inria-00071978, version 1
On Bayesian Estimation in Manifolds
N° RR-4607 (2002)
Résumé : It is frequently stated that the maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimates of a continuous parameter are not invariant to arbitrary «reparametrizations» of the parameter space . This report clarifies the issues surrounding this problem, by pointing out the difference between coordinate invariance, which is a sine qua non for a mathematically well-defined problem, and diffeomorphism invariance, which is a substantial issue, and provides a solution. We first show that the presence of a metric structure on can be used to define coordinate-invari- ant MAP and MMSE estimates, and we argue that this is the natural and necessary way to proceed. The estimation problem and related geometrical quantities are all defined in a manifestly coordinate-invariant way. We show that the same MAP estimate results from `density maximization' or from using an invariantly-defined delta function loss. We then discuss the choice of a metric structure on . By imposing an invariance criterion natural within a Bayesian framework, we show that this choice is essentially unique. It does not necessarily correspond to a choice of coordinates. The resulting MAP estimate coincides with the minimum message length (MML) estimate, but no discretization or approximation is used in its derivation.
- 1 : ARIANA (INRIA Sophia Antipolis / Laboratoire I3S)
- INRIA – Université Nice Sophia Antipolis [UNS] – CNRS : UMR7271
- Domaine : Informatique/Autre
- Mots-clés : ESTIMATION / MAP / MMSE / MEAN / INVARIANCE / BAYESIAN / MANIFOLD / METRIC
- Référence interne : RR-4607
- inria-00071978, version 1
- http://hal.inria.fr/inria-00071978
- oai:hal.inria.fr:inria-00071978
- Contributeur : Rapport De Recherche Inria
- Soumis le : Mardi 23 Mai 2006, 19:24:12
- Dernière modification le : Mercredi 31 Mai 2006, 14:24:26