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We consider the problem of adaptation to the margin and to com-

plexity in binary classification. We suggest an exponential weighting

aggregation scheme. We use this aggregation procedure to construct

classifiers which adapt automatically to margin and complexity. Two

main examples are worked out in which adaptivity is achieved in

frameworks proposed by Scovel and Steinwart (2004, 2005) and Tsy-

bakov (2004). Adaptive schemes, like ERM or penalized ERM, usu-

ally involve a minimization step. It is not the case of our procedure.

1. Introduction. Let (X ,A) be a measurable space. Denote by Dn a

sample ((Xi, Yi))i=1,...,n of i.i.d. random pairs of observations where Xi ∈ X
and Yi ∈ {−1, 1}. Denote by π the joint distribution of (Xi, Yi) on X ×
{−1, 1}, and PX the marginal distribution of Xi. Let (X,Y ) be a random

pair distributed according to π and independent of the data, and let the

component X of the pair be observed. The problem of statistical learning in

classification (pattern recognition) consists in predicting the corresponding

value Y ∈ {−1, 1}.
A prediction rule is a measurable function f : X 7−→ {−1, 1}. The mis-

classification error associated to f is

R(f) = P(Y 6= f(X)).
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2 G. LECUÉ

It is well known (see, e.g., Devroye, Györfi and Lugosi (1996)) that

min
f
R(f) = R(f∗) = R∗, where f∗(x) = sign(2η(x)− 1)

and η is the a posteriori probability defined by

η(x) = P(Y = 1|X = x),

for all x ∈ X (where sign(y) denotes the sign of y ∈ R with the convention

sign(0) = 1). The prediction rule f∗ is called the Bayes rule and R∗ is called

the Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn), measurable with

respect to Dn and X with values in {−1, 1}, that assigns to every sample

Dn a prediction rule f̂n(., Dn) : X 7−→ {−1, 1}. A key characteristic of f̂n is

the generalization error E[R(f̂n)], where

R(f̂n) = P(Y 6= f̂n(X)|Dn).

The aim of statistical learning is to construct a classifier f̂n such that

E[R(f̂n)] is as close to R∗ as possible. Accuracy of a classifier f̂n is mea-

sured by the value E[R(f̂n)]−R∗ called excess risk of f̂n.

Classical approach due to Vapnik and Chervonenkis (see, e.g. Devroye,

Györfi and Lugosi (1996)) consists in searching for a classifier that minimizes

the empirical risk

(1.1) Rn(f) =
1
n

n∑
i=1

1I(Yif(Xi)≤0),

over all prediction rules f in a source class F , where 1IA denotes the indi-

cator of the set A. Minimizing the empirical risk (1.1) is computationally

intractable for many sets F of classifiers, because this functional is neither

convex nor continuous. Nevertheless, we might base a tractable estimation

procedure on minimization of a convex surrogate φ for the loss (Cortes

and Vapnik (1995), Freund and Schapire (1997), Lugosi and Vayatis (2004),

Friedman, Hastie and Tibshirani (2000), Bühlmann and Yu (2002)). It has

been recently shown that these classification methods often give classifiers
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AGGREGATION OF CLASSIFIERS 3

with small Bayes risk (Blanchard, Lugosi and Vayatis (2004), Scovel and

Steinwart (2004, 2005)). The main idea is that the sign of the minimizer of

A(φ)(f) = E[φ(Y f(X))] the φ-risk, where φ is a convex loss function and

f a real valued function, is in many cases equal to the Bayes classifier f∗.

Therefore minimizing A(φ)
n (f) = 1

n

∑n
i=1 φ(Yif(Xi)) the empirical φ-risk and

taking f̂n = sign(F̂n) where F̂n ∈ Arg minf∈F A
(φ)
n (f) leads to an approxi-

mation for f∗. Here, Arg minf∈F P (f), for a functional P , denotes the set of

all f ∈ F such that P (f) = minf∈F P (f). Lugosi and Vayatis (2004), Blan-

chard, Lugosi and Vayatis (2004), Zhang (2004), Scovel and Steinwart (2004,

2005) and Bartlett, Jordan and McAuliffe (2003) give results on statistical

properties of classifiers obtained by minimization of such a convex risk. A

wide variety of classification methods in machine learning are based on this

idea, in particular, on using the convex loss associated to support vector

machines (Cortes and Vapnik (1995), Schölkopf and Smola (2002)),

φ(x) = (1− x)+,

called the hinge-loss, where z+ = max(0, z) denotes the positive part of

z ∈ R. Denote by

A(f) = E[(1− Y f(X))+]

the hinge risk of f : X 7−→ R and set

(1.2) A∗ = inf
f
A(f),

where the infimum is taken over all measurable functions f . We will call A∗

the optimal hinge risk. One may verify that the Bayes rule f∗ attains the

infimum in (1.2) and Lin (1999) and Zhang (2004) have shown that,

(1.3) R(f)−R∗ ≤ A(f)−A∗,

for all measurable functions f with values in R. Thus minimization of A(f)−
A∗, the excess hinge risk, provides a reasonable alternative for minimization

of excess risk.
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4 G. LECUÉ

The difficulty of classification is closely related to the behavior of the a

posteriori probability η. Mammen and Tsybakov (1999), for the problem

of discriminant analysis which is close to our classification problem, and

Tsybakov (2004) have introduced an assumption on the closeness of η to 1/2,

called margin assumption (or low noise assumption). Under this assumption,

the risk of a minimizer of the empirical risk over some fixed class F converges

to the minimum risk over the class with fast rates, namely faster than n−1/2.

In fact, with no assumption on the joint distribution π, the convergence

rate of the excess risk is not faster than n−1/2 (cf. Devroye et al. (1996)).

However, under the margin assumption, it can be as fast as n−1. Minimizing

penalized empirical hinge risk, under this assumption, also leads to fast

convergence rates (Blanchard, Bousquet and Massart (2004), Scovel and

Steinwart (2004, 2005)). Massart (2000), Massart and Nédélec (2003) and

Massart (2004) also obtain results that can lead to fast rates in classification

using penalized empirical risk in a special case of low noise assumption.

Audibert and Tsybakov (2005) show that fast rates can be achieved for

plug-in classifiers.

In this paper we consider the problem of adaptive classification. Mam-

men and Tsybakov (1999) have shown that fast rates depend on both the

margin parameter κ and complexity ρ of the class of candidate sets for

{x ∈ X : η(x) ≥ 1/2}. Their results were non-adaptive supposing that κ

and ρ were known. Tsybakov (2004) suggested an adaptive classifier that

attains fast optimal rates, up to a logarithmic factor, without knowing κ

and ρ. Tsybakov and van de Geer (2005) suggest a penalized empirical risk

minimization classifier that adaptively attain, up to a logarithmic factor, the

same fast optimal rates of convergence. Tarigan and van de Geer (2004) ex-

tend this result to l1-penalized empirical hinge risk minimization. Koltchin-

skii (2005) uses Rademacher averages to get similar result without the loga-

rithmic factor. Related works are those of Koltchinskii (2001), Koltchinskii

and Panchenko (2002), Lugosi and Wegkamp (2004).

Note that the existing papers on fast rates either suggest classifiers that
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AGGREGATION OF CLASSIFIERS 5

can be easily implementable but are non-adaptive, or adaptive schemes that

are hard to apply in practice and/or do not achieve the minimax rates (they

pay a price for adaptivity). The aim of the present paper is to suggest

and to analyze an exponential weighting aggregation scheme which does

not require any minimization step unlike others adaptation schemes like

ERM (Empirical Risk Minimization) or penalized ERM, and does not pay

a price for adaptivity. This scheme is used a first time to construct minimax

adaptive classifiers (cf. Theorem 3.1) and a second time to construct easily

implementable classifiers that are adaptive simultaneously to complexity and

to the margin parameters and that achieves the fast rates.

The paper is organized as follows. In Section 2 we prove an oracle in-

equality which corresponds to the adaptation step of the procedure that

we suggest. In Section 3 we apply the oracle inequality to two types of

classifiers one of which is constructed by minimization on sieves (as in Tsy-

bakov (2004)), and gives an adaptive classifier which attains fast optimal

rates without logarithmic factor, and the other one is based on the sup-

port vector machines (SVM), following Scovel and Steinwart (2004, 2005).

The later is realized as a computationally feasible procedure and it adap-

tively attains fast rates of convergence. In particular, we suggest a method of

adaptive choice of the parameter of L1-SVM classifiers with gaussian RBF

kernels. Proofs are given in Section 4.

2. Oracle inequalities. In this section we give an oracle inequality

showing that a specifically defined convex combination of classifiers mimics

the best classifier in a given finite set.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values

in {−1, 1}. The problem of model selection type aggregation, as studied in

Nemirovski (2000), Yang (1999), Catoni (1997), Tsybakov (2003), consists

in construction of a new classifier f̃n (called aggregate) which is approxima-

tively at least as good, with respect to the excess risk, as the best among

f̂1, . . . , f̂M . In most of these papers the aggregation is based on splitting
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6 G. LECUÉ

of the sample in two independent subsamples D1
m and D2

l of sizes m and l

respectively, where m� l and m+ l = n. The first subsample D1
m is used to

construct the classifiers f̂1, . . . , f̂M and the second subsample D2
l is used to

aggregate them, i.e., to construct a new classifier that mimics in a certain

sense the behavior of the best among the classifiers f̂i.

In this section we will not consider the sample splitting and concentrate

only on the construction of aggregates (following Nemirovski (2000), Ju-

ditsky and Nemirovski (2000), Tsybakov (2003), Birgé (2004), Bunea, Tsy-

bakov and Wegkamp (2004)). Thus, the first subsample is fixed and instead

of classifiers f̂1, . . . , f̂M , we have fixed prediction rules f1, . . . , fM . Rather

than working with a part of the initial sample we will suppose, for notational

simplicity, that the whole sample Dn of size n is used for the aggregation

step instead of a subsample D2
l .

Our procedure is using exponential weights. The idea of exponential weights

is well known, see, e.g., Augustin, Buckland and Burnham (1997), Yang (2000),

Catoni (2001), Hartigan (2002) and Barron and Leung (2004). This proce-

dure has been widely used in on-line prediction, see, e.g., Vovk (1990) and

Lugosi and Cesa-Bianchi (2006). We consider the following aggregate which

is a convex combination with exponential weights of M classifiers,

(2.1) f̃n =
M∑
j=1

w
(n)
j fj ,

where

(2.2) w
(n)
j =

exp (
∑n
i=1 Yifj(Xi))∑M

k=1 exp (
∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M.

Since f1, . . . , fM take their values in {−1, 1}, we have,

(2.3) w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

,

for all j ∈ {1, . . . ,M}, where

(2.4) An(f) =
1
n

n∑
i=1

(1− Yif(Xi))+
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AGGREGATION OF CLASSIFIERS 7

is the empirical analog of the hinge risk. Since An(fj) = 2Rn(fj) for all

j = 1, . . . ,M , these weights can be written in terms of the empirical risks of

fj ’s,

w
(n)
j =

exp (−2nRn(fj))∑M
k=1 exp (−2nRn(fk))

, ∀j = 1, . . . ,M.

The aggregation procedure defined by (2.1) with weights (2.3) does not

need any minimization algorithm contrarily to the ERM procedure. More-

over, the following proposition shows that this exponential weighting aggre-

gation scheme has similar theoretical property as the ERM procedure up to

the residual (logM)/n. In what follows the aggregation procedure defined

by (2.1) with exponential weights (2.3) is called Aggregation procedure with

Exponential Weights and is denoted by AEW.

Proposition 2.1. Let M ≥ 2 be an integer, f1, . . . , fM be M prediction

rules on X . For any integers n, the AEW procedure f̃n satisfies

(2.5) An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

.

Obviously, inequality (2.5) is satisfied when f̃n is the ERM aggregate

defined by

f̃n ∈ Arg min
f∈{f1,...,fM}

Rn(f).

It is a convex combination of fj ’s with weights wj = 1 for one j ∈ Arg minj Rn(fj)

and 0 otherwise.

We will use the following assumption (cf. Mammen and Tsybakov (1999),

Tsybakov (2004)) that will allow us to get fast learning rates for the classi-

fiers that we aggregate.

(MA1) Margin (or low noise) assumption. The probability distribution

π on the space X × {−1, 1} satisfies the margin assumption (MA1)(κ) with

margin parameter 1 ≤ κ < +∞ if there exists c > 0 such that,

(2.6) E {|f(X)− f∗(X)|} ≤ c (R(f)−R∗)1/κ ,

for all measurable functions f with values in {−1, 1}.
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8 G. LECUÉ

We first give the following proposition which is valid not necessarily for

the particular choice of weights given in (2.2).

Proposition 2.2. Let assumption (MA1)(κ) hold with some 1 ≤ κ <

+∞. Assume that there exist two positive numbers a ≥ 1, b such that M ≥
anb. Let w1, . . . , wM be M statistics measurable w.r.t. the sample Dn, such

that wj ≥ 0, for all j = 1, . . . ,M , and
∑M
j=1wj = 1, (π⊗n−a.s.). Define f̃n =∑M

j=1wjfj, where f1, . . . , fM are prediction rules. There exists a constant

C0 > 0 such that

(1−(logM)−1/4)E
[
A(f̃n)−A∗

]
≤ E[An(f̃n)−An(f∗)]+C0n

− κ
2κ−1 (logM)7/4,

where f∗ is the Bayes rule. For instance we can take C0 = 10 +′ ca−1/(2b) +

a−1/b exp
[(
b(8c/6)2

)
∨ (((8c/3) ∨ 1)/b)2

]
.

As a consequence, we obtain the following oracle inequality.

Theorem 2.3. Let assumption (MA1)(κ) hold with some 1 ≤ κ < +∞.

Assume that there exist two positive numbers a ≥ 1, b such that M ≥ anb.

Let f̃n satisfying (2.5), for instance the AEW or the ERM procedure. Then,

f̃n satisfies

(2.7)

E
[
R(f̃n)−R∗

]
≤
(

1 +
2

log1/4(M)

){
2 min
j=1,...,M

(R(fj)−R∗) + C0
log7/4(M)
nκ/(2κ−1)

}
,

for all integers n ≥ 1, where C0 > 0 appears in Proposition 2.2.

Remark 2.1. The factor 2 multiplying minj=1,...,M (R(fj)−R∗) in (2.7)

is due to the relation between the hinge excess risk and the usual excess

risk (cf. inequality (1.3)). The hinge-loss is more adapted for our convex

aggregate, since we have the same statement without this factor, namely:

E
[
A(f̃n)−A∗

]
≤
(

1 +
2

log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + C0

log7/4(M)
nκ/(2κ−1)

}
.

Moreover, linearity of the hinge-loss on [−1, 1] leads to

min
j=1,...,M

(A(fj)−A∗) = min
f∈Conv

(A(f)−A∗) ,
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AGGREGATION OF CLASSIFIERS 9

where Conv is the convex hull of the set {fj : j = 1, . . . ,M}. Therefore,

the excess hinge risk of f̃n is approximately the same as the one of the best

convex combination of fj’s.

Remark 2.2. For a convex loss function φ, consider the empirical φ-risk

A
(φ)
n (f). Our proof implies that the aggregate

f̃ (φ)
n (x) =

M∑
j=1

wφj fj(x) with wφj =
exp

(
−nA(φ)

n (fj)
)

∑M
k=1 exp

(
−nA(φ)

n (fk)
) , ∀j = 1, . . . ,M,

satisfies the inequality (2.5) with A(φ)
n in place of An.

We consider next a recursive analog of the aggregate (2.1). It is close to

the one suggested by Yang (2000) for the density aggregation under Kull-

back loss and by Catoni (2004) and Bunea and Nobel (2005) for regression

model with squared loss. It can be also viewed as a particular instance of

the mirror descent algorithm suggested in Juditsky, Nazin, Tsybakov and

Vayatis (2005). We consider

(2.8) f̄n =
1
n

n∑
k=1

f̃k =
M∑
j=1

w̄jfj

where

(2.9) w̄j =
1
n

n∑
k=1

w
(k)
j =

1
n

n∑
k=1

exp(−kAk(fj))∑M
l=1 exp(−kAk(fl))

,

for all j = 1, . . . ,M , where Ak(f) = (1/k)
∑k
i=1(1 − Yif(Xi))+ is the em-

pirical hinge risk of f and w(k)
j is the weight defined in (2.2), for the first k

observations. This aggregate is especially useful for the on-line framework.

The following theorem says that it has the same theoretical properties as

the aggregate (2.1).

Theorem 2.4. Let assumption (MA1)(κ) hold with some 1 ≤ κ < +∞.

Assume that there exist two positive numbers a ≥ 1, b such that M ≥ anb.
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10 G. LECUÉ

Then the convex aggregate f̄n defined by (2.8) satisfies

E
[
R(f̄n)−R∗

]
≤
(

1 +
2

log1/4(M)

){
2 min
j=1,...,M

(R(fj)−R∗) + C0γ(n, κ) log7/4(M)
}
,

for all integers n ≥ 1, where C0 > 0 appears in Proposition 2.2 and γ(n, κ)

is equal to ((2κ− 1)/(κ− 1))n−
κ

2κ−1 if κ > 1 and to (log n)/n if κ = 1.

Remark 2.3. For all k ∈ {1, . . . , n − 1}, less observations are used to

construct f̃k than for the construction of f̃n, thus, intuitively, we expect that

f̃n will learn better than f̃k. In view of (2.8), f̄n is an average of aggre-

gates whose performances are, a priori, worse than those of f̃n, therefore

its expected learning properties would be presumably worse than those of f̃n.

An advantage of the aggregate f̄n is in its recursive construction, but the

risk behavior of f̃n seems to be better than that of f̄n. In fact, it is easy to

see that Theorem 2.4 is satisfied for any aggregate f̄n =
∑n
k=1wkf̃k where

wk ≥ 0 and
∑n
k=1wk = 1 with γ(n, κ) =

∑n
k=1wkk

−κ/(2κ−1), and the re-

mainder term is minimized for wj = 1 when j = n and 0 elsewhere, that is

for f̄n = f̃n.

Remark 2.4. In this section, we have only dealt with the aggregation

step. But the construction of classifiers has to take place prior to this step.

This needs a split of the sample as discussed at the beginning of this section.

The main drawback of this method is that only a part of the sample is used

for the initial estimation. However, by using different splits of the sample

and taking the average of the aggregates associated with each of them, we get

a more balanced classifier which does not depend on a particular split. Since

the hinge loss is linear on [−1, 1], we have the same result as Theorem 2.3

and 2.4 for an average of aggregates of the form (2.1) and (2.8), respectively,

for averaging over different splits of the sample.

3. Adaptation to the margin and to complexity. In Scovel and

Steinwart (2004, 2005) and Tsybakov (2004) two concepts of complexity
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AGGREGATION OF CLASSIFIERS 11

are used. In this section we show that combining classifiers used by Tsy-

bakov (2004) or L1-SVM classifiers of Scovel and Steinwart (2004, 2005)

with our aggregation method leads to classifiers that are adaptive both to

the margin parameter and to the complexity, in the two cases. Results are

established for the first method of aggregation defined in (2.1) but they are

also valid for the recursive aggregate defined in (2.8).

We use a sample splitting to construct our aggregate. The first subsample

D1
m = ((X1, Y1), . . . , (Xm, Ym)), where m = n − l and l = dan/ log ne for

a constant a > 0, is implemented to construct classifiers and the second

subsample D2
l = ((Xm+1, Ym+1), . . . , (Xn, Yn)), is implemented to aggregate

them by the procedure (2.1).

3.1. Adaptation in the framework of Tsybakov. Here we take X = Rd.

Introduce the following pseudo-distance, and its empirical analogue, between

the sets G,G′ ⊆ X :

d∆(G,G′) = PX(G∆G′) , d∆,e(G,G′) =
1
n

n∑
i=1

1I(Xi∈G∆G′),

where G∆G′ is the symmetric difference between sets G and G′. If Y is a

class of subsets of X , denote by HB(Y, δ, d∆) the δ-entropy with bracketing

of Y for the pseudo-distance d∆ (cf. van de Geer (2000) p.16). We say that

Y has a complexity bound ρ > 0 if there exists a constant A > 0 such that

HB(Y, δ, d∆) ≤ Aδ−ρ, ∀0 < δ ≤ 1.

Various examples of classes Y having this property can be found in Dud-

ley (1974), Korostelev and Tsybakov (1993), Mammen and Tsybakov (1995,

1999).

Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes of subsets of X , where Gρ has

a complexity bound ρ, for all ρmin ≤ ρ ≤ ρmax. This collection corresponds

to an a priori knowledge on π that the set G∗ = {x ∈ X : η(x) > 1/2} lies

in one of these classes (typically we have Gρ ⊂ Gρ′ if ρ ≤ ρ′). The aim of

adaptation to the margin and complexity is to propose f̃n a classifier free
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12 G. LECUÉ

from κ and ρ such that, if π satisfies (MA1)(κ) and G∗ ∈ Gρ, then f̃n learns

with the optimal rate n−
κ

2κ+ρ−1 (optimality has been established in Mammen

and Tsybakov (1999)), and this property holds for all values of κ ≥ 1 and

ρmin ≤ ρ ≤ ρmax. Following Tsybakov (2004), we introduce the following

assumption on the collection (Gρ)ρmin≤ρ≤ρmax .

(A1)(Complexity Assumption). Assume that 0 < ρmin < ρmax < 1 and

Gρ’s are classes of subsets of X such that Gρ ⊆ Gρ′ for ρmin ≤ ρ < ρ′ ≤
ρmax and the class Gρ has complexity bound ρ. For any integer n, we define

ρn,j = ρmin + j
N(n)(ρmax − ρmin), j = 0, . . . , N(n), where N(n) satisfies

A′0n
b′ ≤ N(n) ≤ A0n

b, for some finite b ≥ b′ > 0 and A0, A
′
0 > 0. Assume

that for all n ∈ N,

(i) for all j = 0, . . . , N(n) there exists N j
n an ε-net on Gρn,j for the pseudo-

distance d∆ or d∆,e, where ε = ajn
− 1

1+ρn,j , aj > 0 and maxj aj < +∞,

(ii) N j
n has a complexity bound ρn,j, for j = 0, . . . , N(n).

The first subsample D1
m is used to construct the ERM classifiers f̂ jm(x) =

21I
Ĝj

m
(x)−1, where Ĝjm ∈ Arg min

G∈N j
m
Rm(21IG−1) for all j = 0, . . . , N(m),

and the second subsample D2
l is used to construct the exponential weights

of the aggregation procedure,

w
(l)
j =

exp
(
−lA[l](f̂ jm)

)
∑N(m)
k=1 exp

(
−lA[l](f̂km)

) , ∀j = 0, . . . , N(m),

where A[l](f) = (1/l)
∑n
i=m+1 (1− Yif(Xi))+ is the empirical hinge risk of

f : X 7−→ R based on the subsample D2
l . We consider

(3.1) f̃n(x) =
N(m)∑
j=0

w
(l)
j f̂

j
m(x), ∀x ∈ X .

The construction of f̂ jm’s does not depend on the margin parameter κ.

Theorem 3.1. Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes satisfying

Assumption (A1). Then, the aggregate defined in (3.1) satisfies

sup
π∈Pκ,ρ

E
[
R(f̃n)−R∗

]
≤ Cn

− κ
2κ+ρ−1 , ∀n ≥ 1,
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AGGREGATION OF CLASSIFIERS 13

for all 1 ≤ κ < +∞ and all ρ ∈ [ρmin, ρmax], where C > 0 is a constant

depending only on a, b, b′, A,A0, A
′
0, ρmin, ρmax and κ, and Pκ,ρ is the set of

all probability measures π on X × {−1, 1} such that Assumption (MA1)(κ)

is satisfied and G∗ ∈ Gρ.

3.2. Adaptation in the framework of Scovel and Steinwart.

3.2.1. The case of a continuous kernel. Scovel and Steinwart (2005) have

obtained fast learning rates for SVM classifiers depending on three parame-

ters, the margin parameter 0 ≤ α < +∞, the complexity exponent 0 < p ≤ 2

and the approximation exponent 0 ≤ β ≤ 1. The margin assumption was

first introduced in Mammen and Tsybakov (1999) for the problem of dis-

criminant analysis and in Tsybakov (2004) for the classification problem, in

the following way:

(MA2) Margin (or low noise) assumption. The probability distribution

π on the space X × {−1, 1} satisfies the margin assumption (MA2)(α) with

margin parameter 0 ≤ α < +∞ if there exists c0 > 0 such that

(3.2) P (|2η(X)− 1| ≤ t) ≤ c0t
α, ∀t > 0.

As shown in Boucheron, Bousquet and Lugosi (2006), the margin assump-

tions (MA1)(κ) and (MA2)(α) are equivalent with κ = 1+α
α for α > 0.

Let X be a compact metric space. Let H be a reproducing kernel Hilbert

space (RKHS) over X (see, e.g., Cristianini and Shawe-Taylor (2000), Schölkopf

and Smola (2002)), BH its closed unit ball. Denote by N
(
BH , ε, L2(PXn )

)
the ε-covering number of BH w.r.t. the canonical distance of L2(PXn ), the

L2-space w.r.t. the empirical measure, PXn , on X1, . . . , Xn. Introduce the

following assumptions as in Scovel and Steinwart (2005):

(A2) There exists a0 > 0 and 0 < p ≤ 2 such that for any integer n,

sup
Dn∈(X×{−1,1})n

logN
(
BH , ε, L2(PXn )

)
≤ a0ε

−p, ∀ε > 0,

Note that the supremum is taken over all the samples of size n and the

bound is assuming for any n. Every RKHS satisfies (A2) with p = 2 (cf.
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14 G. LECUÉ

Scovel et al. (2005)). We define the approximation error function of the

L1-SVM as a(λ) def= inff∈H
(
λ||f ||2H +A(f)

)
−A∗.

(A3) The RKHS H, approximates π with exponent 0 ≤ β ≤ 1, if there exists

a constant C0 > 0 such that a(λ) ≤ C0λ
β, ∀λ > 0.

Note that every RKHS approximates every probability measure with expo-

nent β = 0 and the other extremal case β = 1 is equivalent to the fact that

the Bayes classifier f∗ belongs to the RKHS (cf. Scovel et al. (2005)). Fur-

thermore, β > 1 only for probability measures such that P (η(X) = 1/2) = 1

(cf. Scovel et al. (2005)). If (A2) and (A3) hold, the parameter (p, β) can be

considered as a complexity parameter characterizing π and H.

Let H be a RKHS with a continuous kernel on X satisfying (A2) with a

parameter 0 < p < 2. Define the L1-SVM classifier by

(3.3) f̂λn = sign(F̂ λn ) where F̂ λn ∈ Arg min
f∈H

(
λ||f ||2H +An(f)

)
and λ > 0 is called the regularization parameter. Assume that the prob-

ability measure π belongs to the set Qα,β of all probability measures on

X × {−1, 1} satisfying (MA2)(α) with α ≥ 0 and (A3) with a complex-

ity parameter (p, β) where 0 < β ≤ 1. It has been shown in Scovel et

al. (2005) that the L1-SVM classifier,f̂λ
α,β
n

n , where the regularization param-

eter is λα,βn = n
− 4(α+1)

(2α+pα+4)(1+β) , satisfies the following excess risk bound: for

any ε > 0, there exists C > 0 depending only on α, p, β and ε such that

(3.4) E
[
R(f̂λ

α,β
n

n )−R∗
]
≤ Cn

− 4β(α+1)
(2α+pα+4)(1+β)

+ε
, ∀n ≥ 1.

Remark that if β = 1, that is f∗ ∈ H, then the learning rate in (3.4) is (up

to an ε) n−2(α+1)/(2α+pα+4) which is a fast rate since 2(α+1)/(2α+pα+4) ∈
[1/2, 1).

To construct the classifier f̂λ
α,β
n

n we need to know parameters α and β that

are not available in practice. Thus, it is important to construct a classifier,

free from these parameters, which has the same behavior as f̂λ
α,β
n

n , if the

underlying distribution π belongs toQα,β. Below we give such a construction.

Since the RKHS H is given, the implementation of the L1-SVM classifier

f̂λn only requires the knowledge of the regularization parameter λ. Thus, to
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AGGREGATION OF CLASSIFIERS 15

provide an easily implementable procedure, using our aggregation method,

it is natural to combine L1-SVM classifiers constructed for different values

of λ in a finite grid. We now define such a procedure.

We consider the L1-SVM classifiers f̂λm, defined in (3.3) for the subsample

D1
m, where λ lies in the grid

G(l) = {λl,k = l−φl,k : φl,k = 1/2 + k∆−1, k = 0, . . . , b3∆/2c},

where we set ∆ = lb0 with some b0 > 0. The subsample D2
l is used to

aggregate these classifiers by the procedure (2.1), namely

(3.5) f̃n =
∑
λ∈G(l)

w
(l)
λ f̂

λ
m

where

w
(l)
λ =

exp
(∑n

i=m+1 Yif̂
λ
m(Xi)

)
∑
λ′∈G(l) exp

(∑n
i=m+1 Yif̂

λ′
m (Xi)

) =
exp

(
−lA[l](f̂λm)

)
∑
λ′∈G(l) exp

(
−lA[l](f̂λ′m )

) ,
and A[l](f) = (1/l)

∑n
i=m+1(1− Yif(Xi))+.

Theorem 3.2. Let H be a RKHS with a continuous kernel on a compact

metric space X satisfying (A2) with a parameter 0 < p < 2. Let K be

a compact subset of (0,+∞) × (0, 1]. The classifier f̃n, defined in (3.5),

satisfies

sup
π∈Qα,β

E
[
R(f̃n)−R∗

]
≤ Cn

− 4β(α+1)
(2α+pα+4)(1+β)

+ε

for all (α, β) ∈ K and ε > 0, where Qα,β is the set of all probability measures

on X × {−1, 1} satisfying (MA2)(α) and (A2) with a complexity parameter

(p, β) and C > 0 is a constant depending only on ε, p,K, a and b0.

3.2.2. The case of the Gaussian RBF kernel. In this subsection we apply

our aggregation procedure to L1-SVM classifiers using Gaussian RBF kernel.

Let X be the closed unit ball of the space Rd0 endowed with the Euclidean

norm ||x|| =
(∑d0

i=1 x
2
i

)1/2
,∀x = (x1, . . . , xd0) ∈ Rd0 . Gaussian RBF kernel

is defined as Kσ(x, x′) = exp
(
−σ2||x− x′||2

)
for x, x′ ∈ X where σ is a
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16 G. LECUÉ

parameter and σ−1 is called the width of the gaussian kernel. The RKHS

associated to Kσ is denoted by Hσ.

Scovel and Steinwart (2004) introduced the following assumption:

(GNA) Geometric noise assumption. There exist C1 > 0 and γ > 0

such that

E

[
|2η(X)− 1| exp

(
−τ(X)2

t

)]
≤ C1t

γd0
2 , ∀t > 0.

Here τ is a function on X with values in R which measures the distance

between a given point x and the decision boundary, namely,

τ(x) =


d(x,G0 ∪G1), if x ∈ G−1,

d(x,G0 ∪G−1), if x ∈ G1,

0 otherwise,

for all x ∈ X , where G0 = {x ∈ X : η(x) = 1/2}, G1 = {x ∈ X : η(x) > 1/2}
and G−1 = {x ∈ X : η(x) < 1/2}. Here d(x,A) denotes the Euclidean

distance from a point x to the set A. If π satisfies Assumption (GNA) for a

γ > 0, we say that π has a geometric noise exponent γ.

The L1-SVM classifier associated to the gaussian RBF kernel with width

σ−1 and regularization parameter λ is defined by f̂ (σ,λ)
n = sign(F̂ (σ,λ)

n ) where

F̂
(σ,λ)
n is given by (3.3) with H = Hσ. Using the standard development

related to SVM (cf. Schölkopf and Smola (2002)), we may write F̂ (σ,λ)
n (x) =∑n

i=1 ĈiKσ(Xi, x),∀x ∈ X , where Ĉ1, . . . , Ĉn are solutions of the following

maximization problem

max
0≤2λCiYi≤n−1

2
n∑
i=1

CiYi −
n∑

i,j=1

CiCjKσ(Xi, Xj)

 ,
that can be obtained using a standard quadratic programming software.

According to Scovel et al. (2004), if the probability measure π on X×{−1, 1},
satisfies the margin assumption (MA2)(α) with margin parameter 0 ≤ α <

+∞ and Assumption (GNA) with a geometric noise exponent γ > 0, the

classifier f̂ (σα,γ
n ,λα,γ

n )
n where regularization parameter and width are defined
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AGGREGATION OF CLASSIFIERS 17

by

λα,γn =

 n
− γ+1

2γ+1 if γ ≤ α+2
2α ,

n
− 2(γ+1)(α+1)

2γ(α+2)+3α+4 otherwise,
and σα,γn = (λα,γn )−

1
(γ+1)d0 ,

satisfies

(3.6) E
[
R(f̂ (σα,γ

n ,λα,γ
n )

n )−R∗
]
≤ C

 n
− γ

2γ+1
+ε if γ ≤ α+2

2α ,

n
− 2γ(α+1)

2γ(α+2)+3α+4
+ε otherwise,

for all ε > 0, where C > 0 is a constant which depends only on α, γ and ε.

Remark that fast rates are obtained only for γ > (3α+ 4)/(2α).

To construct the classifier f̂ (σα,γ
n ,λα,γ

n )
n we need to know parameters α and

γ, which are not available in practice. Like in Subsection 3.2.1 we use our

procedure to obtain a classifier which is adaptive to the margin and to the

geometric noise parameters. Our aim is to provide an easily computable

adaptive classifier. We propose the following method based on a grid for

(σ, λ). We consider the finite sets

M(l) =
{

(ϕl,p1 , ψl,p2) =
(
p1

2∆
,
p2

∆
+

1
2

)
: p1 = 1, . . . , 2b∆c; p2 = 1, . . . , b∆/2c

}
,

where we let ∆ = lb0 for some b0 > 0, and

N (l) =
{
(σl,ϕ, λl,ψ) =

(
lϕ/d0 , l−ψ

)
: (ϕ,ψ) ∈M(l)

}
.

We construct the family of classifiers
(
f̂

(σ,λ)
m : (σ, λ) ∈ N (l)

)
using the

observations of the subsample D1
m and we aggregate them by the procedure

(2.1) using D2
l , namely

(3.7) f̃n =
∑

(σ,λ)∈N (l)

w
(l)
σ,λf̂

(σ,λ)
m

where

(3.8) w
(l)
σ,λ =

exp
(∑n

i=m+1 Yif̂
(σ,λ)
m (Xi)

)
∑

(σ′,λ′)∈N (l) exp
(∑n

i=m+1 Yif̂
(σ′,λ′)
m (Xi)

) , ∀(σ, λ) ∈ N (l).
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18 G. LECUÉ

Denote by Rα,γ the set of all probability measures on X ×{−1, 1} satisfy-

ing both the margin assumption (MA2)(α) with a margin parameter α > 0

and Assumption (GNA) with a geometric noise exponent γ > 0. Define

U = {(α, γ) ∈ (0,+∞)2 : γ > α+2
2α } and U ′ = {(α, γ) ∈ (0,+∞)2 : γ ≤ α+2

2α }.

Theorem 3.3. Let K be a compact subset of U and K ′ a compact subset

of U ′. The aggregate f̃n, defined in (3.7), satisfies

sup
π∈Rα,γ

E
[
R(f̃n)−R∗

]
≤ C

 n
− γ

2γ+1
+ε if (α, γ) ∈ K ′,

n
− 2γ(α+1)

2γ(α+2)+3α+4
+ε if (α, γ) ∈ K,

for all (α, γ) ∈ K ∪K ′ and ε > 0, where C > 0 depends only on ε,K,K ′, a

and b0.

4. Proofs.

Lemma 4.1. For all positive v, t and all κ ≥ 1 : t+ v ≥ v
2κ−1
2κ t

1
2κ .

Proof. Since log is concave, we have log(ab) = (1/x) log(ax)+(1/y) log(by) ≤
log (ax/x+ by/y) for all positive numbers a, b and x, y such that 1/x+1/y =

1, thus ab ≤ ax/x+ by/y. Lemma 4.1 follows by applying this relation with

a = t1/(2κ), x = 2κ and b = v(2κ−1)/(2κ).

Proof of Proposition 2.1. Observe that (1 − x)+ = 1 − x for x ≤
1. Since Yif̃n(Xi) ≤ 1 and Yifj(Xi) ≤ 1 for all i = 1, . . . , n and j =

1, . . . ,M , we have An(f̃n) =
∑M
j=1w

(n)
j An(fj). We have An(fj) = An(fj0) +

1
n

(
log(w(n)

j0
)− log(w(n)

i )
)
, for any j, j0 = 1, . . . ,M , where weights w(n)

j are

defined in (2.3) by

w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

,

and by multiplying the last equation by w
(n)
j and summing up over j, we

get

(4.1) An(f̃n) ≤ min
j=1...,M

An(fj) +
logM
n

.
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AGGREGATION OF CLASSIFIERS 19

Since log(w(n)
j0

) ≤ 0,∀j0 = 1, . . . ,M and
∑M
j=1w

(n)
j log

(
w

(n)
j

1/M

)
= K(w|u) ≥

0 whereK(w|u) denotes the Kullback-Leiber divergence between the weights

w = (w(n)
j )j=1,...,M and uniform weights u = (1/M)j=1,...,M .

Proof of Proposition 2.2. Denote by γ = (logM)−1/4, u = 2γn−
κ

2κ−1 log2M

and Wn = (1− γ)(A(f̃n)−A∗)− (An(f̃n)−An(f∗)). We have:

E [Wn] = E
[
Wn(1I(Wn≤u) + 1I(Wn>u))

]
≤ u+ E

[
Wn1I(Wn>u)

]
= u+ uP (Wn > u) +

∫ +∞

u
P (Wn > t) dt ≤ 2u+

∫ +∞

u
P (Wn > t) dt.

On the other hand (fj)j=1,...,M are prediction rules, so we have A(fj) =

2R(fj) and An(fj) = 2Rn(fj), (recall that A∗ = 2R∗). Moreover we work in

the linear part of the hinge-loss, thus

P (Wn > t) = P

 M∑
j=1

wj ((A(fj)−A∗) (1− γ)− (An(fj)−An(f∗))) > t


≤ P

(
max

j=1,...,M
((A(fj)−A∗) (1− γ)− (An(fj)−An(f∗))) > t

)

≤
M∑
j=1

P (Zj > γ (R(fj)−R∗) + t/2) ,

for all t > u, where Zj = R(fj) − R∗ − (Rn(fj)−Rn(f∗)) for all j =

1, . . . ,M(recall that Rn(f) is the empirical risk defined in (1.1)).

Let j ∈ {1, . . . ,M}. We can write Zj = (1/n)
∑n
i=1 (E[ζi,j ]− ζi,j) where

ζi,j = 1I(Yifj(Xi)≤0) − 1I(Yif∗(Xi)≤0). We have |ζi,j | ≤ 1 and, under the margin

assumption, we have V(ζi,j) ≤ E(ζ2
i,j) = E [|fj(X)− f∗(X)|] ≤ c (R(fj)−R∗)1/κ

where V is the symbol of the variance. By applying Bernstein’s inequality

and Lemma 1 respectively, we get

P [Zj > ε] ≤ exp

(
− nε2

2c (R(fj)−R∗)1/κ + 2ε/3

)

≤ exp

(
− nε2

4c (R(fj)−R∗)1/κ

)
+ exp

(
−3nε

4

)
,
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for all ε > 0. Denote by uj = u/2 + γ(R(fj)− R∗). After a standard calcu-

lation we get∫ +∞

u
P (Zj > γ (R(fj)−R∗) + t/2) dt = 2

∫ +∞

uj

P(Zj > ε)dε ≤ B1 +B2,

where

B1 =
4c(R(fj)−R∗)1/κ

nuj
exp

(
−

nu2
j

4c(R(fj)−R∗)1/κ

)
and

B2 =
8
3n

exp
(
−3nuj

4

)
.

SinceR(fj) ≥ R∗, Lemma 4.1 yields uj ≥ γ (R(fj)−R∗)
1
2κ (logM)

2κ−1
κ n−1/2.

For any a > 0, the mapping x 7→ (ax)−1 exp(−ax2) is decreasing on (0,+∞)

thus, we have,

B1 ≤
4c
γ
√
n

(logM)−
2κ−1

κ exp

(
−γ

2

4c
(log(M))

4κ−2
κ

)
.

The mapping x 7−→ (2/a) exp(−ax) is decreasing on (0,+∞), for any a > 0

and uj ≥ γ(logM)2n−
κ

2κ−1 thus,

B2 ≤
8
3n

exp
(
−3γ

4
n

κ−1
2κ−1 (logM)2

)
.

Since γ = (logM)−1/4, we have E(Wn) ≤ 4n−
κ

2κ−1 (logM)7/4 + T1 + T2,

where

T1 =
4Mc√
n

(logM)−
7κ−4
4κ exp

(
− 3

4c
(logM)

7κ−4
2κ

)
and

T2 =
8M
3n

exp
(
−(3/4)n

κ−1
2κ−1 (logM)7/4

)
.

We have T2 ≤ 6(logM)7/4/n for any integerM ≥ 1. Moreover κ/(2κ−1) ≤ 1

for all 1 ≤ κ < +∞, so we get T2 ≤ 6n−
κ

2κ−1 (logM)7/4 for any integers n ≥ 1

and M ≥ 2.

Let B be a positive number. The inequality T1 ≤ Bn−
κ

2κ−1 (logM)7/4 is

equivalent to

2(2κ−1)
[

3
4c

(logM)
7κ−4
2κ − logM +

7κ− 2
2κ

log(logM)
]
≥ log

(
(4c/B)2(2κ−1) n

)
.
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Since we have 7κ−4
2κ ≥ 3

2 > 1 for all 1 ≤ κ < +∞ and M ≥ anb for

some positive numbers a and b, there exists a constant B which depends

only on a, b and c (for instance B = 4ca−1/(2b) when n satisfies log(anb) ≥
(b2(8c/6)2) ∨ ((8c/3) ∨ 1)2) such that T1 ≤ Bn−

κ
2κ−1 (logM)7/4.

Proof of Theorem 2.3. Let γ = (logM)−1/4. Using (4.1), we have

E
[(
A(f̃n)−A∗

)
(1− γ)

]
− (A(fj0)−A∗)

= E
[(
A(f̃n)−A∗

)
(1− γ)−

(
An(f̃n)−An(f∗)

)]
+ E

[
An(f̃n)−An(fj0)

]
≤ E

[(
A(f̃n)−A∗

)
(1− γ)−

(
An(f̃n)−An(f∗)

)]
+

logM
n

.

For Wn defined in the beginning of the proof of Proposition 2.2 and f∗ the

Bayes rule, we have

(4.2) (1− γ)
(
E
[
A(f̃n)

]
−A∗

)
≤ min

j=1,...,M
(A(fj)−A∗) + E [Wn] +

logM
n

.

According to Proposition 2.2, E [Wn] ≤ C0n
− κ

2κ−1 (logM)7/4 where C0 > 0

is given in Proposition 2.2. Using (4.2) and (1 − γ)−1 ≤ 1 + 2γ for any

0 < γ < 1/2, we get

E
[
A(f̃n)−A∗

]
≤
(

1 +
2

log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + C

log7/4(M)
nκ/(2κ−1)

}
.

We complete the proof by using inequality (1.3) and equality 2(R(f) −
R∗) = A(f)−A∗, which holds for any prediction rule f .

Proof of Theorem 2.4. Since f̃k’s take there values in [−1, 1] and x 7→
(1−x)+ is linear on [−1, 1], we obtain A(f̄n)−A∗ = 1

n

∑n
k=1

(
A(f̃k)−A∗

)
.

Applying Theorem 2.3 to every f̃k for k = 1, . . . , n, then taking the average

of the n oracle inequalities satisfied by the f̃k for k = 1, . . . , n and seeing

that (1/n)
∑n
k=1 k

−κ/(2κ−1) ≤ γ(n, κ) we obtain

E
[
A(f̄n)−A∗

]
≤
(

1 +
2

log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + Cγ(n, κ) log7/4(M)

}
.

We complete the proof by the same argument as at the end of the previous

proof.
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Proof of Theorem 3.1. Let ρmin ≤ ρ ≤ ρmax and κ ≥ 1. Let ρm,j0 =

min(ρm,j : ρm,j ≥ ρ). Since N(m) ≥ A′0m
b′ ≥ Clb

′
, where C > 0, using the

oracle inequality, stated in Theorem 2.3, we have, for π satisfying (MA1)(κ),

E
[
R(f̃n)−R∗|D1

m

]
≤

(
1 +

2
log1/4N(m)

){
2 min
j=1,...,N(m)

(
R(f̂ jm)−R∗

)
+ C

log7/4N(m)
lκ/(2κ−1)

}
,

where C is a positive number depending only on b′, a, A′0 and c. Taking the

expectation with respect to the subsample D1
m we have

E
[
R(f̃n)−R∗

]
≤
(

1 +
2

log−1/4N(m)

){
2E
[
R(f̂ j0m )−R∗

]
+ C

log7/4N(m)
lκ/(2κ−1)

}
.

It follows from Tsybakov (2004) that, the excess risk of f̂ j0m satisfies

sup
π∈Pκ,ρj0

E
[
R(f̂ j0m )−R∗

]
≤ Cm

− κ
2κ+ρj0

−1 ,

where C is a positive number depending only on A, c, κ, ρmin and ρmax (note

that C does not depend on ρj0).

Moreover we have m ≥ n (1− a/ log 3− 1/3), N(m) ≤ A0m
b ≤ A0n

b

and l ≥ an/ log n, so that there exists a constant C depending only on

a,A0, A
′
0, b, b

′, κ, ρmin and ρmax such that

(4.3) sup
π∈Pκ,ρj0

E
[
R(f̃n)−R∗

]
≤ C

{
n
− κ

2κ+ρj0
−1 + n−

κ
2κ−1 (log n)11/4

}
.

Since ρj0 ≤ ρ+N(m)−1 ≤ ρ+ (A′0)
−1 [n (1− a/ log 3− 1/3)]−b

′
there exists

a constant C depending only on a,A′0, b
′, κ, ρmin and ρmax such that for all

integers n, n
− κ

2κ+ρj0
−1 ≤ Cn

− κ
2κ+ρ−1 . Theorem 2.4 follows directly from (4.3)

seeing that ρ ≥ ρmin > 0 and Pκ,ρ ⊆ Pκ,ρj0
since ρj0 ≥ ρ.

Proof of Theorem 3.2. Define 0 < αmin < αmax < +∞ and 0 <

βmin < 1 such that K ⊂ [αmin, αmax] × [βmin, 1]. Let (α0, β0) ∈ K. We

consider the function on (0,+∞) × (0, 1] with values in (1/2, 2), φ(α, β) =

4(α+1)/((2α+pα+4)(1+β)). We take k0 ∈ {0, . . . , b3∆/2c−1} such that

φl,k0 = 1/2 + k0∆−1 ≤ φ(α0, β0) < 1/2 + (k0 + 1)∆−1.
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For n greater than a constant depending only on K, p, b0 and a there exists

ᾱ0 ∈ [αmin/2, αmax] such that φ(ᾱ0, β0) = φl,k0 . Since α 7→ φ(α, β0) in-

creases on R+, we have ᾱ0 ≤ α0. Moreover, we have |φ(α1, β0)−φ(α2, β0)| ≥
A|α1 − α2|, ∀α1, α2 ∈ [αmin/2, αmax], where A > 0 depends only on p and

αmax. Thus |ᾱ0−α0| ≤ (A∆)−1. Since ᾱ0 ≤ α0 we have Qα0,β0 ⊆ Qᾱ0,β0 , so

sup
π∈Qα0,β0

E[R(f̃n)−R∗] ≤ sup
π∈Qᾱ0,β0

E[R(f̃n)−R∗].

Since d3∆/2e ≥ (3/2)lb0 , for π satisfying the margin assumption (MA2)(ᾱ0),

Theorem 2.3 leads to

E
[
R(f̃n)−R∗|D1

m

]
≤

(
1 +

2
log1/4(d3∆/2e)

){
2 min
λ∈G(l)

(
R(f̂λm)−R∗

)
+ C0

log7/4(d3∆/2e)
l(ᾱ0+1)/(ᾱ0+2)

}
,

for all integers n ≥ 1, where C0 > 0 depends only on K, a and b0. Therefore,

taking the expectation w.r.t. the subsample D1
m we get

E
[
R(f̃n)−R∗

]
≤ C1

(
E
[
R(f̂

λl,k0
m )−R∗

]
+ l

− ᾱ0+1

ᾱ0+2 log7/4(n)
)
,

where λl,k0 = l−φl,k0 and C1 > 0 depends only on K, a and b0.

Set Γ : (0,+∞) × (0, 1] 7−→ R+ defined by Γ(α, β) = βφ(α, β),∀(α, β) ∈
(0,+∞)× (0, 1]. According to Scovel et al. (2005), if π ∈ Qᾱ0,β0 then for all

ε > 0, there exists C > 0 a constant depending only on K, p and ε such that,

E
[
R(f̂

λl,k0
m )−R∗

]
≤ Cm−Γ(ᾱ0,β0)+ε.

Remark that C does not depend on ᾱ0 and β0 since (ᾱ0, β0) ∈ [αmin/2, αmax]×
[βmin, 1] and that the constant multiplying the rate of convergence, stated in

Scovel et al. (2005), is uniformly bounded over (α, β) belonging to a compact

subset of (0,+∞)× (0, 1].

Let ε > 0. Assume that π ∈ Qα0,β0 . We have n (1− a/ log 3− 1/3) ≤ m ≤
n, l ≥ an/ log n and Γ(ᾱ0, β0) ≤ (ᾱ0 +1)/(ᾱ0 +2) ≤ 1, therefore, there exist

C2, C
′
2 > 0 depending only on a, b0,K, p and ε such that for any n greater
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than a constant depending only on βmin, a and b0

E
[
R(f̃n)−R∗

]
≤ C2

(
n−Γ(ᾱ0,β0)+ε + n

− ᾱ0+1

ᾱ0+2 (log n)11/4
)
≤ C ′2n

−Γ(ᾱ0,β0)+ε.

Moreover, Γ satisfies |Γ(ᾱ0, β0)−Γ(α0, β0)| ≤ B∆−1, where B depends only

on p and αmin, and
(
nB∆−1

)
n∈N

is upper bounded. This completes the

proof.

Proof of Theorem 3.3. Let (α0, γ0) ∈ K∪K ′. First assume that (α0, γ0)

belongs to K ⊂ U . We consider the set

S = {(ϕ,ψ) ∈ (0, 1/2)× (1/2, 1) : 2− 2ψ − ϕ > 0} .

Each point of S is associated to a margin parameter (3.2) and to a geometric

noise exponent by the following functions on S with values in (0,+∞),

ᾱ(ϕ,ψ) =
4ψ − 2

2− 2ψ − ϕ
and γ̄(ϕ,ψ) =

ψ

ϕ
− 1.

We take (ϕ,ψ) ∈ S ∩M(l) such that ᾱ(ϕ,ψ) ≤ α0, γ̄(ϕ,ψ) ≤ γ0, ᾱ(ϕ,ψ) is

close enough to α0, γ̄(ϕ,ψ) is close enough to γ0 and γ̄(ϕ,ψ) > (ᾱ(ϕ,ψ) +

2)/(2ᾱ(ϕ,ψ)). Since γ0 > (α0 +2)/(2α0) there exists a solution (ϕ0, ψ0) ∈ S
of the system of equations

(4.4)

 ᾱ(ϕ,ψ) = α0

γ̄(ϕ,ψ) = γ0.

For all integers n greater than a constant depending only on K, a and b0,

there exists (p1,0, p2,0) ∈ {1, . . . , 2b∆c} × {2, . . . , b∆/2c} defined by

ϕl,p1,0 = min(ϕl,p : ϕl,p ≥ ϕ0) and ψl,p2,0 = max(ψl,p2 : ψl,p2 ≤ ψ0)−∆−1.

We have 2−2ψl,p2,0−ϕl,p1,0 > 0. Therefore (ϕl,p1,0 , ψl,p2,0) ∈ S∩M(l). Define

ᾱ0 = ᾱ(ϕl,p1,0 , ψl,p2,0) and γ̄0 = γ̄(ϕl,p1,0 , ψl,p2,0). Since (ϕ0, ψ0) satisfies (4.4),

we have

ψl,p2,0 +
1
∆
≤ ψ0 =

−α0

2α0 + 4
ϕ0 +

1 + α0

2 + α0
≤ −α0

2α0 + 4

(
ϕl,p1,0 −

1
2∆

)
+

1 + α0

2 + α0
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and (α0/(2α0 + 4))(2∆)−1 ≤ ∆−1, thus

ψl,p2,0 ≤ − α0

2α0 + 4
ϕl,p1,0 +

1 + α0

2 + α0
so ᾱ0 ≤ α0.

With a similar argument, we have ψl,p2,0 ≤ (α0 + 1)ϕl,p1,0 , that is γ̄0 ≤ γ0.

Now we show that γ̄0 > (ᾱ0 +2)/(2ᾱ0). Since (α0, γ0) belongs to a compact,

(ϕ0, ψ0) and (ϕl,p1,0 , ψl,p2,0) belong to a compact subset of (0, 1/2)× (1/2, 1)

for n greater than a constant depending only on K, a, b0. Thus, there exists

A > 0, depending only on K, such that for n large enough, we have

|α0 − ᾱ0| ≤ A∆−1 and |γ0 − γ̄0| ≤ A∆−1.

Denote by dK = d(∂U ,K), where ∂U is the boundary of U and d(A,B)

denotes the Euclidean distance between sets A and B. We have dK > 0 since

K is a compact, ∂U is closed and K ∩ ∂U = ∅. Set 0 < αmin < αmax < +∞
and 0 < γmin < γmax < +∞ such that K ⊂ [αmin, αmax] × [γmin, γmax].

Define Uµ =
{
(α, γ) ∈ (0,+∞)2 : α ≥ 2µ and γ > (α− µ+ 2)/(2(α− µ))

}
for µ = min(αmin/2, dK). We have K ⊂ Uµ so γ0 > (α0−µ+2)/(2(α0−µ)).

Since α 7→ (α+2)/(2α) is decreasing, γ̄0 > γ0−A∆−1 and α0 ≤ ᾱ0 +A∆−1,

we have γ̄0 > β̄(ᾱ0) − A∆−1 where β̄ is a positive function on (0, 2αmax]

defined by β̄(α) = (α − (µ − A∆−1) + 2)/(2(α − (µ − A∆−1))). We have

|β̄(α1)− β̄(α2)| ≥ (2αmax)−2|α1 − α2| for all α1, α2 ∈ (0, 2αmax]. Therefore

β̄(ᾱ0)−A∆−1 ≥ β̄
(
ᾱ0 + 4Aα2

max∆
−1
)
. Thus, for n greater than a constant

depending only on K, a and b0 we have γ̄0 > (ᾱ0 + 2)/(2ᾱ0).

Since ᾱ0 ≤ α0 and γ̄0 ≤ γ0, we have Rα0,γ0 ⊂ Rᾱ0,γ̄0 and

sup
π∈Rα0,γ0

E
[
R(f̃n)−R∗

]
≤ sup

π∈Rᾱ0,γ̄0

E
[
R(f̃n)−R∗

]
.

If π satisfies (MA2)(ᾱ0) then we get from Theorem 2.3

E
[
R(f̃n)−R∗|D1

m

]
≤(4.5)

(
1 +

2
log1/4M(l)

){
2 min

(σ,λ)∈N (l)

(
R(f̂ (σ,λ)

m )−R∗
)

+ C2
log7/4(M(l))
l(ᾱ0+1)/(ᾱ0+2)

}
,
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for all integers n ≥ 1, where C2 > 0 depends only on K, a and b0 and M(l)

is the cardinality of N (m). Remark that M(l) ≥ l2b0/2, so we can apply

Theorem 2.3.

Let ε > 0. Since M(l) ≤ n2b0 and γ̄0 > (ᾱ0+2)/(2ᾱ0), taking expectations

in (4.5) and using the result (3.6) of Scovel et al. (2004), for σ = σl,ϕl,p1,0

and λ = λl,ψl,p2,0
, we obtain

sup
π∈Rᾱ0,γ̄0

E
[
R(f̃n)−R∗

]
≤ C

(
m−Θ(ᾱ0,γ̄0)+ε + l

− ᾱ0+1

ᾱ0+2 log7/4(n)
)
,

where Θ : U 7→ R is defined, for all (α, γ) ∈ U , by Θ(α, γ) = (2γ(α +

1))/(2γ(α + 2) + 3α + 4) and C > 0 depends only on a, b0,K and ε. Re-

mark that the constant before the rate of convergence in (3.6) is uniformly

bounded on every compact of U . We have Θ(ᾱ0, γ̄0) ≤ Θ(α0, γ0) ≤ Θ(ᾱ0, γ̄0)+

2A∆−1, m ≥ n (1− a/ log 3− 1/3) and
(
m2A∆−1

)
n∈N

is upper bounded, so

there exists C1 > 0 depending only on K, a, b0 such that m−Θ(ᾱ0,γ̄0) ≤
C1n

−Θ(α0,γ0), ∀n ≥ 1.

Similar argument as at the end of the proof of Theorem 3.2 and the fact

that Θ(α, γ) < (α + 1)/(α + 2) for all (α, γ) ∈ U , leads to the result of the

first part of Theorem 3.3.

Let now (α0, γ0) ∈ K ′. Let α′max > 0 be such that ∀(α, γ) ∈ K ′, α ≤
α′max. Take p1,0 ∈ {1, . . . , 2b∆c} such that ϕl,p1,0 = min(ϕl,p : ϕl,p ≥ (2γ0 +

1)−1 and p ∈ 4N), where 4N is the set of all integers multiple of 4. For large

values of n, p1,0 exists and p1,0 ∈ 4N. We denote by γ̄0 ∈ (0,+∞) such that

ϕl,p1,0 = (2γ̄0 + 1)−1, we have γ̄0 ≤ γ0 thus Rα0,γ0 ⊆ Rα0,γ̄0 and

sup
π∈Rα0,γ0

E
[
R(f̃n)−R∗

]
≤ sup

π∈Rα0,γ̄0

E
[
R(f̃n)−R∗

]
.

If π satisfies the margin assumption (3.2) with the margin parameter α0

then, using Theorem 2.3, we obtain, for any integer n ≥ 1,

(4.6) E
[
R(f̃n)−R∗|D1

m

]
≤(

1 +
2

log1/4(M(l))

){
2 min

(σ,λ)∈N (l)

(
R(f̂ (σ,λ)

m )−R∗
)

+ C0
log7/4M(l)
l(α0+1)/(α0+2)

}
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where C > 0 appears in Proposition 2.2 and M(l) is the cardinality of N (l).

Let ε > 0 and p2,0 ∈ {1, . . . , b∆/2c} defined by p2,0 = p1,0/4 (note that

p1,0 ∈ 4N). We have

σl,ϕl,p1,0
=
(
λl,ψl,p2,0

)− 1
d0(γ̄0+1) .

Since γ̄0 ≤ (α0 + 2)/(2α0), using the result (3.6) of Scovel et al. (2004) we

have, for σ = σl,ϕl,p1,0
and λ = λl,ψl,p2,0

,

E
[
R(f̂ (σ0,λ0)

m )−R∗
]
≤ Cm−Γ̄(γ̄0)+ε,

where Γ̄ : (0,+∞) 7−→ R is the function defined by Γ̄(γ) = γ/(2γ + 1)

for all γ ∈ (0,+∞) and C > 0 depends only on a, b0,K
′ and ε. Remark

that, as in the first part of the proof, we can uniformly bound the constant

before the rate of convergence in (3.6) on every compact subset of U ′. Since

M(l) ≤ n2b0 , taking the expectation, in (4.6), we find

sup
π∈Rα0,γ̄0

E
[
R(f̃n)−R∗

]
≤ C

(
m−Γ(γ̄0)+ε + l

−α0+1

α0+2 log7/4(n)
)
,

where C > 0 depends only on a, b0,K ′ and ε.Moreover |γ0−γ̄0| ≤ 2(2α′max+

1)2∆−1 so |Γ̄(γ̄0)− Γ̄(γ0)| ≤ 2(2αmax + 1)∆−1. To achieve the proof we use

same argument as for the first part of the proof.
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[4] Bartlett, P.L., Freund, Y., Lee, W.S. and Schapire, R.E. (1998). Boosting the

margin: a new explanantion for the effectiveness of voting methods. Ann. Statist. 26

1651-1686.

[5] Bartlett, P. , Jordan, M. and McAuliffe, J. (2003). Convexity, Classification and

Risk Bounds. Available at http://stat-www.berkeley.edu/tech-reports/638.pdf
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