:

QMAP la)
#

IX Xa)~ IX Xa) + )a~h j~a. (20)

where the new hyperparameter I balances the solution between the prior one and the data-

based one. Since both the prior law fA la) and the conditional law ix jA lx ja) are Gaussian, the

posterior density is also Gaussian. Hence the choice of a punctual estimator is no longer crucial:

the MAP, the posterior mean, etc. are strictly equivalent and we will deal with the MAP. This

estimator hMAP is defined as the posterior probability density maximizer or equivalently as the

minimizer of the Regularized Least Squares (RLS) criterion QMAP la) of equation (20)

I
=

iMAP

= arg max fAjx (ajx) (21)

= arg mm QMAP la).

Since the problem is linear and Gaussian,
we

have an explicit expression for its minimum:

h
=

(X~X + lAk)~~X~x. (22)

2.5. QUADRATIC REGULARIzATION INTERPRETATION. This part is devoted to the inter-

pretation of this method in terms of quadratic regularization, out of the Bayesian framework.

The regularized criterion of equation (20) is composite. on the one hand, its first term

QOJ(a)
=

(a~Aka) is a prior criterion; on the other hand, its second term is the data-based

criterion Qo(a)
=

(x Xa)~(x Xa). Combining these two criteria, the proposed criterion

incorporates both the prior and the data knowledge.

As in the usual LS case, an
explicit solution is available for hRLs, the minimizer of the regu-

larized criterion.

hRLS
~ arg mlD QRLS la) (24)

bRLs
"

(X~X + >Ah ~~X~x, (25)

called the regularized least squares solution.

For I small enough (I
=

o at the limit) the criterion reduces to the usual LS one, QRLS la)
=

Qo la) and the usual LS solution is found again:
= ao "

(X~X)~~X~x. For ~ large enough
Ii

= ~x~ at the limit) the criterion becomes the prior one QRLS la)
=

QO~(a) and the prior
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solution is found again: &
= &o~ =

0 so that the PSD estimate is constant over the whole

frequency domain.

Between these two extreme solutions, the "prior-based" one and the "data-based" one, an

acceptable one still remains to be found. The aim is then to estimate, from the data, the

crucial parameter I in order to build a physically acceptable solution. The following part is

devoted to this fundamental problem.

3. Hyperparameter Estimation

The method described above requires values for three hyperparameters al, I and k. The

parameter al is a scaling factor while the two other parameters design the spectral shape.
The parameter I is of major importance for the spectral shape, so our study is focused on

its estimation On the contrary, the smoothness order is of lower influence and moreover it is

practically possible, given a value of k, to find a value for I giving a presuposed smoothness

degree. Thus in our study the parameter is usually fixed to k
=

I while its influence is

nevertheless evaluated in Section 5.2.

The problem of hyperparameter estimation is the most delicate one in regularization ap-

proaches, and has been extensively studied (14,19,41,42]. Numirous techniques have been

proposed and compared in these papers and two approaches seem to be of great interest. The

first applied strategy, derived from the Bayesian framework, is maximum likelihood and allows

estimation of both a[ and I The second strategy, derived from the deterministic quadratic
regularization framework and called generalized cross validation provides an alternative to I

estimation, (while at estimation will be kept identical with in maximum likelihood approach).

3. I. MAXIMUM LIKELIHOOD. One of the interests of the Bayesian framework is to provide
coherent techniques to estimate the hyperparameters: Maximum Likelihood (ML). The most

commonly employed technique consists of maximizing the marginal likelihood obtained by
integrating the AR parameters out of the problem:

f,K(xjl,a()
=

fx,A(x,a)da (26)

=

/
fxjA(x,a)fA(a)da. (27)

a

Kitagawa et al. [24] derived the hyperparameter Anti-Log-Likelihood (ALL):

ALL(I,a()
=

-210gfx(xjl,a() (28)

=
N loga( + x~(1 M2)x Nl det(Mi (29)

?u

where the fill and M2 matrices are defined by

Mi
"

X~X + lAk (30)

M2
"

X~(X~X + lAk)~~X
=

X~MIX. (31)

The hyperparameters a( and I are chosen as the minimizer b( and I of ALL with respect to

a( and I:

(I, b()
= arg min ALL(I, a(). (32)

This problem is a two dimensional optimization problem, but can be explicitly optimized with

respect to b(
as shown below.
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31.I. a( Estimation. The ML estimate for a( is deduced from equation (29) by nullifying
its derivative with respect to a( and gives the usual empirical estimate for the noise variance:

a(
=

(x~(1 M2)x. (33)

It is also to be remarked that this expression is an explicit I function through the M2 depen-
dence with 1.

3.1.2 1 Estimation. Replacing this expression in the likelihood obtained in equation (29),
Kitagawa and Gersch derived in [24] the following expression for the anti-log-likelihood of1:

ALL(])
=

-log(det(Mi)) N log(]) + log(x~(1 M2)x). (34)

The hyperparameter I is then chosen as its minimizer:

(ML
" arg min ALL(]). (35)

No explicit expression is available for (ML and numerical optimization is performed by calcu-

lating the ALL on a
discrete logarithmic grid for I and selecting the value which minimizes

ALL.

3.2. GENERALIZED CRoss VALIDATION. The previous method is derived in the Bayesian
framework while this part is devoted to the generalized cross validation derived from the

quadratic regularization interpretation presented in Section 2.5

The Cross Validation (CV) criterion is an estimate of the mean square error, calculated from

the data only [15]. The basic principle is very simple: removing one observation x~ from the

data and predicting it on the basis of the regularized solution obtained from the remaining
data gives a prediction error. Averaging the prediction errors over all the removed data yields

an approximate mean square error, as a function of I, called the CV criterion. The minimum

of this criterion should give a good value of I. In fact we shall minimize not CV but a modified

version of CV called Generalized Cross Validation (GCV). This criterion does not differ greatly
from the CV one and present more pleasant properties [15]. This criterion takes the form:

ii
ii fiI2)xjj

j36)~~~i~)
" trjl M2)

and I is chosen as
iGCv, the minimizer of this criterion with respect to 1:

iGCv
" arg min GCV(~) (37)

As in the ML case, no explicit expression is available for the minimizer of GCV and optimization

must be numerically achieved.

4. Methodology for the Simulation Study

A theoretical comparative study between the performance of the different PSD estimation

methods is strongly desirable, but is a very difficult task especially for finite length observation

vectors Therefore a comparative simulated study is required: Monte-Carlo experiments yields
empirical statistical indices in the following way. A large number of signals have been simulated,
and for each the PSD has been estimated using different methods and conditions. Indices were

then calculated and averaged over a large number of realizations.
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Fig. 2. Theoretical PSD approximating the one typically seen at the level of the carotid artery at

around peak systole, proposed by Mo and Cobold [33] and used in our simulation study Vertical axis,

arbitrary units. Horizontal axis, normalized frequency.

4. I. MEASUREMENT OF ERROR AND ASSESSMENT OF PERFORMANCE Following Vaitkus

and Cobbold [44j two kinds of quality estimation measurement have been used. First the usual

statistical estimation characteristics: bias, variance and mean square error are presented. Then

three scalar indices integrating the frequency over the whole frequency domain are proposed.
The first statistical characteristic is the bias B(f) which characterizes the mean differ-

ence between the estimation expectation E(f) and the true value S~(f). The second one

is the standard deviation SD f), which quantifies the mean variability of the estimate around

E( f) Finally~ mean square error integrates both bias and variance and is here defined ma

MSE( f)~
=

B( f)~ + SD(f)~ in order to quantify an index homogeneous to the PSD.

Since the three previous indices are functions of frequency, qualitative and visual criterion

are the only possible ways for comparing the different estimation method, over the whole

frequency domain. This difficulty is avoided by integrating the variations of each index over

the frequency range as proposed by Vaitkus et al. [44] yelding. the Integrated Bias (IB), the

integrated variance (ISD) and the Integrated Mean Square Error (IMSE). They
are calculated

by integrating respectively the bias, variance and mean square error over the whole frequency
domain.

4.2. THEORETICAL DOPPLER SPECTRUM AND SIMULATED SIGNALS MO and Cobbold

have proposed in [33j both
a particular spectral shape and a

simulation method in order to

generate zero-mean stationary Gaussian processes having a given PSD. The given PSD S~( f),
shown in Figure 2 closely approximates the one recorded with a CW Doppler velocimeter

at around peak systole under normal flow conditions. The PSD Sx(f) is sampled on a fine

frequency grid, each sample is multiplied by a
x~ random variable, and the square root of the

obtained samples is multiplied by a uniformly distributed complex phase. Finally the inverse

Fourier transform of these samples yields the simulated signal x(n).
can be shown that x(n)

is a second order stationary, zero-mean, Gaussian process, having given PSD S~( f).
This spectral shape and this simulation model has been used to 500 signals of 256

samples. The following study was made from 16 to 256 of these in order to compare

the methods '~r different data window lengths and the effect of additive Gaussian white

noise will also be investigated, for a SNR from -30 dB to 30 dB.
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Fig. 3 AR-RLS solution: integrated bias (IB, solid line), integrated standard deviation, (ISD,
dashed line) and integrated mean square error (IMSE, dotted liner as a function of the regularismg
coefficient I. Number of samples 16, SNR

=
20 dB Vertical axis, normalized Horizontal axis, I value.

From simulated signals, the AR coefficient vector a is calculated from equation (8) in the

LS framework and from equation (25) in the RLS one. The PSD estimates Sx( f)
were finally

computed from equation (12). Since the true PSD function Sx( f) is known, empirical averaging

gave the characteristics of interest- B( f), SD f) and MSE( f). Finally numerical integration
yielded the three indices of interest IB, ISD and IMSE.

5. Simulation Study

Section 5. I, presents a comparison of the PSD estimation properties obtained ma the LS method

with the best model order us. the RLS method with the best regularization parameter In a

second step, Section 5.2 investigates the RLS method with automatic tuning of the hyperpa-
rameter, still compared to the best RLS method. These previous studies were both achieved

using a 16 samples window and a SNR of 20 dB. Section 5.3 investigates influence of window

data length and noise power.

5. I. BEST LS versus BEST RLS SOLUTION. The first step is a study of IB, ISD and IMSE

as functions of ~ for the AR-RLS solution. Simulations were made on a logarithmic grid of

100 values of ~ from ~
=

10~~ to ~
=

10~ and results are presented in Figure 3. On the one

hand, for ~ small enough (1 < 10~~), the solution is not regularized i.e. no prior knowledge is

introduced. So, the LS solution is entirely data-based. Therefore, as expected, the statistical

properties are still those pointed out in Section 2.I: even though the bias is small, the large

variance leads to unreliable results. On the other hand, for I high enough (1 > 10~), the

solution is infinitely regularized i-e- data are no more taken into account and the solution is

entirely prior-based, i. e.
the estimated spectrum is constant over the whole frequency domain.

Therefore, as expected, statistical properties are on the opposite: the estimation has
a very low

variance, but the large bias makes the results unreliable. Between these two extreme situations,
IMSE shows, for )mm

=
2.02, a minimum IMSERLS

~
0.64 representing in this sense the best

RLS performances (see Fig. 3).
,
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Fig. 4. AR-LS solution. integrated bias (IB, solid line), integrated standard deviation, (ISD, dashed

line) and Integrated mean square error (IMSE, dotted line)
as a

function of the AR model order p.

Number of samples 16, SNR
=

20 dB Vertical axis, normalized Horizontal axis, model order.

Table I. Integrated indices itsmg the best LS and RLS solitt~ons, with I
AIL

and iGCv

LS RLS-ML RLS-GCV

IB 0.47 0.61 0.56

ISD 0.56 0.30 0.38

IMSE 0.75 0.69 o.68

In a second step, in a similar way to that just described, we studied the AR-LS solution

with respect to the model order p. For each possible order (p
=

I to p =
15), the three indices,

IB, ISD, and IMSE have been computed using the usual AR-LS critirion and results are given
in Figure 4. Among all the possible order p, the order pmm =

2 minimizes the IMSE and the

corresponding INISE is IMSELS
"

0.75, which is in this sense the best LS performances
Comparison of the above results shows that the "best" value for the LS gives an IMSE (0.75)

which is 17% higher than the "best" value of IMSE for the RLS method.

5.2. COMPARISON WITH AUTOMATICALLY TUNED AR-RLS METHOD. In the present
section, the LS solution is left in this advantageous situation (p

=
2) and compared with RLS

one without knowing the best I. For each simulated signal, the two I estimation criteria (ML
and GCV) have been computed on a logarithmic grid of100 values of ~ between 10~~ and 10~,
minima have been selected, and RLS solutions have been calculated.

For instance, from a particular signal, Figure 5 shows ML and GCV criteria, Figure 6 shows

the estimated PSD with the best LS approach and with the RLS one using [ML and iGCv.
Figures 7, 8 and 9 show averaged results for the best LS solution and for the RLS with

automatic tuning of the spectral smoothness, i-e- the LS solution knowing the best model

order and the RLS method estimating the regularization parameter. This comparison shows

clear improvement with respect to the LS solution. More precise numerical results are given

in Table I. The IMSE obtained from the regularized method, IMSEi~L
=

o.69 with (ML and

IMSEGCV
=

0.68 with iGCv
are both smaller than IMSELS obtained for the best LS solution.
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Fig. 5. The two ~ estimation criteria computed from one particular realization of the Doppler
signal. Number of samples 16, SNR

=
20 dB. Generalized cross validation (GCV, solid line) and

maximum likelihood (ML, dashed line). Vertical axis, criterion value. Horizontal axis, ~ value.
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Fig. 6 Regularized solution with iGcv (solid line) and (ML (dashed line) and LS one with p =
2

(dotted line) from the same signal as in Figure 5. The theoretical PSD is also plotted (dashdot
line). Number of samples 16, SNR

=
20 dB. Vertical axis, Power spectral density Horizontal axis,

normalized frequency.

Hence, despite the strong advantage given to the LS solution, the proposed one still shows a

gain of 10% in terms of IMSE.

Moreover, comparing GCV and ML estimation method, one can see from Table I and from

Figures 8 and 9 that the GCV method for estimating the regularization parameter yields
slightly better PSD estimation quality.

Influence of the smoothness order has been investigated and Table II gives results for smooth-

ness orders k
=

0, k
=

I and k
=

2. On the one hand, this table shows that the first order

smoothness prior gives very slightly better performances in terms of IMSE, and on the other
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Fig 7. Best LS solution (p
=

2) Actual PSD (solid line), estimator expectation E( f) (dashed line),
E( f) + SD( f) (dotted line). and E( f) SD( f) (dashdot line) Number of samples 16. SNR

=
20 dB.

Vertical axis, Power spectral density. Horizontal axis, normalized frequency
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Fig. 8. RLS solution with automatic estimation of the regularization parameter via ML. Actual PSD

(solid line), estimator expectation E( f) (dashed line), E( f) + SD( f) (dotted line), and E( f) SD( f)
(dashdot line). Number of samples 16, SNR

=
20 dB Vertical axis, Power spectral density Horizontal

axis, normalized frequency.

Table II. Integrated indices using the regulartzed solittion for three smoothness orders k
=

0,
k

=
i and k

=
2 and with the two I estimation methods

k=0 k=0 k=i k=I k=2 k=2

ML GCV ML GCV ML GCV

IB 0.68 0.59 0.61 0.56 0 31 0.55

ISD 0.24 0.38 0.30 0 38 0 66 0.43

IMSE 0 ii 0.70 0.69 0.68 0.72 0.70
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Fig. 9. RLS solution with automatic estimation of the regularization parameter via GCV. Actual

PSD (solid line), estimator expectation E( f) (dashed line), E( f)+SD( f) (dotted line), and E( f)-SD( f)
(dashdot line). Number of samples 16, SNR

=
20 dB Vertical axis, Power spectral density. Horizontal

axis, normalized frequency.

hand, performances show low sensivity to this parameter. Anyway, the error index always

remains smaller than the best LS one.

5.3. INFLUENCE oF THE EXPERIMENTAL CONDITIONS. Thus far the simulation results

have been presented for SNR
=

20 dB and 16 samples. In the following, the effects of varying
these parameters are described.

5.3 1. Data Window Length. The PSD estimate properties for different window data length
(N

=
16, 32,..., 256)

are now investigated still using a SNR of 20 dB. In a first step, IMSE

are computed for each window data lengths (N
=

16, 32,..., 256), using the usual LS solution

with several AR orders p =
N/2, N/4,..., N/16. In a second step, from the same simulated

signals and the same window data lengths, the IMSE are calculated using the RLS solution

with both I
=

iGCv and I
=

[ML and with the first smoothness order. Figure 10 shows the

IMSE curves as a function of the window data length. From these results it can be seen that

the RLS procedure using either method for optimizing ~ gives the smallest IMSE.

5.3.2 Signal to Noise Ratio. This section investigates the influence of noise power from

-30 dB to 30 dB, using a window with the same number of samples (16) as previously. On the

one hand, using the LS solution for the best model order, IMSE are
calculated for several signal

to noise ratio from -30 dB to 30 dB On the other hand, in the same conditions, but using
the RLS solution with first smoothness order and both I

=

iGcv and I
=

[ML, the IMSE

are computed. IMSE
curves as a function of signal to noise ratio are plotted in Figure it.

One can notice slightly better performance for the ML method for a negative SNR, and better

performances for the GCV method for a positive one. Anyway, simulations results show that

for all SNR the regularized solution yields better estimation qualities in terms of IMSE.
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Fig 10. IMSE for different model orders as a function of window data length, in the LS framework.

Solution with p =
N/2 (circle-line) p =

N/4 (star line) p =
N/8 (dotted line) p =

N/16 (dash-dotted
line) p =

N/32 (dashed line). RLS solution with I
=

(ML and I
=

iGcv (solid lines almost coincident)
Number of samples 16 256, SNR

=
20 dB. Vertical axis, IMSE. Horizontal axis, window length.

20 -10 0 lo 20

Fig. 11. IMSE as a function of signal to noise ratio in dB. LS solution (dotted line), RLS solution

with iGcv (solid line), and RLS solution with (ML (dashed line) Number of samples 16. Vertical

axis, IMSE. Horizontal axis, SNR (dB).

6. Fast Suboptimal Spectral Analysis

The proposed estimation methods for the hyperparameters a], k~ and are not suitable for

practical applications. In addition, the matrix inversion in equation (25) in turn can
still be

time consuming. The possible improvements of these two problems are now addressed.
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6.I. HYPERPARAMETER DETERMINATION

6.i,i. Smoothness Order. Estimation of the parameters of the regularized model requires
that the matrix of equation (25) be inverted. In the general case, this matrix has no specific
properties and the inversion algorithm requires about O(N3) multiplications. We propose to

choose a zero-order smoothness constraint (k
=

o) for which the resulting Ak matrix becomes

the identity matrix, thus the parameters of the AR model are now given by:

=

(X~X + AI) ~~X~x. (38)

The matrix XtX + AI has a Toeplitz structure. It can then be inverted using fast O(N~)
algorithms based on Levinson recursions. Practical applications can then be contemplated.

Demoment et al. [12] derived an efficient algorithm providing a possible solution based on a

fast Kalman filter. A complete description of this algorithm applied to ultrasound signals can

be found in [28].

6,1.2. Noise Variance. The value a( only modifies the spectrum amplitude as indicated

in equation (12) but has no influence on the spectrum shape. Because, in medical spectrum
presentation, a scaling of the Doppler spectra is generally applied before presentation (the
maximum value of each spectrum is set to the maximum white level), we decided to use,

subsequently, a constant value: a(
=

1. An individual scaling of the amplitude of each

spectrum in the range [0, 256] was then used for presentation. It accounts for the vertical

stripes in Figures 12 and 13 corresponding to low energy spectra artificially enhanced by this

mode of data presentation.

6.1.3. Regularization Parameter. Once these two hyperparameters are set, the problem of

the best balance between data and smoothness priors needs to be addressed From equation
(23), the value of Qo(a) is a quadratic function of x, while that of Q~~>(a) is independent of

x. Consequently, the value of A (Eqs (17), (22)) must take into account the signal energy
in order to maintain a constant spectral smoothness, whatever the Doppler signal amplitude
(which is highly variable, even within the same cardiac cycle). A simple scaling factor can be

obtained from the energy of the Doppler signal within the window:

I
=

x~xAo (39)

lo can be defined before hand and once for all, for a class of Doppler signals using for instance

the methods proposed in Sections 3.1 and 3.2.

6.1.4. Computation Time. Using such estimation of the value, a rapid computation of

the parameter vector is made possible. The spectrum itself (Eq. (12)) can also be rapidly
calculated using an FFT algorithm. Using a DEC alpha 3000 the overall spectrum calculation

written in MATLAB code needed less than 25 and 100 ms for 16 and 32 sample windows

respectively. This results indicates that with specialized hardware it would be possible to

design a real time Doppler spectrum analyser.

6.2. RESULTS oF FAST SPECTRAL ESTIMATION. Pulsatile flow was obtained using an

oscillating pump whose frequency was adjusted at 70 cycles per minute. This pump was

connected to a discharge tank through an inflow ball valve connected to the discharge tank

and to the test circuit through an outflow ball valve. The ejected fluid flowed through a

divergent-convergent structure in order to dissipate the upstream disturbances before entering
the 30 mm diameter nozzle. The stenose orifice was circular with a diameter of 7.1 mm.

This design generated a flat velocity profile at the origin of the jet. This tube was connected
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Fig 12 Spectra of the in intro lammar flow m the jet core downstream a stenosis (7.I
mm in

diameter). Linear grey scale. PRF
=

10 kHz, probe frequency 3 Mhz, focus 16 mm, sample volume

length < I mm, sample volume width < 5 mm. A) periodogram (FFT and Hannmg window); B) fast

RLS estimation (p
=

32, k
=

0); C) RLS estimation (p
=

32, k
=

I); D) LS estimation (p
=

4).
Horizontal axis, time (0 7 s from left to right). Vertical axis, Doppler frequency Grey scale power

spectral density

Fig, 13. Spectra of the m intro laminar flow in the jet core downstream a stenosis (7.I
mm in

diameter). Log grey scale PRF
=

10 kHz, probe frequency 3 MHz, focus 16 mm, sample volume

length < I mm, sample volume width < 5 mm A) penodogram (FFT and Hanmng window); B) fast

RLS estimation (p
=

32, k
=

0); C) RLS estimation (p
=

32, k
=

I); D) LS estimation (p
=

4)
Horizontal axis, time (0.7

s
from left to right) Vertical axis, Doppler frequency Grey scale log power

spectral density.

to adjustable downstream resistance and compliance which allowej, together with upstream

resistance and compliance, the adjustment of the velocity wavefornj. The fluid was a mixture

of water, glycerol and corn starch The 30~ concentration of glycerol provided
a viscosity of

0.04 P at room temperature, while the 5%
corn starch provided jcatterers for the Doppler

ultrasound measurements.
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The velocity measurements were performed using a commercial ultrasound Doppler velocime-

ter modified for m-intro studies. The probe angle was 70 degrees with respect to flow axis and

the ultrasound beam was focused at 1.6 mm i.e, on the flow axis. A 3 MHz r,f, frequency

was selected and the pulse rep_etition frequency was set to 10 kHz in order to allow the mea-

surement of velocity without aliasing and to preserve both reasonable longitudinal and lateral

resolutions with respect to the axis of the ultrasonic beam. Using this set up, the sample vol-

ume dimensions were less than one millimeter along the tube diameter direction and less than

5 mm along the tube axis. The sample volume was thus entirely located inside the laminar jet

core so that the dispersion of velocities was extremely small in the sample voluine.

A 32 samples window (3.2 ms)
was used to comply with the stationary hypothesis m the

window for spectral analysis. Results are presented in Figures 12 and 13 using the usual

spectrum presentation, where the horizontal axis corresponds to the time along the flow cycle,
the vertical one to positive and negative flow velocities and the grey level to the spectrum
amplitude.

Figures 12 and 13 show in A, B, C and D the results respectively given by the FFT based

periodogram associated with a Hanning window, the zero order smoothness AR-RLS, the first

order smoothness AR-RLS and the classical AR-LS estimation for p =
4 (lowest I&ISE), The

proposed AR-RLS method presents a good compromise between the smeared, low resolution

spectrum of the Fourier approach and the spiky spectrum of the LS method which cannot give

correct information on the spectrum bandwidth. The first order smoothness offers the best

description of the Doppler spectrum morphology The smearing effect of the Fourier approach
has been removed while the spicky aspect of pure LS spectra has disappeared. This reduction

of spectrum bandwidth can be considered. m the present application, as an improvement of

the spectrum quality Because the sample volume, was entirely embedded in the lammar core

of the jet on the flow axis, the flow dispersion was very small. Because the sample volume was

located at the focus of the ultrasound beam, the spectrum distorsion due to geometrical effects

was reduced. Furthermore, because the AR approach identifies the model from the avaible

samples within the window but does not assume that the Doppler signal must be zero outside

the Doppler window, as does the FFT approach, the spectrum distorsion due to the transit

time effect was removed. The zero order smoothness offers comparable improvements. The

above developments indicate in this situation, more spiky spectra. However, using the usual

time frequency representation, help the observer to compensate for this effect and still provides

very legible results.

7. Conclusion

We have addressed the problem of ultrasound Doppler spectral estimation when only a short

span of data is available for analysis (down to 16 observations). In such a situation usual

autoregressive estimation strategies, such as empirical correlation estimation or least squares

approach, enforce the estimation of a very small number of parameters which precludes the

description of a large class of power spectral densities The Bayesian approach presented here

and initially proposed by Kitagawa and Gersch [24] alleviates this limitation. It admits the

robust estimation of long autoregressive parameter vectors (typically 16 parameters from 16

observations) and avoids too spiky spectra The proposed comparative study is grounded on

both simulated and m intro data and shows improvement with respect to the usual approach
In the simulation study, we have compared two estimation methods of the fundamental

regularization parameter- maximum likelihood and generalized cross validation methods m

terms of recovering a known power spectral density. The conclusion of this study is that

the generalized cross validation method performs slightly better than the maximum likelihood
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method. Nevertheless, this result should be taken with caution since the observed difference is

very slender.

While the first part of the simulation study deals with hyperparameter estimation, in the

second part, comparison of the presented Bayesian method versus the usual one has been

achieved in different situations, varying the data span length and the signal-to-noise ratio. For

that purpose, bias, standard deviation and mean square error, have been estimated using a

Doppler signal model. These results confirm and extend those of Kitagawa and Gersch. It was

found that the Bayesian method with automatic tuning of the hyperparameters yields better

indices than the usual least squares method whatever the model order.

Finally, the m intro data processing also shows interesting improvements, especially better

legibility of the spectra, hence offers better description of the Doppler spectrum morphology
than the usual least squares one
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