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Abstract. We discuss the propagation of an electromagnetic wavepacket inside a rectangular
waveguide, of the type employed in recent experiments on superluminal tunneling of electromag-
netic signals. By exploiting the analogy between particle and photon tunneling, we consider both

evanescent and growing waves inside the narrowed part of the waveguide. The Fourier expansion
of such waves shows that the barrier behaves in a nonlocal way. Such a nonlocality is accounted

for in an effective way by means of a deformation of the spacetime inside the waveguide. As a

consequence, the wavepacket propagates at superluminal speed according to an effective metric

tensor, built up in analogy with the Cauchy stress tensor in a deformable medium.

1. Introduction

In the last years, there has been a renewed interest on superluminal processes, due to some

new experimental evidences in different sectors of physics. Those include, e-g-, the apparent
superluminal expansions of galactic objects iii and the evidence for superluminal motions in

electrical and acoustical engineering [2j. However, perhaps the most interesting experimental
findings are those concerning the superluminal tunneling of evanescent waves and photons [3-7],
first observed at Cologne [3] and Berkeley [5j, and then confirmed by a Florence [6j and a

Vienna [7] group.

From the theoretical point of view, evanescent waves were predicted to be superluminal [8j

on the basis of the analogy between tunneling photons and tunneling particles [9j (which, as

is well known, can move with superluminal speed inside the barrier the so-called Hartmann

effect [10j ). Some aspects of the superluminal propagation of electromagnetic wavepackets were

discussed in references [8-lsj.
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Fig. I. Rectangular waveguide with variable section. L
=

length of the smaller waveguide;
b

=
width of the smaller waveguide; the numbers I and 2 refer, respectively, to the regions inside

the larger and the smaller waveguide.

In the present paper, we want to discuss in detail the superluminal propagation of
an elec-

tromagnetic wavepacket inside a rectangular waveguide. The main tools we shall exploit to

this aim are: the analogy between particles and waves [9, lo,16] and the formalism of deformed

Minkowski space [17-19].
The paper is organized as follows. In Section 2 we introduce the basic notions concerning the

propagation of the electromagnetic wavepacket inside the waveguide, by exploiting the analogy
between particle and photon tunneling. In Section 3 we Fourier-expand the wavepacket inside

the narrow part of the waveguide, calculate the partial fluxes and time delays, and show that

the barrier behaves in a nonlocal way. Such a nonlocality is described, in Section 4, in terms

of a deformation of the Minkowski space-time, which allows us to account for the superluminal
propagation of each Fourier component of the wave packet. Section 5 concludes the paper.

2. Helmholtz Equation for an Electromagnetic Wavepacket

Let us consider a hollow rectangular waveguide with variable section (like that used in the

Cologne experiment [3]), where the narrow part has length L, height b and thickness a (see
Fig. I). Inside the waveguide, any of the vector quantities f describing the electromagnetic
field if

=
A, E, or H, where A is the vector potential with the subsidiary gauge condition

div A
=

0, E
=

ii /c)9A fat is the electric field and H
=

rot A is the magnetic field) is ruled

by the Helmholtz equation

nf
=

i7~f ~~
=

0. (2.I)

The general solution of equation (2.I) is given by a wavepacket of the kind

f(r,t)
=

~
~x(k)ak(r)e~~~~~ (2.2)

k>o)

where, as usual, ko
#

w/c
=

e/hc, k
=

(k(
=

ko, and

2

xlk)
=

ljx~lk)e~ik) 12.3a)

e~ e~ =
i~ e~jk) k

=
o, i, j

=
1, 2. (2.3b)

The vectors ej are the (linearly independent) polarization vectors, and x~(k) is the amplitude
for the photon to have momentum k and polarization I, so that jX~(k)j~d3k is proportional to
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the probability that the photon has a momentum between k and k + dk in the polarization

state e~. Moreover, we have (assuming the z-axis along the waveguide)

ak(r)
=

~~~ ~ + ~Re
~~~~+~~~~+~~YY region 1

(°~ ~~ + fle~~~)e~~~~+~kYY region 2
(~.~)

i. e. a linear superposition of plane waves in region I and
a linear superposition of an evanescent

and an increasing wave in region 2. On account of the boundary conditions and for transverse

electric (TE)
waves the following relations hold:

k~
=

),
kg

=

); lm,nintegersl 12.51

iii~
+
iii~ iii~ 1261

x =
27r

Ill ~ li)~
=

~= Ill
l~il~)~ ~2 12.71

where lc is the cutoff wavelength.
Let us explicitly notice that the need of taking into account both evanescent and growing

waves in region 2 is demanded by the analogy between photon and particle tunneling [16].
By the same analogy, one gets the last expression of x in equation (2.7); moreover, it can be

further exploited in the calculation of the stationary flux. Indeed, we have, for particles of

mass p and wavefunctionlfi(z):

~~ ~~~~~
'

~~'~~

On the other side, the z-component of the Poynting vector is given by

Sz
=

~Re[E*
x H]z

=

iRe[E](~~~ ~~~ Ej(~~~ ~~~
ii. (2.9)

47r 41r @z fix 8y @z

For monochromatic TE waves, we have

~
=

-Eo[
CDs k~z sin kyve~~~tizi

Ey
=

Eo sin k~z cos kg ye~"~ifi (z) (~.1°)

Ez
=

0

~~'~~~~

lb(Z)
~ ~~~xll~~+~~~~

~
~~ ~~~

Therefore, the vector potential is

A~
= a~ ix, y)ifi(z)e~~"~

Au
= ay lx, vl~filzle~~"~ 12.121

Az
=

0

with

)~~~~~
=

j~~~~~~~~~~ ~~'~~~
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Replacing equations (2.12, 2.13) in (2.9),
we get the following expression of the Poynting vector

component:

~~ ~~~~~~ ~ ~ ~~~
~ ~~ ~~~ ~~

~
~' ~~'~~~

Therefore, the flux Sz for photons is obtained from the flux for particles by simply replacing
in equation 12.81 1-ih/2vl by lla~l~ + layl~ll-iUJ/47rl.

3. Fourier Analysis of the Wavepacket Propagation

We want now to discuss in detail the propagation of the electromagnetic wavepacket inside the

narrow part of the waveguide (region 2). Let us first consider the evanescent wave in region 2,
given by equation (2.4b), and expand it in a Fourier series:

«

e~X~
=

~j one~"~~~/~ (3.1)

n=-m

where (for XL » Ii

cm =
~~~~(~ (3.2)

X + in~

We can calculate the stationary flux of the monochromatic wavepacket by exploiting the anal-

ogy with particle tunneling as shown in the previous section. So the flux for the evanescent

wave (3. Ii is given by (2.8). After lengthy but straightforward calculations, we get

~~
~ ~ ~

~

~~~~ ~ ~~~ ~
~~~ ~~i~l~l'lli12~lm21i11

~~~'~~ ~i + zii

~°~~~~ ~~~~
~~ ~~

"
+ +~ ~ ~ ~

m,n m=n m>n m<n

#- ~ + =0.~ ~ ~ ~
m>n m<n m>n m<n

~~~~~~°~~

7rh
(1

~ f
n

o (3.4)~ " J
II

~~_~

x~ + n~lf)~

as expected. So, we can analyze only the partial fluxes jn, given by

Jn
= ~l11)~x~

+
ij+j~ 13.5)

where n > 0 corresponds to incoming waves, and n < 0 to returning waves.

For quasi monochromatic wave packets, the n-th term of the sum in (3. Ii must be replaced by

~
~l~n2nz/L)-j«t/h) j~ ~j

Then, it is easy to get, by a standard procedure (in the stationary phase approximation) [9],
the partial time delays:

~~" ~~~~ ~~
~~~~~~~

~
i +

yin j2

~ )
(3.7j
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which, as is well known, do represent the delays in the arrival of the wave maxima.

Since ~ ~'
~~'~~

~~ ~~~ ~~~~~Y

A7n
=

_h
27rnkz

~CXIX~ + ~j"j2j' j~ ~~

We have therefore that (like in the particle case)
ii

n < 0 corresponds to a delay of the wave;

iii n > 0 corresponds to an advance of the wave.

For the growing wave
e+X~ with Fourier series

m

e+X~
=

~j due~"f~, (3.10)

n=-«

we get (since x ~ -xi analogous but interchanged results.

On the basis of the above results, we can therefore conclude that:

a) The evanescent wave (3. Ii contains two kinds of waves: incoming (moving toward the positive
direction of the z-axis) and returned ii.

e.
reflected by the barrier region 2 as a whole);

b) In the growing wave (3.10), there are still two kinds of waves, but of origin different from

the evanescent case, namely: waves reflected by the "second barrier well" (junction 2 ~ Ii and

stcondly returned by the barrier region 2 as a whole ii.
e. still moving in the positive z-axis

direction, as the initially incoming ones).
Thus, the linear combination (2.lib) of the evanescent and the growing wave contains all

the above four kinds of current waves. They give rise to nonzero fluxes j+, j- (where j+, j- are

the positive and the negative component of the total flux-according to reference [9j associated

with motion along the positive and the negative z-direction, respectively ).
By the way, in all the sums the term n =

0 corresponds to zero flux. This may be inter-

preted as representing the time-integral probability of particle (photon) dwelling, due to the

accumulating (to and from) current waves.

4. Nonlocality of Propagation and Deformed Minkowski Space

Let us notice that the behaviour of the barrier (region 2) is nonlocal. This is due to the fact

that (both in the case of the evanescent and the growing wave) the waves are reflected by the

barrier as a
whole (see points a), b) of the previous section).

Such nonlocal effects in the propagation of the wavepacket allow us to clarify a basic point
of our approach. Indeed, what is the physical meaning of the real momenta which appear in

the Fourier transforms of the evanescent and the growing wave?

This point can be understood by noting that nonlocal effects inside a narrowed waveguide can

be taken into account in an effective way by means of a deformed Minkowski spacetime iii,18j.
Namely, according to reference iii],

an evanescent mode in the usual Minkowski space is

described as a non-evanescent one, with a real wavevector, propagating at a superluminal
speed in a deformed Minkowski space endowed with metric

q =

diag(b(, -b(. -b(, -b() (4.1)

where the metric parameters b( are functions of the energy of the single photon:

b(
=

b((E), ~ =
0,1, 2, 3. (4.2)
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In our case, E corresponds to the energy of the Fourier component (see below).
Wave propagation in such a spacetime is described by the deformed Helmholtz equation [17,18j

An
analysis

of the energy of the metric
parameters

performed by
sing

the data

of the reported in Ref. hows that the etric q educes
to the sual

Minkowskian

one, g = diag(1, -1, -1, - Ii, for energies E > Eo ~ 4,

case, the metric
is

fully Minkowskian in region I, and becomes
deformed in region 2

E < Eo) Iii]. In any Fourier mponent of the
avepacket

satisfies the deformed

elmholtz
equation

(4.3) in region 2. Without loss of generality (since all quantities of
nterest

to us depend on the
atio

b(/b(),
we can assume

that the deformed etric
is

sochronous
with

the usual one, i-e- b(

11)"~l~
=

(~)) (~) fj
14.41

~

b3

~

where uc is the cutoff frequency. Since ji("1
=

27rn/L,
we get the explicit expression of the

parameter b)~~.

~(")
~

"

=

L"16'~ j4 ~)
~ u) + (nc/L)2 c2 + (Luc/n)2'

The speed un of the n-th Fourier component therefore reads

Since
~

> i 14.71~~/n

for

v < u~ (4.8)

(and
n > 0),

we
always have

un > c (4.9)

I.e. all the propagating waves in the Fourier expansions (3.1), (3.10)
are superluminal. Let

us recall that the "superluminality condition" (4.8) iii] is in fact satisfied by the parameter

values of the Cologne experiment (with (v~/v)~
=

l.2).
Notice that each Fourier component propagates in a different deformed Minkowski space-

time. This is clearly related to the energy (and momentum) dependence of the parameters of

the deformed metric (4.I). If q$~ is the deformed metric "seen" by the n-th Fourier component

of the evanescent wave, we can build up an effective metric tensor jjp~ for the evanescent wave

as follows:
~j lcnl~n)]~

~""~~"~
~~j lcnl~

~~ ~°~~

n
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where the cm's are the coefficients of the Fourier expansion (3. Ii.
The analogous definition for the growing wave is

~j'~n(~il~i~

~""~~~~ ~

j~ j2

~~'~~~~~
n

n

where the d[s
are the coefficients of the expansion (3.10). Notice that, in general, the n-th

Fourier component of the evanescent and the growing wave will see a different metric deforma-

tion ii-
e.

q$~ # q)0~) due to the connection among the wavevector and the metric parameters
(see Eq. (4.4)), and the dependence of the latter ones on the energy (Eq. (4.2)).

The total effect of metric deformation is therefore represented by a linear combination of the

tensors (4.10) for both the evanescent and the growing wave:

~j lcnl~§# ~j ldnl~§)l~

win
~

1°l~ivmlcnl + lfll~ivmldnl
~

1°l~ "~
~

+ lfll~ "~
~

14.ill
'~"' '~"'

where a, fl
are

the coefficients in equation (2.lib).
Clearly, in region 1 (where all Fourier waves do propagate in a Minkowskian spacetime), one

recovers, from definitions (4.10, 4.11), the usual metric g.

In fact, in region 1we have E > Eo, so that b((E)
=

1, ~ =
0,1, 2, 3 (see Refs. iii,18]), and

therefore q$~
=

g~~vn. So, all definitions (4.10, 4.ll) reduce to the Minkowskian metric.

Notice that the tensors (4.10) are analogous to the Cauchy stress tensor. Indeed, let us

consider, in orthogonal Cartesian coordinates, an infinitesimal tetrahedron with edges parallel

to the coordinate axes and the oblique face S opposite to the vertex 0, origin of the Cartesian

frame.

If the tetrahedron is a part of a continuous body, the stress vector across S in the point 0 is

given by [20]

~§ ~~~

(~ba)o
#

f
~

(4.12)
ja~j

~

where a is a vector normal to S and (q§~)o Ii
=

1, 2, 3) is the stress vector on the face of the

tetrahedron orthogonal to the I-th axis. The nine components of the three vectors (q§~)o do

just constitute the rank-two, symmetric Cauchy tensor.

The tensor jj can be therefore regarded as the average tensor representing the space-time
deformation in the region 2 of the waveguide (corresponding to the energy E < Eo

~
4.5 ~eV)

globally "seen" by the electromagnetic Fourier components for the wavepacket (2.I16 ). So, we

can name it average tensor of the electromagnetic space-time deformation, ije_m_.
It is worth stressing that our approach to electromagnetic faster-than-light propagation in

waveguides is similar, in some respects, to that where superluminal propagation (e.g. of light
between parallel mirrors) is connected to vacuum effects [21]. In such a case, the influence of the

(structured) vacuum is described in an effective way in terms of a
refractive index (as pioneered

by Sommerfeld). Something analogous does happen in General Relativity, too: the deflection

of light rays in a gravitational field can be considered
as a propagation in an Euclidean space,

filled with a medium endowed with an effective refractive index [22, 23]. In some cases, such
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a propagation, due to the influence of the gravitational vacuum, turns out to be superluminal
(the refractive index is less than one) [24]. Notice that our approach can be therefore regarded

as dual to the general relativistic one, in which the spacetime curvature for electromagnetic

signals is replaced by a refractive index. Indeed, in our formalism, the vacuum or nonlocal

effects which affect propagation in the wavegmde are directly described in terms of a spacetime

deformation (and the role of the refractive index is played by the deformation tensor).

Moreover, it is easily seen that definitions (4.10, 4.ll)
can also be applied to wavepackets

ruled by interactions different from the e-m- one [17,19]. Namely, we can state in full generality
that the Minkowski space is always subjected to a stress, whenever crossed by a wavepacket.
Such

a stress produces a deformation of the spacetime, which may be described by the tensor

fj
= g (ineffectual deformation)

or by a tensor jj # g (effectual deformation). The two cases

j
= g, j # g are obviously determined by the interaction ruling the wavepacket propagation

and by the energy of the wavepacket components (see Eq. (4.2)).

The superluminal propagation, which is an unescapable consequence of the tensor (4.10) in

case of effectual deformation, does no longer imply a violation of causality in the deformed

Minkowski space (~). This is in fact related to the invariance of the tensor (4.10) under

the generalized Lorentz transformations valid in the deformed Minkowski space (see Refs.

[16, Ii,19]).

5. Conclusions

In this paper, we have discussed the propagation of an electromagnetic wavepacket inside a

hollow waveguide with variable section. On the basis of the analogy between particle tunneling
and photon tunneling, we have shown that a complete analysis of the process requires consid-

ering both an evanescent and a growing wave inside the waveguide. We have Fourier-analyzed
such waves, and stressed that both of them contain returned waves, which are due to the action

of the barrier (narrowed part of the waveguide) as a whole. Such a behaviour of the barrier is

therefore nonlocal. As a consequence, we can reinterpretate the propagation of each Fourier

component inside the barrier as a wave propagation in a deformed Minkowski spacetime. This

implies a real wavevector for each Fourier wave, and superluminal propagation of each Fourier

component. So our approach leads in a straightforward way to explaining the superluminal
tunneling of the wavepacket as its propagation in a region with deformed metric. Such a space-

time deformation can be described, in an
effective way, by an average symmetric tensor jp~,

built up from the deformed metrics "seen" by each Fourier component of the wavepacket, in

analogy with the well-known definition of the Cauchy stress tensor for a deformable medium.

Acknowledgments

We are very grateful to W. Heitmann and G. Nimtz for precious comments and bibliographical
advice, and to the referees for their criticism, that allowed us to considerably improve the

paper. One of us
(V.S.O.) thanks the Department of Physics "E. Amaldi" of Rome University

"Roma Tre" for financial support, and the hospitality extended to him.

(~) This is related to the fact that, inside a deformed Minkowski space, the maximal causal speed is,

in general, greater than c, depending on the metric parameters. See references [18,19j, and references

therein.
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