inria-00073670, version 1
Bezout Factors and $\Lu$-Optimal Controllers for Delay Systems using a two-parameter Compensator Scheme
Catherine Bonnet 1Jonathan R. Partington 1
N° RR-3023 (1996)
Résumé : We consider in this paper the simultaneous problem of optimal robust stabilization and optimal tracking for SISO systems in an $L^\infty$-setting using a two-parameter compensator scheme. Optimal robustness is linked to the work done by Georgiou and Smith in the $L^2$-setting. Optimal tracking involves the resolution of $L^1$-optimization problems. We consider in particular the robust control of delay systems. We determine explicit expressions of the Bezout factors for general delay systems which are in the Callier-Desoer class $\hat{\cal B}(0)$. Finally, we solve several general $L^1$-optimization problems and give an algorithm to solve the optimal robust control problem for a large class of delay systems.
- 1 : SOSSO (INRIA Rocquencourt)
- INRIA
- Domaine : Informatique/Autre
- Mots-clés : ROBUST CONTROL / STABILIZATION / BEZOUT FACTORS / DELAY SYSTEMS / $L^1$-OPTIMAL CONTROL / TWO-PARAMETER COMPENSATOR
- Référence interne : RR-3023
- Commentaire : Projet SOSSO
- inria-00073670, version 1
- http://hal.inria.fr/inria-00073670
- oai:hal.inria.fr:inria-00073670
- Contributeur : Rapport De Recherche Inria
- Soumis le : Mercredi 24 Mai 2006, 13:27:20
- Dernière modification le : Jeudi 26 Avril 2007, 12:08:17